首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
B Mechler  H Müller    D H Wolf 《The EMBO journal》1987,6(7):2157-2163
Studies were performed to unravel the activation and maturation mechanism of vacuolar (lysosomal) proteinases in Saccharomyces cerevisiae. In vivo and in vitro studies show that proteinase yscA and proteinase yscB are involved in the activation and processing event of pro-carboxypeptidase yscY. Processing and activation of pro-carboxypeptidase yscY by proteinase yscA depends on an additional factor contained in the vacuolar fraction. Comparable activation can be mimicked by sodium polyphosphate. Optimum pH for processing by this proteinase yscA-triggered event is 5. The proteinase yscA-triggered maturation process of pro-carboxypeptidase yscY leads to an intermediate mol. wt form of the enzyme which is, however, fully active. Proteinase yscB transfers the intermediate mol. wt form of the original precursor to the apparently authentic, mature and active carboxypeptidase yscY. An activation and maturation scheme is devised.  相似文献   

2.
We have studied the structure, biosynthesis, intracellular routing, and vacuolar localization of carboxypeptidase ysCS in the yeast Saccharomyces cerevisiae. Nondenaturing polyacrylamide gel electrophoresis revealed two forms of carboxypeptidase yscS with different electrophoretic mobility. Antibodies specific for carboxypeptidase yscS recognized two glycoproteins of 77- and 74-kDa apparent molecular mass which differ by one N-linked carbohydrate residue. Both observations suggest that carboxypeptidase yscS exists in two catalytically active forms. The enzyme was found to be synthesized as two active high molecular mass precursor forms which are converted to the mature forms with a half-time of 20 min. The mature forms of carboxypeptidase yscS appeared soluble in the vacuolar lumen, while the precursor proteins accumulated tightly associated with the vacuolar membrane. The single hydrophobic domain present at the N terminus is believed to be responsible for the membrane association of the precursor molecules. Double mutants defective in proteinase yscA and proteinase yscB synthesize solely the carboxypeptidase yscS precursor forms. Correct proteolytic cleavage of the precursor forms was performed using purified proteinase yscB in vitro. Sec61, sec18, and sec7 mutants, conditionally defective in the secretory pathway, accumulate carboxypeptidase yscS precursor protein. Thus the carboxypeptidase yscS precursor molecules are delivered to the vacuole in a membrane bound form via the secretory pathway. After assembly into the vacuolar membrane, proteinase yscB presumably cleaves the precursor molecules to release soluble carboxypeptidase yscS forms into the lumen of the vacuole. The proposed mechanism is different from the delivery mechanism found for the other soluble vacuolar hydrolases in yeast.  相似文献   

3.
The codon of the catalytic serine in the active site of the vacuolar serine proteinase yscB (PrB) was changed to alanine, yielding the mutant gene prb1-Ala519. Following replacement of the wild-type PRB1 allele with prb1-Ala519, only a 73-kDa molecule was detected by immunoprecipitation with PrB-specific antiserum. The size of the mutant molecule corresponds to the unprocessed cytoplasmic precursor (pre-super-pro-PrB), as detected in sec61 mutants, when translocation into the endoplasmic reticulum is blocked. However, the mutant molecule is completely translocated into the secretory pathway, as indicated by protection from proteinase K digestion in spheroplast lysates in the absence of detergent. When N-glycosylation was inhibited in prb1-Ala519 mutant cells by tunicamycin, a smaller molecule of about 71 kDa appeared consistent with single N-glycosylation and signal-sequence cleavage of the translocated mutant PrB molecule in the endoplasmic reticulum. Thus, the active-site mutation prevents the wild-type processing of the N-glycosylated 73-kDa precursor of PrB to the 41.5 kDa pro-PrB in the endoplasmic reticulum. In order to characterize the processing of wild-type super-pro-PrB in more detail, we generated antibodies against the non-enzymatic superpeptide domain of the 73-kDa precursor expressed in Escherichia coli. We find that, in addition to pro-PrB, a distinct protein (superpeptide) with a mobility of about 41 kDa in SDS/PAGE is generated in the endoplasmic reticulum. Pulse-chase experiments indicate rapid degradation of the 41-kDa superpeptide in wild-type cells. Correspondingly, the superpeptide was virtually undetectable by immunoblotting wild-type cell extracts. In contrast, no degradation of radioactively labeled 41-kDa superpeptide was observed within 60 min in mutant strains deficient in the vacuolar proteinase yscA (PrA), in which maturation of vacuolar pro-PrB to active PrB is blocked. Accordingly, superpeptide antigenic material was readily detected by immunoblotting cell extracts and enriched in vacuolar preparations of PrA deficient mutant cells. These results indicate that the superpeptide and pro-PrB travel to the vacuole, where the superpeptide is rapidly degraded upon pro-PrB activation to PrB. Using purified vacuoles, rapid degradation of the superpeptide was reconstituted in vitro by addition of either mature PrA or mature PrB. However, the PrA-triggered in vitro degradation of the superpeptide required PrB activity, as this process was inhibited in the presence of the PrB inhibitor chymostatin.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

