首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Some fifty years after the first physiological studies of auditory attention, the field is now ripening, with exciting recent insights into the psychophysics, psychology, and neural basis of auditory attention. Current research seeks to unravel the complex interactions of pre-attentive and attentive processing of the acoustic scene, the role of auditory attention in mediating receptive-field plasticity in both auditory spatial and auditory feature processing, the contrasts and parallels between auditory and visual attention pathways and mechanisms, the interplay of bottom-up and top-down attentional mechanisms, the influential role of attention, goals, and expectations in shaping auditory processing, and the orchestration of diverse attentional effects at multiple levels from the cochlea to the cortex.  相似文献   

2.
Songbirds are extraordinary vocalists and sensitive listeners, singing to communicate identity, engage other birds in acoustical combat, and attract mates. These processes involve auditory plasticity in that birds rapidly learn to discriminate novel from familiar songs. Songbirds also are one of the few non-human animals that use auditory feedback to learn their vocalizations, thus auditory -- vocal interactions are likely to be important to vocal learning. Recent advances strengthen the connection between song recognition and processing of birdsong in the auditory telencephalon. New insights also have emerged into the mechanisms underlying the 'gating' of auditory responses and the emergence of highly selective responses, two processes that could facilitate auditory feedback important to song learning.  相似文献   

3.
Shamma S 《Neuron》2008,58(6):829-831
In this issue of Neuron, two papers by Atencio et al. and Nagel and Doupe adapt new computational methods to map the spectrotemporal response fields of neurons in the auditory cortex. The papers take different but complementary approaches to apply theoretical techniques to classical methods of receptive field mapping and, in doing so, provide exciting new insights into the way in which sounds are processed in the auditory cortex.  相似文献   

4.
Hearing relies on dedicated mechanotransducer channels that convert sound-induced vibrations into electrical signals [1]. Linking this transduction to identified proteins has proven difficult because of the scarcity of native auditory transducers and their tight functional integration into ears [2-4]. We describe an in vivo paradigm for the noninvasive study of auditory transduction. By investigating displacement responses of the Drosophila sound receiver, we identify mechanical signatures that are consistent with a direct mechanotransducer gating in the fly's ear. These signatures include a nonlinear compliance that correlates with electrical nerve responses, shifts with adaptation, and conforms to the gating-spring model of vertebrate auditory transduction. Analyzing this gating compliance in terms of the gating-spring model reveals striking parallels between the transducer mechanisms for hearing in vertebrates and flies. Our findings provide first insights into the mechanical workings of invertebrate mechanotransducer channels and set the stage for using Drosophila to specifically search for, and probe the roles of, auditory transducer components.  相似文献   

5.
Memorizing and producing complex strings of sound are requirements for spoken human language. We share these behaviours with likely more than 4000 species of songbirds, making birds our primary model for studying the cognitive basis of vocal learning and, more generally, an important model for how memories are encoded in the brain. In songbirds, as in humans, the sounds that a juvenile learns later in life depend on auditory memories formed early in development. Experiments on a wide variety of songbird species suggest that the formation and lability of these auditory memories, in turn, depend on auditory predispositions that stimulate learning when a juvenile hears relevant, species-typical sounds. We review evidence that variation in key features of these auditory predispositions are determined by variation in genes underlying the development of the auditory system. We argue that increased investigation of the neuronal basis of auditory predispositions expressed early in life in combination with modern comparative genomic approaches may provide insights into the evolution of vocal learning.  相似文献   

6.
In vivo voltage clamp recordings have provided new insights into the synaptic mechanisms that underlie processing in the primary auditory cortex. Of particular importance are the discoveries that excitatory and inhibitory inputs have similar frequency and intensity tuning, that excitation is followed by inhibition with a short delay, and that the duration of inhibition is briefer than expected. These findings challenge existing models of auditory processing in which broadly tuned lateral inhibition is used to limit excitatory receptive fields and suggest new mechanisms by which inhibition and short term plasticity shape neural responses.  相似文献   

