首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Bending and flexibility of kinetoplast DNA   总被引:10,自引:0,他引:10  
S D Levene  H M Wu  D M Crothers 《Biochemistry》1986,25(14):3988-3995
We have evaluated the extent of bending at an anomalous locus in DNA restriction fragments from the kinetoplast body of Leishmania tarentolae using transient electric dichroism to measure the rate of rotational diffusion of DNA fragments in solution. We compare the rate of rotational diffusion of two fragments identical in sequence except for circular permutation, which places the bend near the center in one case and near one end of the molecule in the other. Hydrodynamic theory was used to conclude that the observed 20% difference in rotational relaxation times is a consequence of an overall average bending angle of 84 +/- 6 degrees between the end segments of the fragment that contains the bending locus near its center. If it is assumed that bending results from structural dislocations at the junctions between oligo(dA).oligo(dT) tracts and adjacent segments of B DNA, a bend angle of 9 +/- 0.5 degrees at each junction is required to explain the observations. The extent of bending is little affected by ionic conditions and is weakly dependent on temperature. Comparison of one of the anomalous fragments with an electrophoretically normal control fragment leads to the conclusion that they differ measurably in apparent stiffness, consistent with a significantly increased persistence length or contour length in the kinetoplast fragments.  相似文献   

3.
4.
The HMG domains of the chromosomal high mobility group proteins homologous to the vertebrate HMG1 and HMG2 proteins preferentially recognize distorted DNA structures. DNA binding also induces a substantial bend. Using fluorescence resonance energy transfer (FRET), we have determined the changes in the end-to-end distance consequent on the binding of selected insect counterparts of HMG1 to two DNA fragments, one of 18 bp containing a single dA(2) bulge and a second of 27 bp with two dA(2) bulges. The observed changes are consistent with overall bend angles for the complex of the single HMG domain with one bulge and of two domains with two bulges of approximately 90-100 degrees and approximately 180-200 degrees, respectively. The former value contrasts with an inferred value of 150 degrees reported by Heyduk et al. (1) for the bend induced by a single domain. We also observe that the induced bend angle is unaffected by the presence of the C-terminal acidic region. The DNA bend of approximately 95 degrees observed in the HMG domain complexes is similar in magnitude to that induced by the TATA-binding protein (80 degrees), each monomeric unit of the integration host factor (80 degrees), and the LEF-1 HMG domain (107 degrees). We suggest this value may represent a steric limitation on the extent of DNA bending induced by a single DNA-binding motif.  相似文献   

5.
6.
7.
Cpf1 protein induced bending of yeast centromere DNA element I.   总被引:8,自引:2,他引:6       下载免费PDF全文
The centromere complex is a multicomponent structure essential for faithful chromosome transmission. Here we show that the S. cerevisiae centromere protein Cpf1 bends centromere DNA element I (CDEI) with the bend angle ranging from 66 degrees to 71 degrees. CDEI DNA sequences that carry point mutations which lead to reduced Cpf1 binding affinity and in vivo centromere activity are still able to show bending. The Cpf1 induced bend is directed towards the major groove with the bend centre located in CDEI. An intrinsic bend cannot replace the Cpf1 induced DNA bend for in vivo centromere function. An in vivo phasing experiment suggests that both the distance and the correct spatial arrangement of the CDEI/Cpf1 complex to CDEII and CDEIII are important for optimal centromere function.  相似文献   

8.
Atomic force microscopy (AFM) has been used to image a 471-bp bent DNA restriction fragment derived from the M13 origin of replication in plasmid LITMUS 28, and a 476-bp normal, unbent fragment from plasmid pUC19. The most probable angle of curvature of the 471-bp DNA fragment is 40-50 degrees, in reasonably good agreement with the bend angle determined by transient electric birefringence, 38 degrees +/- 7 degrees. The normal 476-bp DNA fragment exhibited a Gaussian distribution of bend angles centered at 0 degrees, indicating that this fragment does not contain an intrinsic bend. The persistence length, P, was estimated to be 60 +/- 8 and 62 +/- 8 nm for the 471- and 476-bp fragments, respectively, from the observed mean-square end-to-end distances in the AFM images. Since the P-values of the normal and bent fragments are close to each other, the overall flexibility of DNA fragments of this size is only marginally affected by the presence of a stable bend. The close agreement of AFM and transient electric birefringence results validates the suitability of both methods for characterizing DNA bending and flexibility.  相似文献   

9.
10.
The rotational variant method of Lutter et al. was developed to measure the bend angle induced when a protein binds to DNA. To measure the intrinsic bend conferred by a sequence of six adenine bases (an A6 tract), the method was modified by relaxing at high temperature to remove the bend. We describe here an alternative approach that involves unwinding the duplex DNA between adjacent bends in plasmids containing tandemly repeated blocks of A-tracts. This method measures the topological difference contributed by adjacent bends when they are in two different rotational settings, and therefore does not require reference to a straight state. The interbend DNA was unwound by use of the intercalator chloroquine, or, alternatively, by raising the temperature in the relaxation reaction. The effect of this unwinding is to change the pitch of the superhelix of the tandem repeats from which the bend angle is measured. The result is a bend angle value that is consistent with that measured using the bend-straightening version of the method. This version offers several advantages that complement the conventional bent versus straight approach.  相似文献   

