共查询到20条相似文献,搜索用时 0 毫秒
1.
Status epilepticus is associated with sustained and elevated levels of cytosolic Ca(2+). To elucidate the mechanisms associated with changes of cytosolic Ca(2+) after status epilepticus, this study was initiated to evaluate the effect of pilocarpine-induced status epilepticus on Mg(2+)/Ca(2+) ATPase-mediated Ca(2+) uptake in microsomes isolated from rat cortex, because the Ca(2+) uptake mechanism plays a major role in regulating intracellular Ca(2+) levels. The data demonstrated that the initial rate and overall Ca(2+) uptake in microsomes from pilocarpine treated animals were significantly inhibited compared with those in microsomes from saline-treated control animals. It was also shown that the inhibition of Ca(2+) uptake caused by status epilepticus was not an artifact of increased Ca(2+) release from microsomes, selective isolation of damaged microsomes from the homogenate, or decreased Mg(2+)/Ca(2+) ATPase protein in the microsomes. Pretreatment with the NMDA antagonist dizocilpine maleate blocked status epilepticus-induced inhibition of the initial rate and overall Ca(2+) uptake. The data suggest that inhibition of microsomal Mg(2+)/Ca(2+) ATPase Ca(2+) uptake is involved in NMDA-dependent deregulation of cytosolic Ca(2+) homeostasis associated with status epilepticus. 相似文献
2.
《Molecular membrane biology》2013,30(3):75-87
AbstractLike other integral membrane proteins, the activity of the Sarco/Endoplasmic Reticulum Ca2+-ATPase (SERCA) is regulated by the membrane environment. Cholesterol is present in the endoplasmic reticulum membrane at low levels, and it has the potential to affect SERCA activity both through direct, specific interaction with the protein or through indirect interaction through changes of the overall membrane properties. There are experimental data arguing for both modes of action for a cholesterol-mediated regulation of SERCA. In the current study, coarse-grained molecular dynamics simulations are used to address how a mixed lipid-cholesterol membrane interacts with SERCA. Candidates for direct regulatory sites with specific cholesterol binding modes are extracted from the simulations. The binding pocket for thapsigargin, a nanomolar inhibitor of SERCA, has been suggested as a cholesterol binding site. However, the thapsigargin binding pocket displayed very little cholesterol occupation in the simulations. Neither did atomistic simulations of cholesterol in the thapsigargin binding pocket support any specific interaction. The current study points to a non-specific effect of cholesterol on SERCA activity, and offers an alternative interpretation of the experimental results used to argue for a specific effect. 相似文献
3.
Nathaniel J. Traaseth 《生物化学与生物物理学报:生物膜》2010,1798(2):77-15414
Phospholamban (PLN) is a dynamic single-pass membrane protein that inhibits the flow of Ca2+ ions into the sarcoplasmic reticulum (SR) of heart muscle by directly binding to and inhibiting the SR Ca2+ATPase (SERCA). The PLN monomer is the functionally active form that exists in equilibrium between ordered (T state) and disordered (R state) states. While the T state has been fully characterized using a hybrid solution/solid-state NMR approach, the R state structure has not been fully portrayed. It has, however, been detected by both NMR and EPR experiments in detergent micelles and lipid bilayers. In this work, we quantitatively probed the μs to ms dynamics of the PLN excited states by observing the T state in DPC micelles using CPMG relaxation dispersion NMR spectroscopy under functional conditions for SERCA. The 15N backbone and 13Cδ1 Ile-methyl dispersion curves were fit using a two-state equilibrium model, and indicate that residues within domain Ia (residues 1-16), the loop (17-22), and domain Ib (23-30) of PLN undergo μs-ms dynamics (kex = 6100 ±800 s- 1 at 17 °C). We measured kex at additional temperatures, which allowed for a calculation of activation energy equal to ∼ 5 kcal/mol. This energy barrier probably does not correspond to the detachment of the amphipathic domain Ia, but rather the energy needed to unwind domain Ib on the membrane surface, likely an important mechanism by which PLN converts between high and low affinity states for its binding partners. 相似文献
4.
Role of dynamics of intracellular calcium in aluminium-toxicity syndrome 总被引:14,自引:2,他引:14
5.