7.
An important goal of research on the cognitive neuroscience of decision-making is to produce a comprehensive model of behavior that flows from perception to action with all of the intermediate steps defined. To understand the mechanisms of perceptual decision-making for an auditory discrimination experiment, we connected a large-scale, neurobiologically realistic auditory pattern recognition model to a three-layer decision-making model and simulated an auditory delayed match-to-sample (DMS) task. In each trial of our simulated DMS task, pairs of stimuli were compared each stimulus being a sequence of three frequency-modulated tonal-contour segments, and a "match" or "nonmatch" button was pressed. The model's simulated response times and the different patterns of neural responses (transient, sustained, increasing) are consistent with experimental data and the simulated neurophysiological activity provides insights into the neural interactions from perception to action in the auditory DMS task.  相似文献   

8.
Mouse genetics has made crucial contributions to the understanding of the molecular mechanisms of hearing. With the help of a plethora of mouse mutants, many of the key genes that are involved in the development and functioning of the auditory system have been elucidated. Mouse mutants continue to shed light on the genetic and physiological bases of human hearing impairment, including both early- and late-onset deafness. A combination of genetic and physiological studies of mouse mutant lines, allied to investigations into the protein networks of the stereocilia bundle in the inner ear, are identifying key complexes that are crucial for auditory function and for providing profound insights into the underlying causes of hearing loss.  相似文献   

9.
Learning to hear: plasticity of auditory cortical processing   总被引:1,自引:0,他引:1  
Sensory experience and auditory cortex plasticity are intimately related. This relationship is most striking during infancy when changes in sensory input can have profound effects on the functional organization of the developing cortex. But a considerable degree of plasticity is retained throughout life, as demonstrated by the cortical reorganization that follows damage to the sensory periphery or by the more controversial changes in response properties that are thought to accompany perceptual learning. Recent studies in the auditory system have revealed the remarkably adaptive nature of sensory processing and provided important insights into the way in which cortical circuits are shaped by experience and learning.  相似文献   

10.
In mammals, sensorineural deafness results from damage to the auditory receptors of the inner ear, the nerve pathways to the brain or the cortical area that receives sound information. In this review, we first focused on the cellular and molecular events taking part to spiral ganglion axon growth, extension to the organ of Corti, and refinement. In the second half, we considered the functional maturation of synaptic contacts between sensory hair cells and their afferent projections. A better understanding of all these processes could open insights into novel therapeutic strategies aimed to re-establish primary connections from sound transducers to the ascending auditory nerve pathways.  相似文献   

11.
Neurodevelopmental control by thyroid hormone receptors   总被引:4,自引:0,他引:4  
  相似文献   

12.
Sensory working memory consists of the short-term storage of sensory stimuli to guide behaviour. There is increasing evidence that elemental sensory dimensions - such as object motion in the visual system or the frequency of a sound in the auditory system - are stored by segregated feature-selective systems that include not only the prefrontal and parietal cortex, but also areas of sensory cortex that carry out relatively early stages of processing. These circuits seem to have a dual function: precise sensory encoding and short-term storage of this information. New results provide insights into how activity in these circuits represents the remembered sensory stimuli.  相似文献   

13.
In the mature auditory system, inner hair cells (IHCs) convert sound-induced vibrations into electrical signals that are relayed to the central nervous system via auditory afferents. Before the cochlea can respond to normal sound levels, developing IHCs fire calcium-based action potentials that disappear close to the onset of hearing. Action potential firing triggers transmitter release from the immature IHC that in turn generates experience-independent firing in auditory neurons. These early signaling events are thought to be essential for the organization and development of the auditory system and hair cells. A critical component of the action potential is the rise in intracellular calcium that activates both small conductance potassium channels essential during membrane repolarization, and triggers transmitter release from the cell. Whether this calcium signal is generated by calcium influx or requires calcium-induced calcium release (CICR) is not yet known. IHCs can generate CICR, but to date its physiological role has remained unclear. Here, we used high and low concentrations of ryanodine to block or enhance CICR to determine whether calcium release from intracellular stores affected action potential waveform, interspike interval, or changes in membrane capacitance during development of mouse IHCs. Blocking CICR resulted in mixed action potential waveforms with both brief and prolonged oscillations in membrane potential and intracellular calcium. This mixed behavior is captured well by our mathematical model of IHC electrical activity. We perform two-parameter bifurcation analysis of the model that predicts the dependence of IHCs firing patterns on the level of activation of two parameters, the SK2 channels activation and CICR rate. Our data show that CICR forms an important component of the calcium signal that shapes action potentials and regulates firing patterns, but is not involved directly in triggering exocytosis. These data provide important insights into the calcium signaling mechanisms involved in early developmental processes.  相似文献   