11.
12.
13.
14.
Sequences of four to six adenine residues, termed A-tracts, have been shown to produce curvature in the DNA double helix. A-tracts have been used extensively as reference standards to quantify bending induced by other sequences as well as by DNA binding proteins when they bind to their sites. However, the ability of an A-tract to serve as such a standard is hampered by the wide variation of values reported for the amount of bend conferred by an A-tract. One experimental condition that differs in these studies is the presence of divalent cation. To evaluate this effect, a new application of a topological method, termed rotational variant analysis, is used here to measure for the first time the effect of the presence of magnesium ion on the bend angle conferred by an A-tract. This method, which has the unique ability to measure a bend angle in the presence or absence of magnesium ion, demonstrates that magnesium ion markedly increases the bend angle. For example, when measured in a commonly used gel electrophoretic buffer, the bend angle conferred by a tract of six adenine residues increases from about 7 degrees in the absence of magnesium ion to 19 degrees in the presence of 3.9 mM magnesium ion. This quantitative demonstration of substantial magnesium ion dependence has several important implications. First, it explains discrepancies among bend values reported in various previous studies, particularly those employing gel electrophoretic versus other solution methods. In addition, these findings necessitate substantial revisions of the conclusions in a large number of studies that have used A-tract DNA as the bend angle reference standard in comparison measurements. Finally, any such future studies employing this comparison methodology will need to use the same sequence analyzed in the original measurements as well as replicate the original measurement conditions (e.g. ionic composition and temperature).  相似文献   

15.
The mechanism by which sequence non-specific DNA-binding proteins enhance DNA flexibility is studied by examining complexes of double-stranded DNA with the high mobility group type B proteins HMGB2 (Box A) and HMGB1 (Box A+B) using atomic force microscopy. DNA end-to-end distances and local DNA bend angle distributions are analyzed for protein complexes deposited on a mica surface. For HMGB2 (Box A) binding we find a mean induced DNA bend angle of 78°, with a standard error of 1.3° and a SD of 23°, while HMGB1 (Box A+B) binding gives a mean bend angle of 67°, with a standard error of 1.3° and a SD of 21°. These results are consistent with analysis of the observed global persistence length changes derived from end-to-end distance measurements, and with results of DNA-stretching experiments. The moderately broad distributions of bend angles induced by both proteins are inconsistent with either a static kink model, or a purely flexible hinge model for DNA distortion by protein binding. Therefore, the mechanism by which HMGB proteins enhance the flexibility of DNA must differ from that of the Escherichia coli HU protein, which in previous studies showed a flat angle distribution consistent with a flexible hinge model.  相似文献   

16.
The HMG-box domain of the human male sex-determining factor SRY, hSRY(HMG) (comprising residues 57-140 of the full-length sequence), binds DNA sequence-specifically in the minor groove, resulting in substantial DNA bending. The majority of point mutations resulting in 46X,Y sex reversal are located within this domain. One clinical de novo mutation, M64I in the full-length hSRY sequence, which corresponds to M9I in the present hSRY(HMG) construct, acts principally by reducing the extent of DNA bending. To elucidate the structural consequences of the M9I mutation, we have solved the 3D solution structures of wild-type and M9I hSRY(HMG) complexed to a DNA 14mer by NMR, including the use of residual dipolar couplings to derive long-range orientational information. We show that the average bend angle (derived from an ensemble of 400 simulated annealing structures for each complex) is reduced by approximately 13 degrees from 54(+/-2) degrees in the wild-type complex to 41(+/-2) degrees in the M9I complex. The difference in DNA bending can be localized directly to changes in roll and tilt angles in the ApA base-pair step involved in interactions with residue 9 and partial intercalation of Ile13. The larger bend angle in the wild-type complex arises as a direct consequence of steric repulsion of the sugar of the second adenine by the bulky S(delta) atom of Met9, whose position is fixed by a hydrogen bond with the guanidino group of Arg17. In the M9I mutant, this hydrogen bond can no longer occur, and the less bulky C(gamma)m methyl group of Ile9 braces the sugar moieties of the two adenine residues, thereby decreasing the roll and tilt angles at the ApA step by approximately 8 degrees and approximately 5 degrees, respectively, and resulting in an overall difference in bend angle of approximately 13 degrees between the two complexes. To our knowledge, this is one of the first examples where the effects of a clinical mutation involving a protein-DNA complex have been visualized at the atomic level.  相似文献   

17.
Jezewska MJ  Galletto R  Bujalowski W 《Biochemistry》2003,42(40):11864-11878
The tertiary structure of template-primer and gapped DNA substrates in the complex with rat polymerase beta (pol beta) has been examined using the fluorescence energy transfer method based on the multiple donor-acceptor approach. In these studies, we used DNA substrates labeled at the 5' end of the template strand and the 5' end of the primer with the fluorescent donor and/or acceptor. Measurements of the enzyme complex with the template-primer DNA substrate having a ten nucleotide long ssDNA extension indicate that the distance between the 5' end of the template strand and the 5' end of the primer decreases by approximately 9.8 A as compared to the free nucleic acid. Analogous experiments with the template-primer substrate, having the ssDNA extension with five nucleotide residues, show approximately 6.6 A distance decrease. Such large distance decreases indicate that the DNA is significantly bent in the binding site. Analysis of the data indicates that the bending occurs between the third and the fourth nucleotide of the ssDNA extension. The entire template strand is at the bend angle Theta(TP) = 85 +/- 7 degrees with respect to the dsDNA part of the DNA molecule. In the polymerase complex with the gapped DNA, the distance between the 5' ends of the DNA and the bend angle are 66 +/- 2.2 A and 65 +/- 6 degrees, respectively. These values are very similar to the same distance and bend angle of the gap complex in the crystal structure of the co-complex. The presence of the 5'-terminal PO(4)(-) group downstream from the primer does not affect the tertiary conformation of the gapped DNA, indicating that the effect of the phosphate group is localized at the ssDNA gap.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号