首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The assessment of population trends is a key point in wildlife conservation. Survey data collected over long period may not be comparable due to the presence of environmental biases (i.e. inadequate representation of the variability of environmental covariates in the study area). Moreover, count data may be affected by both overdispersion (i.e. the variance is larger than the mean) and excess of zero counts (potentially leading to zero inflation). The aim of this study was to define a modelling procedure to assess long-term population trends that addressed these three issues and to shed light on the effects of environmental bias, overdispersion, and zero inflation on trend estimates. To test our procedure, we used six bird species whose data were collected in northern Italy from 1992 to 2019. We designed a multi-step approach. First, using generalised additive models (GAMs), we implemented a full factorial design of models (eight models per species) taking or not into account the environmental bias (including or not including environmental covariates, respectively), overdispersion (using a negative binomial distribution or a Poisson distribution, respectively), and zero inflation (using or not using zero-inflated models, respectively). Models were ranked according to the Akaike Information Criterion. Second, annual population indices (median and 95% confidence interval of the number of breeding pairs per point count) were predicted through a parametric bootstrap procedure. Third, long-term population trends were assessed and tested for significance fitting weighted least square linear regression models to the predicted annual indices. To evaluate the effect of environmental bias, overdispersion, and zero inflation on trend estimates, an average discrepancy index was calculated for each model group. The results showed that environmental bias was the most important driver in determining different trend estimates, although overlooking overdispersion and zero inflation could lead to misleading results. For five species, zero-inflated GAMs resulted the best models to predict annual population indices. Our findings suggested a mutual interaction between zero inflation and overdispersion, with overdispersion arising in non-zero-inflated models. Moreover, for species having flocking foraging and/or colonial breeding behaviours, overdispersed and zero-inflated models may be more adequate. In conclusion, properly handling environmental bias, which may affect several data sets coming from long-term monitoring programs, is crucial to obtain reliable estimates of population trends. Furthermore, the extent to which overdispersion and zero inflation may affect trend estimates should be assessed by comparing different models, rather than presumed using statistical assumption.  相似文献   

2.
Ghosh S  Gelfand AE  Zhu K  Clark JS 《Biometrics》2012,68(3):878-885
Summary Many applications involve count data from a process that yields an excess number of zeros. Zero-inflated count models, in particular, zero-inflated Poisson (ZIP) and zero-inflated negative binomial (ZINB) models, along with Poisson hurdle models, are commonly used to address this problem. However, these models struggle to explain extreme incidence of zeros (say more than 80%), especially to find important covariates. In fact, the ZIP may struggle even when the proportion is not extreme. To redress this problem we propose the class of k-ZIG models. These models allow more flexible modeling of both the zero-inflation and the nonzero counts, allowing interplay between these two components. We develop the properties of this new class of models, including reparameterization to a natural link function. The models are straightforwardly fitted within a Bayesian framework. The methodology is illustrated with simulated data examples as well as a forest seedling dataset obtained from the USDA Forest Service's Forest Inventory and Analysis program.  相似文献   

3.
Hall DB 《Biometrics》2000,56(4):1030-1039
In a 1992 Technometrics paper, Lambert (1992, 34, 1-14) described zero-inflated Poisson (ZIP) regression, a class of models for count data with excess zeros. In a ZIP model, a count response variable is assumed to be distributed as a mixture of a Poisson(lambda) distribution and a distribution with point mass of one at zero, with mixing probability p. Both p and lambda are allowed to depend on covariates through canonical link generalized linear models. In this paper, we adapt Lambert's methodology to an upper bounded count situation, thereby obtaining a zero-inflated binomial (ZIB) model. In addition, we add to the flexibility of these fixed effects models by incorporating random effects so that, e.g., the within-subject correlation and between-subject heterogeneity typical of repeated measures data can be accommodated. We motivate, develop, and illustrate the methods described here with an example from horticulture, where both upper bounded count (binomial-type) and unbounded count (Poisson-type) data with excess zeros were collected in a repeated measures designed experiment.  相似文献   