14.
Snakes are frequently described in both popular and technical literature as either deaf or able to perceive only groundborne vibrations. Physiological studies have shown that snakes are actually most sensitive to airborne vibrations. Snakes are able to detect both airborne and groundborne vibrations using their body surface (termed somatic hearing) as well as from their inner ears. The central auditory pathways for these two modes of "hearing" remain unknown. Recent experimental evidence has shown that snakes can respond behaviorally to both airborne and groundborne vibrations. The ability of snakes to contextualize the sounds and respond with consistent predatory or defensive behaviors suggests that auditory stimuli may play a larger role in the behavioral ecology of snakes than was previously realized. Snakes produce sounds in a variety of ways, and there appear to be multiple acoustic Batesian mimicry complexes among snakes. Analyses of the proclivity for sound production and the acoustics of the sounds produced within a habitat or phylogeny specific context may provide insights into the behavioral ecology of snakes. The relatively low information content in the sounds produced by snakes suggests that these sounds are not suitable for intraspecific communication. Nevertheless, given the diversity of habitats in which snakes are found, and their dual auditory pathways, some form of intraspecific acoustic communication may exist in some species.  相似文献   

15.
This review focuses on recent progress in understanding mechanisms for filtering self-generated sensory signals in cerebellum-like circuits in fish and mammals. Recent in vitro studies in weakly electric gymnotid fish have explored the interplay among anti-Hebbian plasticity, synaptic dynamics, and feedforward inhibition in canceling self-generated electrosensory inputs. Studies of the mammalian dorsal cochlear nucleus have revealed multimodal integration and anti-Hebbian plasticity, suggesting that this circuit may adaptively filter incoming auditory information. In vivo studies in weakly electric mormryid fish suggest a key role for granule cell coding in sensory filtering. The clear links between synaptic plasticity and systems level sensory filtering in cerebellum-like circuits may provide insights into hypothesized adaptive filtering functions of the cerebellum itself.  相似文献   

16.
Luo H  Poeppel D 《Neuron》2007,54(6):1001-1010
How natural speech is represented in the auditory cortex constitutes a major challenge for cognitive neuroscience. Although many single-unit and neuroimaging studies have yielded valuable insights about the processing of speech and matched complex sounds, the mechanisms underlying the analysis of speech dynamics in human auditory cortex remain largely unknown. Here, we show that the phase pattern of theta band (4-8 Hz) responses recorded from human auditory cortex with magnetoencephalography (MEG) reliably tracks and discriminates spoken sentences and that this discrimination ability is correlated with speech intelligibility. The findings suggest that an approximately 200 ms temporal window (period of theta oscillation) segments the incoming speech signal, resetting and sliding to track speech dynamics. This hypothesized mechanism for cortical speech analysis is based on the stimulus-induced modulation of inherent cortical rhythms and provides further evidence implicating the syllable as a computational primitive for the representation of spoken language.  相似文献   

17.
The evolution of pheromone diversity   总被引:1,自引:0,他引:1  
Pheromones are chemical signals whose composition varies enormously between species. Despite pheromones being a nearly ubiquitous form of communication, particularly among insects, our understanding of how this diversity has arisen, and the processes driving the evolution of pheromones, is less developed than that for visual and auditory signals. Studies of phylogeny, genetics and ecological processes are providing new insights into the patterns, mechanisms and drivers of pheromone evolution, and there is a wealth of information now available for analysis. Future research could profitably use these data by employing phylogenetic comparative techniques to identify ecological correlates of pheromone composition. Genetic analyses are also needed to gain a clearer picture of how changes in receivers are associated with changes in the signal.  相似文献   