4.
The vacuolar proteinase yscB (PrB) has been implicated in the final maturation of procarboxypeptidase yscY (pro-CpY) to the mature wild-type form CpYb of 61 kDa. In PrB-deficient mutants, only the proteinase yscA processed form CpYa of 62 kDa is found [Mechler, B., Müller, H. & Wolf, D. H. (1987) EMBO J. 6, 2157-2163]. We report now that, akin to CpY, two forms of mature proteinase yscA (PrA) can be distinguished. In PrB-deficient mutant cells, PrAa, migrating at about 43 kDa in SDS/PAGE, is found, whereas PrAb, found in wild-type cells, had the known molecular mass of 42 kDa. In the PrB-deficient strain, pro-PrA and pro-CpY matured only to the higher-molecular-mass forms, PrAa and CpYa, and the maturation of both precursors was slower than in the isogenic wild-type strain. Pulse-labeling experiments indicated that the mature forms, PrAb or CpYb, are generated directly in the PrB-containing wild-type strain in vivo. In vitro experiments showed that PrB is able to trigger maturation of its 42-kDa pro-PrB precursor to mature PrB in the absence of PrA. Mature PrB and its proteolytic activity, however, shows a higher stability in the presence of mature PrA. The data indicate a molecular and kinetic participation of proteinase yscB in vacuolar hydrolase precursor maturation.  相似文献   

5.
We have devised a genetic selection for mutant yeast cells that fail to translocate secretory protein precursors into the lumen of the endoplasmic reticulum (ER). Mutant cells are selected by a procedure that requires a signal peptide-containing cytoplasmic enzyme chimera to remain in contact with the cytosol. This approach has uncovered a new secretory mutant, sec61, that is thermosensitive for growth and that accumulates multiple secretory and vacuolar precursor proteins that have not acquired any detectable posttranslational modifications associated with translocation into the ER. Preproteins that accumulate at the sec61 block sediment with the particulate fraction, but are exposed to the cytosol as judged by sensitivity to proteinase K. Thus, the sec61 mutation defines a gene that is required for an early cytoplasmic or ER membrane-associated step in protein translocation.  相似文献   

6.
《The Journal of cell biology》1989,109(6):2641-2652
Genes that function in translocation of secretory protein precursors into the ER have been identified by a genetic selection for mutant yeast cells that fail to translocate a signal peptide-cytosolic enzyme hybrid protein. The new mutants, sec62 and sec63, are thermosensitive for growth and accumulate a variety of soluble secretory and vacuolar precursors whose electrophoretic mobilities coincide with those of the corresponding in vitro translated polypeptides. Proteolytic sensitivity of precursor molecules in extracts of mutant cells confirms that polypeptide translocation is blocked. Some form of interaction among the SEC61 (Deshaies, R. J., and R. Schekman. 1987. J. Cell Biol. 105:633-645), SEC62 and SEC63 gene products is suggested by the observation that haploid cells containing any pair of the mutations are inviable at 24 degrees C and show a marked enhancement of the translocation defect. The translocation defects of two mutants (sec62 and sec63) have been reproduced in vitro. sec63 microsomes display low and thermolabile translocation activity for prepro-alpha-factor (pp alpha F) synthesized with a cytosol fraction from wild type yeast. These gene products may constitute part of the polypeptide recognition or translocation apparatus of the ER membrane. Pulse-chase analysis of the translocation-defective mutants demonstrates that insertion of pp alpha F into the ER can proceed posttranslationally.  相似文献   

7.
Mutants deficient in the vacuolar (lysosomal) endopeptidases proteinase yscA and proteinase yscB of the yeast Saccharomyces cerevisiae exhibit a drastically reduced protein degradation rate under nutritional stress conditions. The differentiation process of sporulation is considerably disturbed by the absence of the two endopeptidases. Also under vegetative growth conditions and under conditions of false protein synthesis, the two vacuolar endopeptidases exhibit some effect on protein degradation, which is, however, much less pronounced as found under starvation conditions. Proteinase yscA deficiency leads to rapid cell death when glucose-grown cells starve for nitrogen or other nutrients. Whereas overall protein degradation is affected in the endopeptidase mutants, degradation of two distinct false proteins analyzed is not altered in the absence of proteinase yscA and proteinase yscB. Also catabolite inactivation and degradation of fructose-1,6-bisphosphatase is not affected to a greater extent in the endopeptidase-deficient strains.  相似文献   