Liu XH Zhang ZY Andersson KB Husberg C Enger UH Ræder MG Christensen G Louch WE 《Cell calcium》2011,49(4):201-207
Reduced sarco(endo)plasmic reticulum (SR) Ca(2+) ATPase (SERCA2) contributes to the impaired cardiomyocyte Ca(2+) homeostasis observed in heart failure. We hypothesized that a reduction in SERCA2 also elicits myocardial ER/SR stress responses, including unfolded protein responses (UPR) and cardiomyocyte apoptosis, which may additionally contribute to the pathophysiology of this condition. Left ventricular myocardium from mice with cardiomyocyte-specific tamoxifen-inducible disruption of Serca2 (SERCA2 KO) was compared with aged-matched controls. In SERCA2 KO hearts, SERCA2 protein levels were markedly reduced to 2% of control values at 7 weeks following tamoxifen treatment. Serca2 disruption caused increased abundance of the ER stress-associated proteins CRT, GRP78, PERK, and eIF2α and increased phosphorylation of PERK and eIF2α, indicating UPR induction. Pro-apoptotic signaling was also activated in SERCA2 KO, as the abundance of CHOP, caspase 12, and Bax was increased. Indeed, TUNEL staining revealed an increased fraction of cardiomyocytes undergoing apoptosis in SERCA2 KO. ER-Tracker staining additionally revealed altered ER structure. These findings indicate that reduction in SERCA2 protein abundance is associated with marked ER/SR stress in cardiomyocytes, which induces UPR, apoptosis, and ER/SR structural alterations. This suggests that reduced SERCA2 abundance or function may contribute to the phenotype of heart failure also through induction of ER/SR stress responses. 相似文献
6.
7.
ATPase activity and phosphorylation by [γ-32P] ATP of isolated plasma membrane of alveolar macorphages are stimulated in a parallel fashion by physiologic concentrations of Ca2+, with half-maximal activating effect of this ion at (3–7) × 10?7 M. For various membrane preparations, a direct proportionality exists between Ca2+-dependent ATPase activity and amount of 32P incorporated. Labeling of membrane attains the steady-state level by 10 sec at 0°C, and is rapidly reversed by adenosine diphosphate (ADP). K+ decreases the amount of membrane-bound 32P, mainly by enhancing the rate of dephosphorylation of the 32P-intermediate. Hydroxylamine causes a release of about 90% of 32P bound to the membrane, thus indicating that the 32P-intermediate contains an acyl-phosphate bond. When the labeled plasma membrane is solubilized and electrophoresed on acrylamide gels in the presence of sodium dodecyl sulphate, the radioactivity appears to be largely associated with a single protein fraction of 132,500 ± 2,000 apparent molecular weight. These features of the macrophage Ca2+-ATPase suggest that the enzyme activity might be part of a surface-localized Ca2+-extrusion system, participating in the regulation of Ca2+-dependent activities of the macrophage. 相似文献
8.
9.
Intraneuronal calcium ([Ca(2+)](i)) regulation is altered in aging brain, possibly because of the changes in critical Ca(2+) transporters. We previously reported that the levels of the plasma membrane Ca(2+)-ATPase (PMCA) and the V(max) for enzyme activity are significantly reduced in synaptic membranes in aging rat brain. The goal of these studies was to use RNA(i) techniques to suppress expression of a major neuronal isoform, PMCA2, in neurons in culture to determine the potential functional consequences of a decrease in PMCA activity. Embryonic rat brain neurons and SH-SY5Y neuroblastoma cells were transfected with in vitro--transcribed short interfering RNA or a short hairpin RNA expressing vector, respectively, leading to 80% suppression of PMCA2 expression within 48 h. Fluorescence ratio imaging of free [Ca(2+)](i) revealed that primary neurons with reduced PMCA2 expression had higher basal [Ca(2+)](i), slower recovery from KCl-induced Ca(2+) transients, and incomplete return to pre-stimulation Ca(2+) levels. Primary neurons and SH-SY5Y cells with PMCA2 suppression both exhibited significantly greater vulnerability to the toxicity of various stresses. Our results indicate that a loss of PMCA such as occurs in aging brain likely leads to subtle disruptions in normal Ca(2+) signaling and enhanced susceptibility to stresses that can alter the regulation of Ca(2+) homeostasis. 相似文献
10.