18.
Early in auditory processing, neural responses faithfully reflect acoustic input. At higher stages of auditory processing, however, neurons become selective for particular call types, eventually leading to specialized regions of cortex that preferentially process calls at the highest auditory processing stages. We previously proposed that an intermediate step in how nonselective responses are transformed into call-selective responses is the detection of informative call features. But how neural selectivity for informative call features emerges from nonselective inputs, whether feature selectivity gradually emerges over the processing hierarchy, and how stimulus information is represented in nonselective and feature-selective populations remain open question. In this study, using unanesthetized guinea pigs (GPs), a highly vocal and social rodent, as an animal model, we characterized the neural representation of calls in 3 auditory processing stages—the thalamus (ventral medial geniculate body (vMGB)), and thalamorecipient (L4) and superficial layers (L2/3) of primary auditory cortex (A1). We found that neurons in vMGB and A1 L4 did not exhibit call-selective responses and responded throughout the call durations. However, A1 L2/3 neurons showed high call selectivity with about a third of neurons responding to only 1 or 2 call types. These A1 L2/3 neurons only responded to restricted portions of calls suggesting that they were highly selective for call features. Receptive fields of these A1 L2/3 neurons showed complex spectrotemporal structures that could underlie their high call feature selectivity. Information theoretic analysis revealed that in A1 L4, stimulus information was distributed over the population and was spread out over the call durations. In contrast, in A1 L2/3, individual neurons showed brief bursts of high stimulus-specific information and conveyed high levels of information per spike. These data demonstrate that a transformation in the neural representation of calls occurs between A1 L4 and A1 L2/3, leading to the emergence of a feature-based representation of calls in A1 L2/3. Our data thus suggest that observed cortical specializations for call processing emerge in A1 and set the stage for further mechanistic studies.

A study of the neuronal representations elicited in guinea pigs by conspecific calls at different auditory processing stages reveals insights into where call-selective neuronal responses emerge; the transformation from nonselective to call-selective responses occurs in the superficial layers of the primary auditory cortex.  相似文献   

19.
The inner ear of mammals uses neurosensory cells derived from the embryonic ear for mechanoelectric transduction of vestibular and auditory stimuli (the hair cells) and conducts this information to the brain via sensory neurons. As with most other neurons of mammals, lost hair cells and sensory neurons are not spontaneously replaced and result instead in age-dependent progressive hearing loss. We review the molecular basis of neurosensory development in the mouse ear to provide a blueprint for possible enhancement of therapeutically useful transformation of stem cells into lost neurosensory cells. We identify several readily available adult sources of stem cells that express, like the ectoderm-derived ear, genes known to be essential for ear development. Use of these stem cells combined with molecular insights into neurosensory cell specification and proliferation regulation of the ear, might allow for neurosensory regeneration of mammalian ears in the near future.  相似文献   

20.
Perception of sound categories is an important aspect of auditory perception. The extent to which the brain’s representation of sound categories is encoded in specialized subregions or distributed across the auditory cortex remains unclear. Recent studies using multivariate pattern analysis (MVPA) of brain activations have provided important insights into how the brain decodes perceptual information. In the large existing literature on brain decoding using MVPA methods, relatively few studies have been conducted on multi-class categorization in the auditory domain. Here, we investigated the representation and processing of auditory categories within the human temporal cortex using high resolution fMRI and MVPA methods. More importantly, we considered decoding multiple sound categories simultaneously through multi-class support vector machine-recursive feature elimination (MSVM-RFE) as our MVPA tool. Results show that for all classifications the model MSVM-RFE was able to learn the functional relation between the multiple sound categories and the corresponding evoked spatial patterns and classify the unlabeled sound-evoked patterns significantly above chance. This indicates the feasibility of decoding multiple sound categories not only within but across subjects. However, the across-subject variation affects classification performance more than the within-subject variation, as the across-subject analysis has significantly lower classification accuracies. Sound category-selective brain maps were identified based on multi-class classification and revealed distributed patterns of brain activity in the superior temporal gyrus and the middle temporal gyrus. This is in accordance with previous studies, indicating that information in the spatially distributed patterns may reflect a more abstract perceptual level of representation of sound categories. Further, we show that the across-subject classification performance can be significantly improved by averaging the fMRI images over items, because the irrelevant variations between different items of the same sound category are reduced and in turn the proportion of signals relevant to sound categorization increases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号