4.
Ridout M  Hinde J  Demétrio CG 《Biometrics》2001,57(1):219-223
Count data often show a higher incidence of zero counts than would be expected if the data were Poisson distributed. Zero-inflated Poisson regression models are a useful class of models for such data, but parameter estimates may be seriously biased if the nonzero counts are overdispersed in relation to the Poisson distribution. We therefore provide a score test for testing zero-inflated Poisson regression models against zero-inflated negative binomial alternatives.  相似文献   

5.
The environmental legislation of many countries increasingly requires the continuous monitoring of fish assemblages to evaluate the success of river and stream restorations. Predicting species–environment relationships on the basis of monitoring data is central in the evaluation of ecological integrity and planning of rehabilitation strategies. Monitoring data are, however, often plagued by a substantial proportion of zeros (no catch at single sampling points) which are caused by relevant ecological processes, but complicate the use of commonly used statistical methods. This study compares mere count regression models, mixture and hurdle models based on Poisson and negative binomial distribution and logistic regressions with respect to their ability to cope with large zero-inflated data sets obtained by point abundance sampling of young-of-the-year fish from three large German rivers. Only mixture and hurdle models based on negative binomial distribution could satisfactorily be fitted to the zero-inflated and overdispersed count data. The logistic regression models applied to transliterated catch data simplified the computational procedure and yielded qualitative similar results to the count regression models indicating that the use of more complex count data did not generally provide better predictions. Therefore, presence/absence sampling may be a suitable and less costly alternative to abundance surveys for identifying environmental factors which affect the spatial distribution of fish populations at least if information on subtly abundance fluctuations is not needed. Mixture or hurdle models are particularly worth the additional effort if it is reasonable to distinguish between those environmental factors influencing the occurrence probability and others affecting the abundance. All models showed low sensitivity to rare guilds pointing to the need for a further development of statistical models for rare species whose management is a matter of growing environmental concern.  相似文献   

6.
Count data often exhibit more zeros than predicted by common count distributions like the Poisson or negative binomial. In recent years, there has been considerable interest in methods for analyzing zero-inflated count data in longitudinal or other correlated data settings. A common approach has been to extend zero-inflated Poisson models to include random effects that account for correlation among observations. However, these models have been shown to have a few drawbacks, including interpretability of regression coefficients and numerical instability of fitting algorithms even when the data arise from the assumed model. To address these issues, we propose a model that parameterizes the marginal associations between the count outcome and the covariates as easily interpretable log relative rates, while including random effects to account for correlation among observations. One of the main advantages of this marginal model is that it allows a basis upon which we can directly compare the performance of standard methods that ignore zero inflation with that of a method that explicitly takes zero inflation into account. We present simulations of these various model formulations in terms of bias and variance estimation. Finally, we apply the proposed approach to analyze toxicological data of the effect of emissions on cardiac arrhythmias.  相似文献   

7.
We analyze a real data set pertaining to reindeer fecal pellet‐group counts obtained from a survey conducted in a forest area in northern Sweden. In the data set, over 70% of counts are zeros, and there is high spatial correlation. We use conditionally autoregressive random effects for modeling of spatial correlation in a Poisson generalized linear mixed model (GLMM), quasi‐Poisson hierarchical generalized linear model (HGLM), zero‐inflated Poisson (ZIP), and hurdle models. The quasi‐Poisson HGLM allows for both under‐ and overdispersion with excessive zeros, while the ZIP and hurdle models allow only for overdispersion. In analyzing the real data set, we see that the quasi‐Poisson HGLMs can perform better than the other commonly used models, for example, ordinary Poisson HGLMs, spatial ZIP, and spatial hurdle models, and that the underdispersed Poisson HGLMs with spatial correlation fit the reindeer data best. We develop R codes for fitting these models using a unified algorithm for the HGLMs. Spatial count response with an extremely high proportion of zeros, and underdispersion can be successfully modeled using the quasi‐Poisson HGLM with spatial random effects.  相似文献   