We previously observed that gangliosides GM2, GM1, and GM3 inhibit Ca2+ -uptake via the sarco/endoplasmic reticulum Ca2+ -ATPase (SERCA) in neurons and in brain microsomes. We now systematically examine the effect of various gangliosides and their analogs on Ca2+ -uptake via SERCA and demonstrate that an exposed carboxyl group on the ganglioside sialic acid residue is required for inhibition. Thus, asialo-GM2 and asialo-GM1 have no inhibitory effect, and modifications of the carboxyl group of GM1 and GM2 into a hydroxymethyl residue (CH2 OH), a methyl ester (COOCH3 ) or a taurine-conjugated amide (CONHCH2 CH2 SO3 H) drastically diminish their inhibitory activities. We also demonstrate that the saccharides must be attached to a ceramide backbone in order to inhibit SERCA as the ceramide-free ganglioside saccharides only inhibit SERCA to a minimal extent. Finally, we attempted to use the ceramide-free ganglioside saccharides to antagonize the effects of the gangliosides on SERCA; although some reversal was observed, the inhibitory effects of the gangliosides were not completely abolished. 相似文献
11.
Activatory effect of calcium-binding protein regucalcin on ATP-dependent calcium transport in the basolateral membranes of rat kidney cortex 总被引:1,自引:0,他引:1
The effect of regucalcin, a calcium-binding protein, on ATP-dependent Ca2+ transport in the basolateral membranes isolated from rat kidney cortex was investigated. The prepared membranes were in inside-out oriented and membrane vesicles. Ca2+-ATPase activity in the basolateral membranes was progressively elevated by increasing concentrations of regucalcin (10-8 to 10-6 M) in the reaction mixture. This increase was dependent on Ca2+ addition. The activatory effect of regucalcin on the enzyme is inhibited by the presence of digitonin (5 × 10-6%) which can solubilize the membranous lipids. Moreover, the regucalcin effect was clearly abolished by the presence of vanadate (0.1 mM) or N-ethylmaleimide (5.0 mM). However, the effect of calmodulin (6 × 10-7 M) to increase Ca2+-ATPase activity was not significantly inhibited by vanadate or N-ethylmaleimide, indicating that the action mode of regucalcin differs from that of calmodulin. Also, the activatory effect of regucalcin on Ca2+-ATPase was appreciably inhibited by addition of dibutyryl cAMP (10-5 and 10-3 M), while inositol 1,4,5-trisphosphate (10-7 and 10-5 M) had no effect. Dibutyryl cAMP itself did not have an effect on the enzyme activity. Furthermore, the 45Ca2+ uptake by the basolateral membranes was clearly increased by the presence of regucalcin (10-7 and 10-6 M). This increase was completely blocked by the presence of vanadate (0.1 mM), N-ethylmaleimide (5.0 mM) or dibutyryl cAMP (10-4 and 10-3 M) in the reaction mixture. These results clearly demonstrate that regucalcin, which is expressed in rat kidney cortex, can increase Ca2+-ATPase activity and Ca2+ uptake in the basolateral membranes. Regucalcin may play a cell physiologic role as an activator in the ATP-dependent Ca2+ pumps in the basolateral membranes from rat kidney cortex. 相似文献
12.
