首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Synchronous CHO cells were obtained by mitotic selection; synchrony was maintained up to the 5th cell cycle. The mitotic cells were seeded into T-25 flasks or P-60 plastic petri dishes, and cultured for 1 h at 37 degrees C, then the cells were treated by X-ray, UV light, and mitomycin C. The cells were then cultured for 2 cell cycles with TPA and BrdUrd and sister-chromatid exchanges (SCE) analyzed by the FPG method. Following X-irradiation, the frequency of induced SCE increased linearly with dose reaching a maximum of 19.8 times the control frequency after 200 rad. With higher doses, the SCE frequency declined. In the presence of TPA, SCE frequencies were 1.8 times control levels for all X-ray doses studied (0-800 rad), the frequency seen in non-irradiated cultures treated with TPA. The induced SCE frequency also increased linearly following treatment with UVL and mitomycin C, reaching levels higher than 1.8 times controls with doses exceeding 2.5 J/m2 UVL or mitomycin C (30 min). In the presence of TPA, the SCE frequencies increased to 1.8 times controls following low UVL and mitomycin C doses, but were not influenced by TPA in the higher dose range (above 2.5 J/m2 or 10(-10) M mitomycin C. Most of the SCE were induced by X-rays during the first S phase after treatment. Following higher UVL doses (5 J/m2), however, the SCE frequency remained elevated (1.5 times controls) for 4 cell cycles after exposure.  相似文献   

2.
3.
Tumour-promoting agents may bring about the completion of multi-step carcinogenesis by acting as enhancers of mutagenesis, recombinogens or clastogens. We report here that the classical mouse skin tumour promoter TPA, although non-mutagenic per se, can enhance the induction of OuaR CHO-K1 cell mutants by MNNG approximately 2-fold. This observation was made at a concentration approaching the compounds aqueous solubility limit which was non-cytotoxic. Mutagenesis enhancement was dependent on TPA being present throughout mutation expression and mutant selection. It was not accompanied by any modification of cell sensitivity to mutagen killing. In the same treatment protocol TPA did not enhance either EMS- or UV-induced mutagenesis. TPA exposure over 2 rounds of cell replication failed to produce an increase in the frequency of SCE in control or mutagen-treated CHO-K1 cultures. Likewise TPA exposure over 1 round of cell replication failed to produce an increase in the frequency of chromosomal aberrations. Apparently TPA is not a recombinogen or clastogen but in the right exposure regime is capable of acting to enhance mutagenesis by certain genotoxic agents, an action which may contribute to tumour promotion.  相似文献   

4.
Stimulation of Jurkat T cells with antibodies against the T cell receptor/CD3 complex induces a rise in the intracellular concentration of Ca2+ within seconds. The inositol phosphate-dependent Ca2+ mobilization induced by OKT3 was completely abrogated when Jurkat cells were pretreated for 1 min with the phorbol 12-myristate 13-acetate TPA (10nM), a concentration which activates protein kinase C (PKC). The effects of TPA on the Ca2+ fluxes were insensitive to treatment of the cells with known PKC inhibitors (H-7 and staurosporin) under conditions where the PKC-mediated phosphorylation was blocked. Furthermore, another activator of PKC, mezerein, inhibited the Ca2+ signal induced by OKT3. This inhibition, however, could completely be reversed by pretreatment with H-7 or staurosporine. We conclude that the TPA-mediated inhibition of Ca2+ fluxes in Jurkat T cells largely acts through a PKC-independent pathway.  相似文献   