8.
Yeast secretory mutant sec53 cells accumulate inactive secretory glycoprotein precursors that remain associated with the endoplasmic reticulum (ER) at the restrictive temperature (37 degrees C). The possibility that precursor polypeptides fail to penetrate completely into the ER lumen was tested by examining the protease accessibility of accumulated invertase, mating pheromone precursor prepro-alpha-factor and the vacuolar protein precursor procarboxypeptidase Y in cell lysates. In all three cases, the secretory protein precursors are protected from the action of exogenous protease unless the membrane is permeabilized by including Triton X-100 or saponin in the incubation. These results suggest that the sec53 defect allows complete polypeptide translocation. Consistent with this interpretation, the precursor of invertase accumulates in a signal peptide-processed form. In addition, invertase and prepro-alpha-factor precursors contain a small amount of possibly aberrant carbohydrate. In mutant cells or in wild type cells treated with tunicamycin, a 10-kDa fragment of the N terminus of mature invertase assumes a conformation that is resistant to trypsin with or without detergent. This domain may be associated with an ER protein or may simply assume an unusual conformation as a consequence of deficient glycosyl modification.  相似文献   

9.
D Julius  R Schekman  J Thorner 《Cell》1984,36(2):309-318
Events in the synthesis and processing of prepro-alpha-factor have been assessed with the aid of mutants blocked at various stages in the yeast secretory pathway. In normal cells treated with tunicamycin, a precursor accumulates which is identical in molecular weight to the primary translation product synthesized in vitro. At the restrictive temperature in a mutant blocked early in the pathway (sec53), a molecule of similar molecular weight accumulates. In mutants affecting translocation into (sec59) and passage from (sec 18) the endoplasmic reticulum, a glycosylated form of the precursor containing three N-linked core oligosaccharides accumulates; however, it appears that the signal peptide is not removed. The glycosylated precursor first experiences proteolytic processing when accumulated in a mutant (sec7) blocked at the stage of the Golgi apparatus. Substantially greater amounts of the mature pheromone are seen in mutants that accumulate secretory vesicles (sec1, sec2, sec3, sec5).  相似文献   

10.
Ubiquitin, an evolutionary highly conserved protein, is known to be involved in selective proteolysis in the cytoplasm. Here we show that ubiquitin-protein conjugates are also found in the yeast vacuole. Mutants defective in the major vacuolar endopeptidases, proteinase yscA and yscB, lead to accumulation of ubiquitin-protein conjugates in this cellular organelle.  相似文献   

11.
SEC72 encodes the 23-kD subunit of the Sec63p complex, an integral ER membrane protein complex that is required for translocation of presecretory proteins into the ER of Saccharomyces cerevisiae. DNA sequence analysis of SEC72 predicts a 21.6-kD protein with neither a signal peptide nor any transmembrane domains. Antibodies directed against a carboxyl-terminal peptide of Sec72p were used to confirm the membrane location of the protein. SEC72 is not essential for yeast cell growth, although an sec72 null mutant accumulates a subset of secretory precursors in vivo. Experiments using signal peptide chimeric proteins demonstrate that the sec72 translocation defect is associated with the signal peptide rather than with the mature region of the secretory precursor.  相似文献   

12.
The biosynthesis and processing of the vacuolar (lysosomal) acid trehalase (molecular mass about 220 kDa) was followed in vivo using mutants conditionally defective in the secretory pathway. A precursor of 41 kDa was found in sec61 mutant cells deficient in translocation of secretory protein precursors into the lumen of the endoplasmic reticulum. Endoglycosidase H and N-glycosidase F treatment of purified acid trehalase in vitro resulted in a 41 kDa band, indicating that the precursor form found in sec61 mutant cells corresponds to the carbohydrate-free form of the enzyme. sec 18 mutant cells, blocked in the delivery of secretory proteins from the endoplasmic reticulum to the Golgi body accumulate a form with a molecular mass of 76 kDa which probably corresponds to a partially glycosylated precursor of the mature acid trehalase. This precursor partially disappears in favour of the appearance of a higher molecular weight component of 180 kDa in sec7 mutants which are blocked in the delivery step of secretory proteins from the Golgi body to the vacuole. In wild-type cells the fully glycosylated mature form of acid trehalase of about 220 kDa was observed accompanied by some 180 kDa and 76 kDa material.  相似文献   

