首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have studied the lipid composition of brain (optic and cerebral lobes), stellate ganglia and fin nerves of the squid. Cholesterol, phosphatidylethanolamine and phosphatidylcholine were the major lipids in these nervous tissues. Phosphatidylethanolamine contained about 3% of its amount in [corrected] plasmalogen form. Phosphatidylserine and -inositol, sphingomyelin and ceramide 2-aminoethylphosphonate were also present in significant amounts. In addition, cardiolipin and free fatty acids were detected in brain (each 2-3% of total lipids) and stellate ganglia (about 1% each), but not in fin nerves. Phosphatidylethanolamine, phosphatidylserine and phosphatidylinositol from brain contained large amounts of polyunsaturated fatty acids, namely 20:4, 20:5 and 22:6 in the n-3 family. On the other hand, phosphatidylcholine, cardiolipin, and sphingomyelin, and ceramide 2-aminoethylphosphonate contained only saturated or monounsaturated C16-C18 fatty acids. The aldehyde moieties of ethanolamine plasmalogen were also C16-C18 saturated or monounsaturated. These lipid compositions are compared with those in other invertebrate nervous systems.  相似文献   

2.
As a further appraisal of lipoprotein interconversion and equilibration of lipid components a detailed examination was made of the chemical class and molecular species interrelationships among the major fasting plasma lipoprotein fractions within each of six male Type III and Type IV hyperlipemic subjects subsisting on free choice diets. The lipoprotein fractions were prepared by conventional ultracentrifugation and the lipid class and molecular species composition of the corresponding lipoprotein fractions were determined by gas chromatography of the intact glycerol esters and ceramides. In general, each lipoprotein fraction possessed a well defined lipid class composition, which was characterized by a dramatically decreasing triacylglycerol and increasing phospholipid and cholesteryl ester content, when progressing from the very low (VLDL) to the low (LDL) and high (HDL) density lipoproteins, as already established for normolipemic subjects. Likewise, the LDL, and LDL2 of the hyperlipemic subjects contained about two times higher proportion of total phospholipid as sphingomyelin than VLDL and HDL. Furthermore, the sphingomyelins of the HDL fraction contained about 30% more of the higher and 30% less of the lower molecular weight species than the sphingomyelins of the VLDL. Smaller differences were seen in the molecular species composition of the phosphatidylcholines, cholesteryl esters and triacylglycerols among the corresponding lipoproteins. In comparison to normolipemic subjects analyzed previously, the hyperlipemic subjects showed greater individual variability. Despite this variability the lipid class and molecular species composition in the hyperlipemic subjects was again incompatible with the hypothesis which postulates direct VLDL conversion into LDL and HDL under the influence of lipoprotein lipase and lecithin: cholesterol acyltransferase. The main differences between normolipemic and hyperlipemic plasma were found to reside in the number of the VLDL and LDL, lipoprotein particles and not in their chemical composition or physical structure, or in the apparent mechanism of their metabolic interconversion.  相似文献   

3.
Abstract: White matter and active plaque tissue from adrenoleukodystrophy (ALD) patients were analysed for lipid class and fatty acid compositions and the results compared with white matter from normal brain. ALD white matter was characterized by increased levels of cholesteryl esters and decreased levels of phosphatidylethanola- mine, including phosphatidylethanolamine plasmalogen, in comparison with normal brain white matter. In addition to even higher levels of cholesteryl esters, ALD plaque tissue had reduced levels of cerebrosides as well as phosphati-dylethanolamines. The loss of phosphatidylethanolamine plasmalogen is indicative of early demyelination. Total lipid from ALD white matter and ALD plaque tissue contained nearly five times and seven times, respectively, more 26:0 than total lipid from normal brain white matter. The 26:0 in ALD white matter was elevated in all lipid classes except phosphatidylinositol, but was located mainly in cerebrosides, phosphatidylcholine, sphingomyelin, and sulfatides. Most of the 26:0 in ALD plaque tissue was present in cholesteryl esters, followed by phosphatidylcholine and sphingomyelin, with reduced amounts in cerebrosides as compared with ALD white matter. The results are consistent with an initial accumulation of very-long-chain fatty acids in ALD white matter, primarily in sphingolipids and phosphatidylcholine, and subsequent accumulation of very-long- chain fatty acids in cholesteryl esters during demyelination. In addition, it was notable that the sphingolipids, especially sphingomyelin in ALD brain, had decreased levels of 24:1 and increased levels of 18:0, as well as increased levels of very-long-chain fatty acids. The extent to which the data shed light on mechanisms of demyelination in ALD is discussed.  相似文献   