Plant cells frequently and rapidly have to respond to environmental changes for survival. Regulation of transport and other energy-requiring processes in the plasmalemma of root cells is therefore one important aspect of the ecological adaptation of plants. Wheat (Triticum aestivum L. cv. Drabant) was grown hydroponically, with or without 50 nM benzyladenine in the medium, and plasma membranes from root cells of 8-day-old plants were prepared by aqueous polymer two-phase partitioning. The influence of Ca2+ and Mg2+ on the plasmalemma ATPase activities was investigated. The presence of benzyladenine during growth increased the ATPase activity, that dependent upon Ca2+ more than that elicited by Mg2+. As a general characteristic, ATP was the preferred substrate, but all nucleotide tri- and diphosphates could be accepted with activities in plasma membranes from control plants of 7-36% (Mg2+) and 40-86% (Ca2+) and in plasma membranes from benzyladenine-treated plants of 12-47% (Mg2+) and 53-102% (Ca2+) as compared with activities obtained with ATP. Nucleotidemonophosphates were not hydrolyzed by the preparations. In preparations from benzyladenine-treated plants one peak of Ca2+-ATPase at pH 5.2–5.6, with a tail from pH 6 and upwards, and one peak of Mg2+-ATPase at pH 6.0–6.5 were observed in the presence of EDTA in the assay media. In preparations from control plants, the addition of EDTA to the assays resulted in a wide optimum between pH 6 and 7 for Mg2+-ATPase and low Ca2+-ATPase activity with no influence of pH in the range 4.5 to 8. Analysis of the pH dependence in the presence of both Ca2+ and Mg2+ indicates that the control plants mainly contain Mg2+-ATPase corresponding to the proton pump. Preparations from benzyladenine-treated wheat roots show, in addition, activation by Ca2+, which, in the slightly alkaline pH range may correspond to a Ca2+-extruding (Ca2++ Mg2+)-ATPase. In the acidic range, the responses are more complicated: the Mg2+-ATPase is inhibited by vanadate, while the Ca2+-ATPase is insensitive, and benzyladenine added during growth influences the interaction between Ca2+ and Mg2+ in a way that parallels the effect of high salt medium. 相似文献
13.
Characterization of Calcium-Activated and Magnesium-Activated ATPases of Brain Nerve Endings 总被引:1,自引:2,他引:1
The properties of Ca2+-activated and Mg2+-activated ATPases of nerve endings from mouse brain were investigated. Ca2+ and Mg2+ each can activate ATP hydrolysis in synaptosomes and its subfractions. Both Ca2+-ATPase and Mg2+-ATPase exhibit high and low affinity for their respective cations. At millimolar concentrations of Ca2+ or Mg2+, several nucleoside triphosphates could serve as substrate for the two enzymes and their specific activities were about three to four times higher in synaptic vesicles than in synaptosomal plasma membranes (SPM). Both in SPM and in synaptic vesicles the relative activity in the presence of Ca2+ was in the order of CTP greater than UTP greater than GTP = ATP, but with Mg2+ the activity was higher with ATP than with the other three triphosphates. Mg2+-ATPase was more active than Ca2+-ATPase in SPM, but in synaptic vesicles the two enzymes exhibited similar activity. Kinetic studies revealed that Mg2+-ATPase was inhibited by excess ATP and not by excess Mg2+. The simultaneous presence of Na+ + K+ stimulated Mg2+-ATPase and inhibited Ca2+-ATPase activity in intact synaptosomes and SPM. The stimulation of Mg2+-ATPase by Na+ + K+ was further increased by increasing Mg2+ concentration and was inhibited by Ca2+ and by ouabain. When Ca2+ and Mg2+ are present together in SPM or synaptic vesicles, the total Pi liberated by the two cations may either increase or decrease, depending on their relative concentrations. Kinetic analyses indicate that Ca2+ and Mg2+ bind independently to the enzyme alone or together at different sites. The results suggest that Ca2+-ATPase and Mg2+-ATPase in SPM or synaptic vesicles may be separate and distinct systems. 相似文献
14.
Jiang L Fernandes D Mehta N Bean JL Michaelis ML Zaidi A 《Journal of neurochemistry》2007,102(2):378-388
Spatial and temporal alterations in intracellular calcium [Ca(2+)](i) play a pivotal role in a wide array of neuronal functions. Disruption in Ca(2+) homeostasis has been implicated in the decline in neuronal function in brain aging and in neurodegenerative disorders. The plasma membrane Ca(2+)-ATPase (PMCA) is a high affinity Ca(2+) transporter that plays a crucial role in the termination of [Ca(2+)](i) signals and in the maintenance of low [Ca(2+)](i) essential for signaling. Recent evidence indicates that PMCA is uniquely sensitive to its lipid environment and is stimulated by lipids with ordered acyl chains. Here we show that both PMCA and its activator calmodulin (CaM) are partitioned into liquid-ordered, cholesterol-rich plasma membrane microdomains or 'lipid rafts' in primary cultured neurons. Association of PMCA with rafts was demonstrated in preparations isolated by sucrose density gradient centrifugation and in intact neurons by confocal microscopy. Total raft-associated PMCA activity was much higher than the PMCA activity excluded from these microdomains. Depletion of cellular cholesterol dramatically inhibited the activity of the raft-associated PMCA with no effect on the activity of the non-raft pool. We propose that association of PMCA with rafts represents a novel mechanism for its regulation and, consequently, of Ca(2+) signaling in the central nervous system. 相似文献
15.