13.
《The Journal of cell biology》1989,109(6):2653-2664
Yeast sec62 mutant cells are defective in the translocation of several secretory precursor proteins into the lumen of the endoplasmic reticulum (Rothblatt et al., 1989). The deficiency, which is most restrictive for alpha-factor precursor (pp alpha F) and preprocarboxypeptidase Y, has been reproduced in vitro. Membranes isolated from mutant cells display low and labile translocation activity with pp alpha F translated in a wild-type cytosol fraction. The defect is unique to the membrane fraction because cytosol from mutant cells supports translocation into membranes from wild-type yeast. Invertase assembly is only partly affected by the sec62 mutation in vivo and is nearly normal with mutant membranes in vitro. A potential membrane location for the SEC62 gene product is supported by evaluation of the molecular clone. DNA sequence analysis reveals a 32- kD protein with no obvious NH2-terminal signal sequence but with two domains of sufficient length and hydrophobicity to span a lipid bilayer. Sec62p is predicted to display significant NH2- and COOH- terminal hydrophilic domains on the cytoplasmic surface of the ER membrane. The last 30 amino acids of the COOH terminus may form an alpha-helix with 14 lysine and arginine residues arranged uniformly about the helix. This domain may allow Sec62p to interact with other proteins of the putative translocation complex.  相似文献   

14.
The effect of pH and temperature on the apparent association equilibrium constant (Ka) for the binding of the bovine basic pancreatic trypsin inhibitor (BPTI, Kunitz inhibitor) to the 33,000 Mr and 54,000 Mr species of human urokinase (EC 3.4.21.31) has been investigated. Under all the experimental conditions, values of Ka for BPTI binding to the 33,000 Mr and 54,000 Mr species of human urokinase are identical. On lowering the pH from 9.5 to 4.5, values of Ka (at 21.0 degrees C) for BPTI binding to human urokinase (33,000 Mr and 54,000 Mr species) decrease thus reflecting the acidic pK-shift of the His-57 catalytic residue from 6.9, in the free enzyme, to 5.1, in the proteinase:inhibitor complex. At pH 8.0, values of the apparent thermodynamic parameters for BPTI binding to human urokinase (33,000 Mr and 54,000 Mr species) are: Ka = 4.9 x 10(4) M-1, delta G degree = -6.3 kcal/mol, and delta S degree = -37 entropy units (all at 21.0 degrees C); and delta H degree = +4.6 kcal/mol (temperature independent over the explored range, from 5.0 degrees C to 45.0 degrees C). Thermodynamics of BPTI binding to human urokinase (33,000 Mr and 54,000 Mr species) have been analyzed in parallel with those of related serine (pro)enzyme Kazal- and /Kunitz-type inhibitor systems. Considering the known molecular models, the observed binding behaviour of BPTI to human urokinase (33,000 Mr and 54,000 Mr species) was related to the inferred stereochemistry of the proteinase/inhibitor contact region.  相似文献   

15.
In Dictyostelium discoideum, the lysosomal enzyme alpha-mannosidase is first synthesized as an N-glycosylated precursor of Mr 140,000. After a 20-30-min lag period, up to 30% of the precursor molecules are rapidly secreted, whereas the rest remain cellular and are proteolytically processed (t 1/2 = 8 min) to mature subunits of Mr 58,000 and 60,000. The secreted precursor is modified more extensively than the cellular form, as is revealed by differences in size, charge, and sensitivity to endoglycosidase H. Subcellular fractionation has shown that, following synthesis in the rough endoplasmic reticulum, the precursor is transported to a low density membrane fraction that contains Golgi membranes. Proteolytic processing takes place in these vesicles, since newly cleaved mature enzyme, but no precursor, co-fractionates with lysosomes. Under conditions that disrupt vesicular membranes, the precursor remains associated with the membrane fraction, whereas the newly processed mature enzyme is soluble. Proteolytic cleavage of the precursor thus coincides with the release of the mature enzyme into the lumen of a lysosomal compartment. These findings suggest a possible mechanism for lysosomal targeting that involves the specific association of enzyme precursors with Golgi membranes.  相似文献   