5.
The tumor-promoting phorbol ester 4 beta-phorbol 12-myristate 13-acetate (PMA) inhibited thrombin-stimulated arachidonic acid (AA) release in rabbit and human platelets. PMA was effective over the same concentration range that activates protein kinase C in intact rabbit platelets: IC50 vs thrombin = 0.5 nM, greater than 90% inhibition at 10 nM. Suppression of thrombin-stimulated AA release was evident within 5 min of pretreatment with 1 nM PMA. A non-tumor-promoting phorbol ester, 4-O-methyl PMA, showed a very weak ability to inhibit AA release. Thrombin-stimulated serotonin secretion was progressively inhibited by PMA pretreatment in platelets, while PMA was a stimulus for secretion at higher concentrations. 1-(5-Isoquinolinylsulfonyl)-2-methyl-piperazine (H-7), a selective inhibitor of protein kinase C, blocked PMA-induced inhibition of AA release. Furthermore, H-7 enhanced the effect of thrombin on AA release. PMA pretreatment reduced the inhibitory effect of thrombin on forskolin-stimulated cAMP accumulation, but had no effect on nonstimulated cAMP metabolism in the presence of thrombin. PMA did not inhibit AA release caused by A23187 or melittin. In digitonin-permeabilized platelets, thrombin plus guanosine 5'-(3-O-thio)triphosphate (GTP gamma S)-stimulated AA release, but not GTP gamma S- and AIF4(-)-stimulated AA release, was abolished by PMA pretreatment. These results suggest that activation of protein kinase C may exert negative feedback on the receptor-mediated activation of phospholipase A2. A possible uncoupling of thrombin receptor to GTP-binding protein leading to activation of phospholipase A2 by PMA pretreatment is discussed.  相似文献   

6.
Summary Human melanoma cells are sensitive to the lytic activity of natural killer (NK) and lymphokine-activated killer (LAK) cells in vitro. The events resulting in tumour cell killing by lymphocytic effectors have not been completely clarified, and the same target cell determinants regulating responsiveness to immune cytolysis have not yet been identified. Indeed, changes in the differentiative status of leukemia cells as well as in the expression of major histocompatibility complex (MHC) antigens have been described to modulate sensitivity to cytotoxic effectors; moreover surface expression of adhesion factors or extracellular matrix proteins by the cancer cells can promote the activation of the cytolytic effectors and has been described to correlate with tumour cell sensitivity to cytolytic cells. We reasoned that treatment with differentiation inducers could modulate melanoma cell sensitivity to NK and LAK cells. The present study demonstrates that human melanoma GLL-19 cells, when treated with the phorbol diester phorbol 12-myristate 13-acetate (PMA) in vitro, undergo growth inhibition and neuron-like differentiation. Moreover PMA treatment induces an evident inhibition of GLL-19 cell sensitivity to NK- and LAK-mediated cytotoxicity. GLL-19 cells express constitutively MHC class I antigens. PMA treatment, however, does not modify the expression of MHC class I and class II DR antigens in human melanoma GLL-19 cells. We have finally evaluated the effects of PMA on the expression at the cell surface of adhesion factors such as ICAM-1, and extracellular matrix proteins such as collagen IV, laminin and fibronectin; we have also studied the expression of the integrin vitronectin receptor, a membrane receptor for adhesive proteins. While adhesion factors and extracellular matrix proteins appear to play an important role in the interaction between immune effector and tumour target, it can be supposed that the modulation of such membrane-associated proteins or glycoproteins induces NK and LAK resistance in cancer cells. We indeed found that PMA treatment induced in GLL-19 a marked reduction of membrane expression of collagen IV and ICAM-1; moreover PMA reduced the cell membrane expression of the integrin vitronectin receptor. On the other hand, membrane expression of fibronectin and laminin was not affected by PMA. These data indicate that the acquisition of a NK- and LAK-resistant phenotype by GLL-19 cells occurs together with cell differentiation, down-regulation of membrane expression of collagen IV, ICAM-1 and vitronectin receptor, but in the absence of changes in MHC antigens.This work has been supported by the Italian Association for Cancer Research (A. I. R. C.) and by Istituto Superiore di Sanità, Italy-USA joint program on New Therapies on Neoplasia.  相似文献   