8.
We prove that the generalized Poisson distribution GP(theta, eta) (eta > or = 0) is a mixture of Poisson distributions; this is a new property for a distribution which is the topic of the book by Consul (1989). Because we find that the fits to count data of the generalized Poisson and negative binomial distributions are often similar, to understand their differences, we compare the probability mass functions and skewnesses of the generalized Poisson and negative binomial distributions with the first two moments fixed. They have slight differences in many situations, but their zero-inflated distributions, with masses at zero, means and variances fixed, can differ more. These probabilistic comparisons are helpful in selecting a better fitting distribution for modelling count data with long right tails. Through a real example of count data with large zero fraction, we illustrate how the generalized Poisson and negative binomial distributions as well as their zero-inflated distributions can be discriminated.  相似文献   

9.
Bivariate time series of counts with excess zeros relative to the Poisson process are common in many bioscience applications. Failure to account for the extra zeros in the analysis may result in biased parameter estimates and misleading inferences. A class of bivariate zero-inflated Poisson autoregression models is presented to accommodate the zero-inflation and the inherent serial dependency between successive observations. An autoregressive correlation structure is assumed in the random component of the compound regression model. Parameter estimation is achieved via an EM algorithm, by maximizing an appropriate log-likelihood function to obtain residual maximum likelihood estimates. The proposed method is applied to analyze a bivariate series from an occupational health study, in which the zero-inflated injury count events are classified as either musculoskeletal or non-musculoskeletal in nature. The approach enables the evaluation of the effectiveness of a participatory ergonomics intervention at the population level, in terms of reducing the overall incidence of lost-time injury and a simultaneous decline in the two mean injury rates.  相似文献   

10.
An analysis of mortality is undertaken in two breeds of pigs: Danish Landrace and Yorkshire. Zero-inflated and standard versions of hierarchical Poisson, binomial, and negative binomial Bayesian models were fitted using Markov chain Monte Carlo (MCMC). The objectives of the study were to investigate whether there is support for genetic variation for mortality and to study the quality of fit and predictive properties of the various models. In both breeds, the model that provided the best fit to the data was the standard binomial hierarchical model. The model that performed best in terms of the ability to predict the distribution of stillbirths was the hierarchical zero-inflated negative binomial model. The best fit of the binomial hierarchical model and of the zero-inflated hierarchical negative binomial model was obtained when genetic variation was included as a parameter. For the hierarchical binomial model, the estimate of the posterior mean of the additive genetic variance (posterior standard deviation in brackets) at the level of the logit of the probability of a stillbirth was 0.173(0.039) in Landrace and 0.202(0.048) in Yorkshire. The implications of these results from a breeding perspective are briefly discussed.LITTER size has been under selection in the Danish pig breeding program since the early 1990s and this resulted in considerable increase in total number born and also in the proportion of stillborn piglets (Sorensen et al. 2000; Su et al. 2007). A number of studies have reported genetic variation for mortality with heritabilities ranging from 0.03 to 0.12. These studies have either assumed normality of the sampling model for mortality (e.g., van Arendonk et al. 1996) or based inferences on a variety of threshold models (e.g., Roehe and Kalm 2000; Arango et al. 2006), and critical investigations of the quality of fit of the models used were not reported.Mortality data, regarded as a trait of the mother, show typically a large proportion of zeros (many litters do not have stillborn piglets). Formal genetic analyses of mortality in pigs accounting for this feature of the data are not available in the literature and this article attempts to fill this gap. The focus here is to study the quality of fit and predictive ability of a number of models and to investigate whether they provide statistical evidence for genetic variation for mortality. The statistical genetic analysis involves fitting various hierarchical models involving three discrete distributions: the Poisson, the binomial, and the negative binomial.The statistical analysis of counts based on discrete parametric distributions has a long and rich history (Johnson and Kotz 1969). In the case of unbounded counts, Poisson regression models are standard, whereas for bounded counts, when the response can be viewed as the number of successes out of a fixed number of trials, regression models based on the binomial distribution are often used (Hall 2000). A restriction of the Poisson model is that it imposes equality of mean and variance. Typically the distribution of counts is overdispersed. In the case of the binomial model the only free parameter is the probability of success, which results in a functional relationship between the mean and the variance. Several possible alternatives have been suggested to obtain more flexible models. For example, the negative binomial distribution has two parameters and allows the mean and variance to be fitted separately (Lawless 1987). An application of the negative binomial model in animal breeding can be found in Tempelman and Gianola (1996, 1999). In the same spirit, a robust alternative to the binomial model is the beta-binomial, which is a mixture of binomials where the unequal probabilities of success vary according to a beta-distribution. In general, hierarchical specifications are needed to explain extra variation that is not accounted for by the sampling model of the data. These involve assigning a distribution to the parameters of the sampling model, directly, as in the case of the negative binomial or beta-binomial models, or indirectly, by embedding these parameters in a linear structure that includes random effects as explanatory variables.There are situations where overdispersion is partly associated with an incidence of zero counts that is greater than expected under the sampling model, as in the present study. Hurdle models (Mullahy 1986; Winkelmann 2000) and zero-inflated models are two instances of finite mixture models commonly used to account for this characteristic of the data. In the present work the excess of zeros is studied using zero-inflated models that are described in Johnson and Kotz (1969) and extended by Lambert (1992). Ridout et al. (1998) provide a review of various zero-inflated models; recent applications of zero-inflated Poisson models in animal breeding are in Rodriguez-Motta et al. (2007) and in Naya et al. (2008). Zero-inflated models assume that the population consists of two sets of observations. In the first set, which may include zeros, observations are realizations from a discrete sampling process indexed by unknown parameters (this set is often referred to as the imperfect state); observations from the second set consist only of zeros and the parameter of interest is the proportion of these individuals. This set is often referred to as the perfect state. Either or both sets of parameters may depend on covariates.This article is organized as follows. material and methods describes the data, details of the models, and their Markov chain Monte Carlo (MCMC) implementation. This is followed by a presentation of the results of the analyses and of MCMC-driven explorative tools for model comparison. The article concludes with a discussion.  相似文献   