4.
The role of high density lipoprotein (HDL) phospholipid in scavenger receptor BI (SR-BI)-mediated free cholesterol flux was examined by manipulating HDL(3) phosphatidylcholine and sphingomyelin content. Both phosphatidylcholine and sphingomyelin enrichment of HDL enhanced the net efflux of cholesterol from SR-BI-expressing COS-7 cells but by two different mechanisms. Phosphatidylcholine enrichment of HDL increased efflux, whereas sphingomyelin enrichment decreased influx of HDL cholesterol. Although similar trends were observed in control (vector-transfected) COS-7 cells, SR-BI overexpression amplified the effects of phosphatidylcholine and sphingomyelin enrichment of HDL 25- and 2.8-fold, respectively. By using both phosphatidylcholine-enriched and phospholipase A(2)-treated HDL to obtain HDL with a graded phosphatidylcholine content, we showed that SR-BI-mediated cholesterol efflux was highly correlated (r(2) = 0.985) with HDL phosphatidylcholine content. The effects of varying HDL phospholipid composition on SR-BI-mediated free cholesterol flux were not correlated with changes in either the K(d) or B(max) values for high affinity binding to SR-BI. We conclude that SR-BI-mediated free cholesterol flux is highly sensitive to HDL phospholipid composition. Thus, factors that regulate cellular SR-BI expression and the local modification of HDL phospholipid composition will have a large impact on reverse cholesterol transport.  相似文献   

5.
Glycerophospholipid and sphingolipid species and their bioactive metabolites are important regulators of lipoprotein and cell function. The aim of the study was to develop a method for lipid species profiling of separated lipoprotein classes. Human serum lipoproteins VLDL, LDL, and HDL of 21 healthy fasting blood donors were separated by fast performance liquid chromatography (FPLC) from 50 microl serum. Subsequently, phosphatidylcholine (PC), lysophosphatidylcholine, sphingomyelin (SM), ceramide (CER), phosphatidylethanolamine (PE), PE-based plasmalogen (PE-pl), cholesterol, and cholesteryl ester (CE) content of the separated lipoproteins was quantified by electrospray ionization tandem mass spectrometry (ESI-MS/MS). Analysis of FPLC fractions with PAGE demonstrated that albumin partially coelutes with HDL fractions. However, analysis of an HDL deficient serum (Tangier disease) showed that only lysophosphatidylcholine, but none of the other lipids analyzed, exhibited a significant coelution with the albumin containing fractions. Approximately 60% of lipoprotein CER were found in LDL fractions and 60% of PC, PE, and plasmalogens in HDL fractions. VLDL, LDL, and HDL displayed characteristic lipid class and species pattern. The developed method provides a detailed lipid class and species composition of lipoprotein fractions and may serve as a valuable tool to identify alterations of lipoprotein lipid species profiles in disease with a reasonable experimental effort.  相似文献   