7.
Stimulation of human polymorphonuclear leukocytes (PMNs) with PMA initiates a cascade of events leading to the production and release of superoxide anion (O-2), a major component in anti-bacterial defense. Generation of O-2 by PMA-stimulated PMNs occurs through the translocation and activation of protein kinase C (PKC). In this study, using freshly isolated PMNs, we examined the effect of ethanol on this response to PMA. Our results show that the basal production of O-2 was not affected by ethanol. In contrast, the response induced by PMA was potentiated by ethanol. This potentiation was observed even at high doses of PMA (200 nM) which alone had stimulated the O-2 response maximally. This enhanced response was not due to an increase of PMA uptake by PMNs. The maximal effect was obtained when the cells were preincubated with 80 mM of ethanol before PMA stimulation. Measurement of PKC activity in the cytosolic and membrane fractions showed that pretreatment of PMNs with ethanol increased twofold the PMA-stimulated PKC activity in the membrane fraction. Furthermore, Western blot analysis verified that this increase in PKC activity in the membrane fraction was linked to an increase in the translocation of PKC-alpha and -beta isoforms to the membrane. These results suggest that ethanol potentiates PMA-induced O-2 production through increasing PKC translocation and activity in PMNs.  相似文献   

8.
9.
Extracellular signal-regulated kinases (ERK) 1 and 2 are growth factor- and cytokine-sensitive serine/threonine kinases that are known to phosphorylate microtubule-associated protein 2 and myelin basic protein. The current studies examined whether ERK1 and/or ERK2 was present in T cells and whether they were phosphorylated and activated as a consequence of T cell activation. The data demonstrated that both ERK1 and ERK2 were present in Jurkat cells and peripheral blood T cells. In T cells, ERK2 was more prevalent than ERK1. The concentrations of ERK1 and ERK2 were not altered by stimulating the cells for 16 h with immobilized anti-CD3 mAb or anti-CD3 mAb and phorbol myristate acetate. mAb to CD3 and phorbol myristate acetate stimulated an increase in ERK1 and ERK2 MBP kinase activity. Anti-CD3 mAb triggered an increase their phosphate content which was detectable at 2 min but reached a maximum at 5 min. A portion of the increase in phosphate was caused by an increase in phosphotyrosine. We also examined the rate of ERK2 degradation. ERK2 was stable for up to 36 h, and its degradation was unaffected by the activation state of the cells. The data demonstrate that ERK1 and ERK2 are part of an anti-CD3 mAb-stimulated signal transduction cascade that is downstream of protein kinase C and, therefore, suggest that these kinases play an important role in T cell activation.  相似文献   

10.
The tumor promoter 12-O-tetradecanoyl-phorbol-13-acetate (TPA) does not increase the sister-chromatid exchange (SCE) frequency in either Chinese hamster ovary (CHO) or lung (V 79) cells which are cultured in the presence of 5-bromodeoxyuridine. Moreover, TPA does not alter the induction of SCEs in CHO cells by mitomycin C during the first 3 cycles following addition of the alkylating agent. These SCE induction data do not by themselves support the hypothesis that tumor promotion by TPA depends on the enhancement of mitotic recombination.  相似文献   

11.
We have tested for the effect of the phorbol ester 12-O-tetradecanoylphorbol 13-acetate (TPA) on Na+/phosphate cotransport in an established epithelial cell line of renal origin (LLC-PK1). Incubation of LLC-PK1 cells with TPA produced an increase in Na+/phosphate (Pi) cotransport. The maximal response was reached at a TPA concentration of 10 ng/ml. Other phorbol esters which have no potency or a smaller one to activate protein kinase C had no effect on Na+/Pi cotransport. Incubation of LLC-PK1 cells with 10 ng/ml TPA for 8 h led to a 300% increase in Na+/Pi cotransport; in the presence of cycloheximide the increase amounted only to a 100% and was reached within 2 h. Kinetic analysis of Na+/Pi cotransport indicated an increase in the apparent Vmax without an effect on the apparent Km. The increased Pi transport was retained in isolated apical vesicles. Na+-dependent alanine transport into LLC-PK1 monolayers was affected by TPA administration in a similar manner. TPA had under the chosen experimental conditions no effect on [3H]thymidine incorporation into DNA excluding a general proliferative effect. We conclude that TPA via activation of protein kinase C regulates the number of operating transport systems. As also other Na+-coupled transport systems are influenced, the TPA effect appears to be related to the expression of a general 'adaptive' alteration of membrane transport in LLC-PK1 cells.  相似文献   