11.
Animal behaviour is of fundamental importance but is often overlooked in biological invasion research. A problem with such studies is that they may add pressure to already threatened species and subject vulnerable individuals to increased risk. One solution is to obtain the maximum possible information from the generated data using a variety of statistical techniques, instead of solely using simple versions of linear regression or generalized linear models as is customary. Here, we exemplify and compare the use of modern regression techniques which have very different conceptual backgrounds and aims (negative binomial models, zero-inflated regression, and expectile regression), and which have rarely been applied to behavioural data in biological invasion studies. We show that our data display overdispersion, which is frequent in ecological and behavioural data, and that conventional statistical methods such as Poisson generalized linear models are inadequate in this case. Expectile regression is similar to quantile regression and allows the estimation of functional relationships between variables for all portions of a probability distribution and is thus well suited for modelling boundaries in polygonal relationships or cases with heterogeneous variances which are frequent in behavioural data. We applied various statistical techniques to aggression in invasive mosquitofish, Gambusia holbrooki, and the concomitant vulnerability of native toothcarp, Aphanius iberus, in relation to individual size and sex. We found that medium sized male G. holbrooki carry out the majority of aggressive acts and that smaller and medium size A. iberus are most vulnerable. Of the regression techniques used, only negative binomial models and zero-inflated and expectile Poisson regressions revealed these relationships.  相似文献   

12.
Moderated statistical tests for assessing differences in tag abundance   总被引:2,自引:0,他引:2  
MOTIVATION: Digital gene expression (DGE) technologies measure gene expression by counting sequence tags. They are sensitive technologies for measuring gene expression on a genomic scale, without the need for prior knowledge of the genome sequence. As the cost of sequencing DNA decreases, the number of DGE datasets is expected to grow dramatically. Various tests of differential expression have been proposed for replicated DGE data using binomial, Poisson, negative binomial or pseudo-likelihood (PL) models for the counts, but none of the these are usable when the number of replicates is very small. RESULTS: We develop tests using the negative binomial distribution to model overdispersion relative to the Poisson, and use conditional weighted likelihood to moderate the level of overdispersion across genes. Not only is our strategy applicable even with the smallest number of libraries, but it also proves to be more powerful than previous strategies when more libraries are available. The methodology is equally applicable to other counting technologies, such as proteomic spectral counts. AVAILABILITY: An R package can be accessed from http://bioinf.wehi.edu.au/resources/  相似文献   