16.
We have investigated the vacuolar delivery of alpha-mannosidase, a marker enzyme of the vacuolar membrane in the yeast Saccharomyces cerevisiae, and found that the enzyme has several unique characteristics in its biosynthesis and vacuolar delivery. alpha-Mannosidase has no typical signal sequence (Yoshihisa, T., and Anraku, Y. (1989) Biochem. Biophys. Res. Commun. 163, 908-915) but is located on the inner surface of the vacuolar membrane. The enzyme is synthesized as a 107-kDa polypeptide and converted to a 73-kDa polypeptide. Although the conversion depends on a vacuolar processing protease, proteinase A, it is much slower (t1/2 = 10 h) than the proteinase A-dependent processing of other vacuolar proteins. None of Asn-X-Thr/Ser sites on the 107-kDa alpha-mannosidase or on two alpha-mannosidase-invertase fusion proteins that are localized inside the vacuole receives N-linked oligosaccharide, whereas those sites on a carboxypeptidase Y-alpha-mannosidase fusion protein are N-glycosylated. The newly synthesized alpha-mannosidase is normally delivered to the vacuole and converted to the 73-kDa polypeptide even when the secretory pathway is blocked by a subset of sec mutations. These characteristics are different from those of other vacuolar proteins targeted to the vacuole via the secretory pathway. We conclude that alpha-mannosidase is delivered to the vacuole in a novel pathway separate from the secretory pathway.  相似文献   

17.
18.
A potential mucus precursor in Tetrahymena wild type and mutant cells.   总被引:1,自引:0,他引:1  
By using an antibody to a specific mucus polypeptide (34 kDa) to study whole cell extracts of both a secretory mutant (SB281) and wild type (wt) Tetrahymena, we demonstrate that a 57-kDa polypeptide is a probable precursor to the 34-kDa secretory polypeptide. We postulate that the precursor accumulates in the mutant cells because it cannot be cleaved. This mutant contains no recognizable mature secretory granules (mucocysts). By immunoelectron microscopy, the 34-kDa polypeptide was localized in wt cells specifically to the mature mucocysts and to their released products. Localization in mutant cells occurred in two different types of cytoplasmic vesicles: small electron dense vesicles (0.3-0.5 microns in diameter) and large electron lucent vacuoles (1.2-3.5 microns in diameter). Immunoblot analyses of homogenates of mutant and wt cells with the anti-34-kDa serum revealed a dominant band in the mutant at Mr 57 kDa whereas the wt showed a dominant band only at Mr 34 kDa. Furthermore, the 57-kDa polypeptide is immunoprecipitated with anti-34-kDa serum from the mutant cell. Further evidence for a precursor relation of the 57-kDa polypeptide in mutant cells to the 34-kDa mucus polypeptide of wt cells was obtained by the use of drugs (monensin, chloroquine, NH4Cl) that block secretory product processing in wt cells. Extracts of drug-treated wt cells showed the presence of a 57-kDa cross reacting band even after 18 h of incubation in growth medium whereas untreated control cells contained the 34-kDa mature protein almost exclusively. These results indicate that processing of the precursor to the 34-kDa polypeptide occurs in an acidic compartment(s) possibly in either the trans Golgi network, or condensing vacuoles or both.  相似文献   

19.
《The Journal of cell biology》1990,111(6):2871-2884
Toward a detailed understanding of protein sorting in the late secretory pathway, we have reconstituted intercompartmental transfer and proteolytic maturation of a yeast vacuolar protease, carboxypeptidase Y (CPY). This in vitro reconstitution uses permeabilized yeast spheroplasts that are first radiolabeled in vivo under conditions that kinetically trap ER and Golgi apparatus-modified precursor forms of CPY (p1 and p2, respectively). After incubation at 25 degrees C, up to 45% of the p2CPY that is retained in the perforated cells can be proteolytically converted to mature CPY (mCPY). This maturation is specific for p2CPY, requires exogenously added ATP, an ATP regeneration system, and is stimulated by cytosolic protein extracts. The p2CPY processing shows a 5-min lag period and is then linear for 15-60 min, with a sharp temperature optimum of 25-30 degrees C. After hypotonic extraction, the compartments that contain p2 and mCPY show different osmotic stability characteristics as p2 and mCPY can be separated with centrifugation into a pellet and supernatant, respectively. Like CPY maturation in vivo, the observed in vitro reaction is dependent on the PEP4 gene product, proteinase A, which is the principle processing enzyme. After incubation with ATP and cytosol, mCPY was recovered in a vacuole-enriched fraction from perforated spheroplasts using Ficoll step-gradient centrifugation. The p2CPY precursor was not recovered in this fraction indicating that intercompartmental transport to the vacuole takes place. In addition, intracompartmental processing of p2CPY with autoactivated, prevacuolar zymogen pools of proteinase A cannot account for this reconstitution. Stimulation of in vitro processing with energy and cytosol took place efficiently when the expression of PEP4, under control of the GAL1 promoter, was induced then completely repressed before radiolabeling spheroplasts. Finally, reconstitution of p2CPY maturation was not possible with vps mutant perforated cells suggesting that VPS gene product function is necessary for intercompartmental transport to the vacuole in vitro.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号