12.
Hepatocytes were isolated from rats and then loaded with the fluorescent Ca2+ indicator quin2. Glucagon caused a sustained increase (at least 5 min) in the fluorescence of the quin2-loaded cells; the increase was much greater than that observed with control, non-quin2-loaded, cells. These observations indicate that glucagon caused an increase in cytoplasmic free Ca2+ concentration [( Ca2+]c). The effects of glucagon were mimicked if forskolin (to activate adenylate cyclase), dibutyryl cyclic AMP or bromo cyclic AMP were added directly to the cells. Thus an increase in cyclic AMP concentration may mediate the effect of glucagon on [Ca2+]c. If 4 beta-phorbol 12-myristate 13-acetate (PMA; an activator of protein kinase C) was added to the cells before glucagon, the magnitude of the increase in [Ca2+]c was greatly diminished. If PMA was added after glucagon it caused a lowering of [Ca2+]c. These effects of PMA on the glucagon-induced increase in [Ca2+]c could not be mimicked if [Ca2+]c was increased by the Ca2+-ionophore ionomycin. Thus an event involved in the mechanism by which glucagon increases [Ca2+]c appears to be required for the action of PMA. If [Ca2+]c was increased by forskolin, dibutyryl cyclic AMP or bromo cyclic AMP, the effect of PMA on [Ca2+]c was similar to that observed when glucagon was used to elevate [Ca2+]c. When [Ca2+]c was raised by dibutyryl cyclic AMP the presence of the phosphodiesterase inhibitor 3-isobutyl-1-methylxanthine did not prevent the subsequent addition of PMA from causing [Ca2+]c to decrease. These observations suggest that PMA can inhibit the cyclic AMP-induced increase in [Ca2+]c independently of any changes in cyclic AMP concentration. Glucagon appears to increase [Ca2+]c by releasing intracellular stores of Ca2+ and stimulating net influx of Ca2+ into the cell; PMA greatly diminishes both of these effects.  相似文献   

13.
The release of arachidonic acid from cellular phospholipids and its subsequent conversion to eicosanoids is the common early response of skin keratinocytes to a wide variety of exogenous or endogenous agonists including irritant skin mitogens such as the phorbol ester, 4 beta-phorbol 12-myristate 13-acetate (PMA) or the inflammatory peptide bradykinin. In mouse keratinocytes labeled with [14C]arachidonic acid, both PMA and bradykinin induced the release of the fatty acid in a dose-dependent and time-dependent manner. Three lines of evidence indicate phospholipase A2 activity to be involved in arachidonic acid release: (a) its inhibition by mepacrine, (b) the concomitant generation of lysophosphatidylcholine from [3H]choline-labeled cells and (c) an increase in arachidonic acid release from 14C-labeled phosphatidylcholine in particulate fractions from PMA-treated and bradykinin-treated keratinocytes. Inhibition or down regulation of protein kinase C (PKC) led to a suppression of PMA-induced but not bradykinin-induced arachidonic acid release, indicating a critical involvement of this kinase in phorbol-ester-induced activation of epidermal phospholipase A2 activity. Bradykinin-induced activation of phospholipase A2 was however, shown to be mediated by specific B2 receptors coupled to GTP-binding proteins (G protein). In support of this mechanism it was demonstrated that the bradykinin-induced phospholipase A2 activity was increased in the presence of non-hydrolysable GTP but decreased upon addition of non-hydrolysable GDP analogues. Moreover, cholera toxin stimulated both basal and bradykinin-induced phospholipase A2 activity in a cAMP-independent manner, whereas pertussis toxin was found to be inactive in this respect. The data suggest that epidermal phospholipase A2 activity can be stimulated by bradykinin via a B2 receptor-G-protein-dependent pathway, which is independent of PKC and a PKC-dependent pathway which is activated by phorbol esters such as PMA.  相似文献   