13.
The statistical modelling of count data permeates the discipline of ecology. Such data often exhibit overdispersion compared with a standard Poisson distribution, so that the variance of the counts is greater than that of the mean. Whereas modelling to reveal the effects of explanatory variables on the mean is commonplace, overdispersion is generally regarded as a nuisance parameter to be accounted for and subsequently ignored. Instead, we propose a method that models the overdispersion as a biologically interesting property of a data set and show how novel inference is provided as a result. We adapted the double hierarchical generalized linear model approach to create an easily extendible model structure that quantifies the influence of explanatory variables on the overdispersion of count data, and apply it to farmland birds. These data were from a study within Irish agricultural ecosystems, in which total bird species abundance and the abundance of farmland indicator species were compared on dairy and non‐dairy farms in the winter and breeding seasons. In general, overdispersion in bird counts was greater on dairy farms than on non‐dairy farms, and for total bird numbers, overdispersion was greatest on dairy farms in winter. Our code is fitted using the Bayesian package Rstan, and we make all code and data available in a GitHub repository. Within a Bayesian framework, this approach facilitates a meaningful quantification of the effects of categorical explanatory variables on any response variable with a tendency to overdispersion that has a meaningful biological or ecological explanation.  相似文献   

14.
1. A quantile regression model for counts of breeding Cape Sable seaside sparrows Ammodramus maritimus mirabilis (L.) as a function of water depth and previous year abundance was developed based on extensive surveys, 1992-2005, in the Florida Everglades. The quantile count model extends linear quantile regression methods to discrete response variables, providing a flexible alternative to discrete parametric distributional models, e.g. Poisson, negative binomial and their zero-inflated counterparts. 2. Estimates from our multiplicative model demonstrated that negative effects of increasing water depth in breeding habitat on sparrow numbers were dependent on recent occupation history. Upper 10th percentiles of counts (one to three sparrows) decreased with increasing water depth from 0 to 30 cm when sites were not occupied in previous years. However, upper 40th percentiles of counts (one to six sparrows) decreased with increasing water depth for sites occupied in previous years. 3. Greatest decreases (-50% to -83%) in upper quantiles of sparrow counts occurred as water depths increased from 0 to 15 cm when previous year counts were 1, but a small proportion of sites (5-10%) held at least one sparrow even as water depths increased to 20 or 30 cm. 4. A zero-inflated Poisson regression model provided estimates of conditional means that also decreased with increasing water depth but rates of change were lower and decreased with increasing previous year counts compared to the quantile count model. Quantiles computed for the zero-inflated Poisson model enhanced interpretation of this model but had greater lack-of-fit for water depths > 0 cm and previous year counts 1, conditions where the negative effect of water depths were readily apparent and fitted better with the quantile count model.  相似文献   

15.
Frequency distributions of insect immatures per host are often fitted to contagious distributions, such as the negative binomial, to deduce oviposition pattern. However, different mechanisms can be involved for each theoretical distribution and additional biological information is needed to correctly interpret the fits. We chose the chestnut weevil Curculio elephas, a pest of the European chestnut Castanea sativa, as a model to illustrate the difficulties of inferring oviposition pattern from fits to theoretical distributions and from the variance/mean ratio. From field studies over 13–16 years, we show that 20 out of the 31 yearly distributions available fit a negative binomial and 25 a zero-inflated Poisson (ZIP). No distribution fits a Poisson distribution. The ZIP distribution assumes heterogeneity within the fruit population. There are two categories of host: the first comprises chestnuts unsuitable for weevil oviposition or in excess relative to the number of weevil females, and the second comprises suitable fruits in which oviposition behavior is random. Our results confirm this host heterogeneity. According to the ZIP distribution, the first category of hosts includes on average 74% of the chestnuts. A negative binomial distribution may be generated by either true or false contagion. We show that neither interference between weevil females, nor spatial variation in the infestation rate exist. Consequently, the observed distributions of immatures are not the result of false contagion. Nevertheless, we cannot totally exlude true contagion of immatures. In this paper we discuss the difficulty of testing true contagion in natural conditions. These results show that we cannot systematically conclude in favour of contagion when fitting a distribution such as the negative binomial or when a variance/mean ratio is higher than unity. Received: 22 September 1997 / Accepted: 15 December 1997  相似文献   