Sealed plasma membrane vesicles were obtained in high purity from leaves of Commelina communis L. by aqueous two-phase partitioning. Based on the analysis of a range of markers, the preparations (U3+U3′ phases) were shown to be devoid of tonoplast, Golgi and thylakoid membranes, and showed only trace mitochondrial contamination. One-third of the vesicles were oriented inside out and exhibited ATP-driven 45Ca2+ transport [? 15 pkat (mg protein)−1]. Ca2+ uptake into the vesicles had a pH optimum of 7.2 and apparent Km values for Ca2+ of 4.4 μM and for Mg-ATP of 300 μM. Ca2+ uptake, K+, Mg2+-ATPase (EC 3.6.1.3) activity as well as glucan synthase II (EC 2.4.1.34) activity were all maximal at the same equilibrium density (1.17 g cm−3) on continuous sucrose density gradients. The protonophore carbonylcyanide m-chlorophenylhydrazone (CCCP) did not inhibit the ATP-dependent Ca2+ transport into the vesicles, excluding a Ca2+/H+ exchange driven by a proton gradient. ATP-dependent Ca2+ uptake was inhibited by erythrosin B (I50= 0.1 μM), ruthenium red (I50= 30 μM), La3+ (I50= 10 μM) and vanadate (I50= 500 μM), but not by azide, cyanide and oligomycin. The calmodulin antagonists, trifluoperazine (I50= 70 μM) and W-7 (I50= 100 μM) were also inhibitory, However, this inhibition was not overcome by calmodulin. Trifluoperazine and W-7, on the other hand, stimulated Ca2+ efflux from the vesicles rather than inhibit Ca2+ uptake. Our results demonstrate the presence of a Ca2+-ATPase in the plasma membrane of C. communis. In the intact cell, the enzyme would pump Ca2+ out of the cell. Its high affinity for Ca2+ makes it a likely component involved in adjusting low cytoplasmic Ca2+ levels. No indications for a secondary active Ca2+/H+ transport mechanism in the plasma membrane of C. communis were obtained. Both, the nucleotide specificity and the sensitivity towards vanadate. distinguish the Ca2+-ATPase from the H+-translocating K+. Mg2+-ATPase in C. communis plasma membranes. 相似文献
16.
Inflammatory bowel diseases (IBD) such as Crohn’s disease and ulcerative colitis are inflammatory disorders associated with
decreased colonic contractility. Here we show that, in experimental colitis in rat induced by trinitrobenzenesulfonic acid,
there is a decrease in contraction in response to carbamoylcholine and the sarco/endoplasmic reticulum Ca+2 (SERCA) pump inhibitor thapsigargin. However, the decrease in contractility may occur due to decrease in the SERCA pump levels
or their inactivation. Therefore, we examined the protein and mRNA levels for SERCA2 isoform, which is predominant isoform
in colonic smooth muscle. There was a decrease in the levels of SERCA2 protein and mRNA levels in inflamed colonic muscle.
These findings suggest that decreased SERCA pump levels is responsible for a decrease in the Ca+2 stores in the sarco/endoplasmic reticulum that causes a decrease in the contractility in colonic smooth muscle leading to
poor bowel movements. 相似文献
17.