14.
15.
Phenylephrine, vasopressin and glucagon each increased the amount of active (dephospho) pyruvate dehydrogenase (PDHa) in isolated rat hepatocytes. Treatment with 4 beta-phorbol 12-myristate 13-acetate (PMA) opposed the increase in PDHa caused by both phenylephrine and glucagon, but had no effect on the response to vasopressin: PMA alone had no effect on PDHa. As PMA is known to prevent the phenylephrine-induced increase in cytoplasmic free Ca2+ concentration ([Ca2+]c) and to diminish the increase [Ca2+]c caused by glucagon, while having no effect on the ability of vasopressin to increase [Ca2+]c, these data are consistent with the notion that in intact cells an increase in [Ca2+]c results in an increase in the mitochondrial free Ca2+ concentration, which in turn leads to the activation of PDH. In the presence of 2.5 mM-Ca2+, glucagon caused an increase in NAD(P)H fluorescence in hepatocytes. This increase is taken to reflect an enhanced activity of mitochondrial dehydrogenases. PMA alone had no effect on NAD(P)H fluorescence; it did, however, compromise the increase produced by glucagon. When the extracellular free [Ca2+] was decreased to 0.2 microM, glucagon could still increase NAD(P)H fluorescence. Vasopressin also increased fluorescence under these conditions; however, if vasopressin was added after glucagon, no further increase in fluorescence was observed. Treatment of the cells with PMA resulted in a smaller increase in NAD(P)H fluorescence on addition of glucagon: the subsequent addition of vasopressin now caused a further increase in fluorescence. Changes in [Ca2+]c corresponding to the changes in NAD(P)H fluorescence were observed, again supporting the idea that [Ca2+]c indirectly regulates intramitochondrial dehydrogenase activity in intact cells. PMA alone had no effect on pyruvate kinase activity, and the phorbol ester did not prevent the inactivation caused by glucagon. The latter emphasizes the different mechanisms by which the hormone influences mitochondrial and cytoplasmic metabolism.  相似文献   

16.
6 platinum (Pt) compounds were compared in suspension cultured Chinese hamster ovary (CHO-S) cells with respect to their inhibition of growth, their reduction of cloning efficiency, and their induction of mutants resistant to 200 microM (30 micrograms/ml) 8-azaguanine (8-AG) and 3 mM ouabain (OUA), respectively. The toxicity of these compounds can be ranked by the medium concentrations which decrease suspension growth/or cloning efficiency by 50%: cis-Pt(NH3)2-Cl2 (0.9/1.5 microM) greater than Pt(SO4)2 + methylcobalamin (MeB-12) methylation product (20/10 microM) greater than K2PtCl4 (32/50 microM) = K2PtCl6 (34/50 microM) = MePtCl2-3 (60/50 microM) greater than Pt(SO4)2 (66/105 microM). Following 20 h exposures to concentrations which resulted in relative survivals of 80-2%, none of the foregoing compounds increased consistently the frequency of OUA(R) mutants above the spontaneous frequency (6.0 x 10(-6)). Parallel treatments with 800 microM (100 micrograms/ml) ethyl methanesulfonate (EMS) increased the OUA(R) mutant frequency 10--12-fold. Using 8-AG for mutant selection, dose-dependent increases of 5--7-fold above the spontaneous frequency (3--8 x 10(-5) were obtained with cis-Pt(NH3)2Cl2, Pt(S04)2, and the product from Pt(SO4)2 + MeB-12. Identical 20 h exposures to varying amounts of K2PtCl4, K2PtCl6, and MePtCl2-3 did not induce 8-AG(R) mutants. Optimal detection of Pt-induced 8-AG(R) mutants required 7 post-treatments, expression doublings in suspension culture. Under our selection conditions 8/8 spontaneous and 24/24 Pt-induced 8-AG(R) variants contained reduced hypoxanthine-guanine phosphoribosyl transferase (HGPRT) specific activities (means ranging from 3 to 11% of the parental CHO-S cells). When compared from linear plots of the 8-Ag(r) frequency against the initial medium concentration, cis-Pt(NH3)2Cl2 is 134 times and Pt(SO4)2 si 3.5 times more mutagenic than EMS. However, on a cell-survival basis EMS is 8--10-fold more mutagenic than these two Pt-compounds. 6-Thioguanine (10 microM) can be substituted for 8-AG to assay mutant induction by cis-Pt(NH3)2Cl2 and Pt(SO4)2 in CHO-S cells. The sensitivity of the CHO-S HGPRT locus for detecting mutagenesis by Pt complexes can be increased several fold by continuous subculture in the presence of these agents for 10--25 population doublings. By this procedure K2PtCl6 is seen to be weakly mutagenic and 20 microM Pt(SO4)2 produces 8-AG(R) mutants at frequencies requiring 7--8-fold higher concentrations when a fixed 20 h exposure is used.  相似文献   