16.
Phenotypes measured in counts are commonly observed in nature. Statistical methods for mapping quantitative trait loci (QTL) underlying count traits are documented in the literature. The majority of them assume that the count phenotype follows a Poisson distribution with appropriate techniques being applied to handle data dispersion. When a count trait has a genetic basis, “naturally occurring” zero status also reflects the underlying gene effects. Simply ignoring or miss-handling the zero data may lead to wrong QTL inference. In this article, we propose an interval mapping approach for mapping QTL underlying count phenotypes containing many zeros. The effects of QTLs on the zero-inflated count trait are modelled through the zero-inflated generalized Poisson regression mixture model, which can handle the zero inflation and Poisson dispersion in the same distribution. We implement the approach using the EM algorithm with the Newton-Raphson algorithm embedded in the M-step, and provide a genome-wide scan for testing and estimating the QTL effects. The performance of the proposed method is evaluated through extensive simulation studies. Extensions to composite and multiple interval mapping are discussed. The utility of the developed approach is illustrated through a mouse F2 intercross data set. Significant QTLs are detected to control mouse cholesterol gallstone formation.  相似文献   

17.
We consider models for hierarchical count data, subject to overdispersion and/or excess zeros. Molenberghs et al. ( 2007 ) and Molenberghs et al. ( 2010 ) extend the Poisson‐normal generalized linear‐mixed model by including gamma random effects to accommodate overdispersion. Excess zeros are handled using either a zero‐inflation or a hurdle component. These models were studied by Kassahun et al. ( 2014 ). While flexible, they are quite elaborate in parametric specification and therefore model assessment is imperative. We derive local influence measures to detect and examine influential subjects, that is subjects who have undue influence on either the fit of the model as a whole, or on specific important sub‐vectors of the parameter vector. The latter include the fixed effects for the Poisson and for the excess‐zeros components, the variance components for the normal random effects, and the parameters describing gamma random effects, included to accommodate overdispersion. Interpretable influence components are derived. The method is applied to data from a longitudinal clinical trial involving patients with epileptic seizures. Even though the data were extensively analyzed in earlier work, the insight gained from the proposed diagnostics, statistically and clinically, is considerable. Possibly, a small but important subgroup of patients has been identified.  相似文献   

18.
Analysis of count data is required in many areas of biometric interest. Often the simple Poisson distribution is not appropriate, since an extra-number of zero counts occur in the count data. Some current approaches for the problem at hand are reviewed. It will be argued that these situations can often be easily modeled using the zero-inflated Poisson distribution. A variety of applications are considered in which this occurs. Possibilities are outlined on how the validity of the zero-inflated Poisson can be validated including a comparison with the nonparametric Poisson mixture maximum likelihood estimator.  相似文献   

19.
Understanding the frequency distribution of parasites and parasite stages among hosts is essential for efficient experimental design and statistical analysis, and is also required for the development of sustainable methods of controlling infection. Nematodirus battus is one of the most important organisms that infect sheep but the distribution of parasites among hosts is unknown. An initial analysis indicated a high frequency of animals without N. battus and with zero egg counts, suggesting the possibility of a zero-inflated distribution. We developed a Bayesian analysis using Markov chain Monte Carlo methods to estimate the parameters of the zero-inflated negative binomial distribution. The analysis of 3000 simulated data sets indicated that this method out-performed the maximum likelihood procedure. Application of this technique to faecal egg counts from lambs in a commercial upland flock indicated that N. battus counts were indeed zero-inflated. Estimating the extent of zero-inflation is important for effective statistical analysis and for the accurate identification of genetically resistant animals.  相似文献   

20.
负二项分布与昆虫种群空间格局分析的研究现状   总被引:3,自引:0,他引:3  
对农业有害生物及其天敌种群密度的正确估计是实施IPM(有害生物综合治理)方案的先决条件,因此,抽样方法一直被列为昆虫学,生态学和植物保护科学中最重要的基本  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号