The effect on exocytosis of La(3+), a known inhibitor of plasma membrane Ca(2+)-ATPases and Na(+)/Ca(2+) exchangers, was studied using cultured bovine adrenal chromaffin cells. At high concentrations (0.3-3 mM), La(3+) substantially increased histamine-induced catecholamine secretion. This action was mimicked by other lanthanide ions (Nd(3+), Eu(3+), Gd(3+), and Tb(3+)), but not several divalent cations. In the presence of La(3+), the secretory response to histamine became independent of extracellular Ca(2+). La(3+) enhanced secretion evoked by other agents that mobilize intracellular Ca(2+) stores (angiotensin II, bradykinin, caffeine, and thapsigargin), but not that due to passive depolarization with 20 mM K(+). La(3+) still enhanced histamine-induced secretion in the presence of the nonselective inhibitors of Ca(2+)-permeant channels SKF96365 and Cd(2+), but the enhancement was abolished by prior depletion of intracellular Ca(2+) stores with thapsigargin. La(3+) inhibited (45)Ca(2+) efflux from preloaded chromaffin cells in the presence or absence of Na(+). It also enhanced and prolonged the rise in cytosolic [Ca(2+)] measured with fura-2 during mobilization of intracellular Ca(2+) stores with histamine in Ca(2+)-free buffer. The results suggest that the efficacy of intracellular Ca(2+) stores in evoking exocytosis is enhanced dramatically by inhibiting Ca(2+) efflux from the cell. 相似文献
18.
ROBERTO DOCAMPOA FERNANDA R. GADELHA SILVIA N. J. MORENO GUSTAVO BENAIM MARIA E. HOFFMANN ANIBAL E. VERCESI 《The Journal of eukaryotic microbiology》1993,40(3):311-316
ABSTRACT. We have demonstrated previously that crystal violet induces a rapid, dose-related collapse of the inner mitochondrial membrane potential of Trypanosoma cruzi epimastigotes. In this work, we show that crystal violet-induced dissipation of the membrane potential was accompanied by an efflux of Ca2+ from the mitochondria. In addition, crystal violet inhibited the ATP-dependent, oligomycin-, and antimycin A-insensitive Ca2+ uptake by digitonin-permeabilired epimastigotes. Crystal violet also induced Ca2+ release from the mitochondria and endoplasmic reticulum of digitonin-permeabilized trypomastigotes. Furthermore, crystal violet inhibited Ca2+ uptake and the (Ca2+ -Mg2+ )ATPase of a highly enriched plasma membrane fraction of epimastigotes, thus indicating an inhibition of other calcium transport mechanisms of the cells. Disruption of Ca2+ homeostasis by crystal violet may be a key process leading to trypanosome cell injury by this drug. 相似文献
19.
L.E. Okorokov 《FEMS microbiology letters》1994,120(3):375-377
Abstract Sucrose density fractionation of yeast membranes revealed two major and two minor peaks of 45 Ca2+ transport activity which all co-migrate with marker enzymes of the endoplasmic reticulum, Golgi and membranes associated with these compartments as well as with ATPase activity measured when all other known ATPase are inhibited. Co-migration of 45 Ca2+ transport and ATPase activities was also found after removal of plasma membranes by concanavalin A treatment. SDS-PAGE at pH 6.3 shows the Ca2+ -dependent formation of acyl phosphate polypeptides of about 110 and 200 kDa. It is concluded that several compartments or sub-compartments of yeast are equipped with Ca2+ -ATPase(s). It is proposed that these compartments are derived from the protein secretory apparatus of yeast. 相似文献
20.
Decomposition of phosphoenzyme (E P) in sarcoplasmic reticulum isolated from caudofemoralis, tibialis and soleus of cat hind leg skeletal muscles was studied under various conditions of monovalent cations. In the presence of Li+, Na+ and K+ chosen for E P formation and decomposition after quenching of E P with EGTA, E P in the caudofemoralis and tibialis sarcoplasmic reticulum decomposed faster than that in the soleus sarcoplasmic reticulum. Quenching the E P formation with EGTA and ADP revealed that 30–40% of the total E P formed in all types of sarcoplasmic reticulum was ‘ADP sensitive’. Decomposition of the remaining E P in caudofemoralis and tibialis sarcoplasmic reticulum was enhanced by ADP, which resulted in a multiphasic decomposition pattern. A larger portion of the remaining E P in the soleus sarcoplasmic reticulum, on the other hand, decomposed in a monophasic manner and was not significantly influenced by ADP. The data on E P decomposition clearly differentiate between the fast and slow muscle types. 相似文献