17.
Natural killer (NK) cells have been suggested to play a major role in resistance against metastatic spread of tumors. This study was aimed at understanding whether laminin (LM), a component of the extracellular matrix involved in the mechanism of tumor invasion and cell interaction, is expressed by NK cells. The results indicate that NK cells can synthesize and display on the cell surface LM and that TPA can modulate its expression. Our findings suggest that the presence of LM on NK cells could be relevant in the control of tumor invasion by NK cells.  相似文献   

18.
Barsoum and Varshavsky (Proc. Natl. Acad. Sci. U.S.A. 80:5330-5334, 1983) suggest that polypeptide mitogens and the mitogenic tumor promoter 12-O-tetradecanoylphorbol-13-acetate (TPA) stimulate gene amplification by related pathways. I demonstrated that TPA and the polypeptide mitogen fibroblast growth factor (FGF) both increase the frequency of cadmium-resistant variants of Swiss-Webster 3T3 cells. The molecular basis for this phenomenon is the amplification of the metallothionein gene(s). To further characterize the relationship between mitogenesis and gene amplification, I examined the ability of TPA and FGF to increase the frequency of cadmium-resistant colonies in the 3T3 variant cell line 3T3-TNR9. Unlike 3T3 cells, 3T3-TNR9 cells cannot be stimulated by TPA to divide (E. Butler-Gralla and H. R. Herschman, J. Cell. Physiol. 107:59-68, 1981). TPA does not induce an increase in cadmium-resistant colonies of the TPA-nonproliferative 3T3-TNR9, variant, in contrast to its efficacy on 3T3 cells. FGF, a potent mitogen for 3T3-TNR9 cells as well as 3T3 cells, is equally effective for 3T3-TNR9 and 3T3 cells in inducing cadmium-resistant colonies. These data suggest that the pathways of TPA-induced gene amplification and TPA-stimulated mitogenesis share a common step(s). TPA caused transient inhibition of DNA synthesis in both dividing 3T3 and 3T3-TNR9 cells, suggesting that this latter response to TPA is not sufficient to enhance gene amplification.  相似文献   

19.
There is a growing evidence that regucalcin (RGN) plays a multifunctional role in liver cancer cells. Previous reports showed that the presence of phorbol 12-myristate 13-acetate (PMA) caused a significant increase in RGN mRNA expression and promoter activity in rat hepatoma cells. In this study, we confirmed that human RGN is also up-regulated by PMA treatment independent of translation, and we identified the mechanism by which PMA up-regulates the expression of human RGN via driving SP1 away from a SP1 motif located within -188/-180 of the promoter in HepG2 cells. Overexpression of SP1 dramatically reduces PMA-induced up-regulation of both internal expression of mRNA and promoter activity, whereas knockdown of SP1 has the opposite effect. Therefore, the present study delineates the fundamental elements in the promoter which will be helpful in the future studies on the regulation of RGN expression in liver cancer.  相似文献   

20.
Changes in the level of calcium-activated neutral proteases (calpains) in K562 cells induced to differentiate by phorbol 12-myristate 13-acetate (PMA) were examined by an immunohistochemical technique and Western blot analysis. A remarkable increase in m-calpain (high-Ca(2+)-requiring form) level was detected after PMA-treatment, while there was no significant difference in mu-calpain (low-Ca(2+)-requiring form) level between PMA-treated and untreated K562 cells. To confirm whether the increase in m-calpain is specific to PMA-induced differentiation, we examined changes in calpain in K562 cells cultured in serum-free medium and in synchronized cells. The results indicate that the increase has no relation to growth arrest or to cell cycle. PMA-treated cells exhibited increased nonspecific esterase activity, suggesting monocytic differentiation. Immunoelectron microscopic study showed the reactions of dense deposits with monoclonal anti-m-calpain antibody on cell membranes, on membranes of coated vesicles, and on rough endoplasmic reticulum of K562 cells after 26 h of PMA treatment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号