6.
This report details the lipid composition of nascent HDL (nHDL) particles formed by the action of the ATP binding cassette transporter A1 (ABCA1) on apolipoprotein A-I (apoA-I). nHDL particles of different size (average diameters of ~ 12, 10, 7.5, and <6 nm) and composition were purified by size-exclusion chromatography. Electron microscopy suggested that the nHDL were mostly spheroidal. The proportions of the principal nHDL lipids, free cholesterol, glycerophosphocholine, and sphingomyelin were similar to that of lipid rafts, suggesting that the lipid originated from a raft-like region of the cell. Smaller amounts of glucosylceramides, cholesteryl esters, and other glycerophospholipid classes were also present. The largest particles, ~ 12 nm and 10 nm diameter, contained ~ 43% free cholesterol, 2-3% cholesteryl ester, and three apoA-I molecules. Using chemical cross-linking chemistry combined with mass spectrometry, we found that three molecules of apoA-I in the ~ 9-14 nm nHDL adopted a belt-like conformation. The smaller (7.5 nm diameter) spheroidal nHDL particles carried 30% free cholesterol and two molecules of apoA-I in a twisted, antiparallel, double-belt conformation. Overall, these new data offer fresh insights into the biogenesis and structural constraints involved in forming nascent HDL from ABCA1.  相似文献   

7.
Lipid classes and their fatty acids were compared in plasma from four mammals: a laboratory rodent, the mouse; two domestic animals, the cat and dog; and a wild animal, the South American armadillo, Chaetophractus villosus. In all, the most abundant lipoprotein was high-density lipoprotein (HDL). In the total lipid of plasma, phospholipids (PL) predominated in all four species, in correlation with the proportion of HDL, both being largest in dogs. The major PL was phosphatidylcholine (PC), followed by sphingomyelin (SM) and lysophosphatidylcholine. The total plasma lipid from the four species contained long-chain n-6 polyunsaturated fatty acids as the predominant acyl groups, followed by comparable proportions of total saturated and monoenoic fatty acids and small percentages of n-3 PUFA. The percentages of these four major groups of fatty acids in PC, SM, triacylglycerols and cholesterol esters were similar among species, but showed significant differences in the ratios between major individual fatty acids composing these groups.  相似文献   

8.
Lipids of chicken epidermis   总被引:1,自引:0,他引:1  
The lipids from chicken epidermis were analyzed by a combination of quantitative thin-layer and gas-liquid chromatography and by chemical and spectroscopic methods. The lipid groups present included wax diesters (34%), triglycerides (32%), sterols (11%), phospholipids (11%), nonphosphorus-containing sphingolipids (3%), beta-D-glucosylsterols (3%), 6-O-acyl-beta-D-glucosylsterols (2%), steryl esters (1%), cholesteryl sulfate (1%), and free fatty acids (1%). The major phospholipids were phosphatidylcholine, phosphatidylethanolamine, and sphingomyelin, and the sphingolipids included ceramides, glucosylceramides, O-acylceramides, and O-acylglucosylceramides. Glucosylsterols and acylglucosylsterols have not been found in mammalian skin, and may be relevant to the evolutionary history of the epidermal water barrier. The wax diesters contained mainly 16-, 18-, and 20-carbon saturated fatty acids esterified to 20- through 24-carbon threo and erythro 2,3-diols, while the chicken epidermal triglycerides contained some very long-chain (26-40 carbon) saturated fatty acids. These wax diesters and unusual triglycerides may be of significance in human health.  相似文献   

9.
The interaction of a purified human plasma lipid transfer complex with cholesteryl ester, triacylglycerol and phosphatidylcholine in binary and ternary lipid monolayers was investigated. The lipid transfer complex, designated LTC, catalyzes the removal of cholesteryl oleate and triacylglycerol from phosphatidylcholine monolayers. Preincubation of LTC with p-chloromercuriphenyl sulfonate inhibits LTC-catalyzed removal of triacylglycerol; cholesteryl ester removal is not affected. The rate of LTC-facilitated removal of cholesteryl oleate from a phosphatidylcholine monolayer depends on the amount of LTC added to the subphase up to 100 μg protein. In addition, the rate of the LTC-catalyzed transfer of cholesteryl oleate to the subphase increases linearly as the amount of cholesteryl oleate in the monolayer increases to 6 mol%. LTC also removes cholesterol from phosphatidylcholine-cholesterol monolayers, albeit at a rate which is 15% of that for removal of cholesteryl oleate. The ability of LTC to facilitate triacylglycerol and cholesteryl ester removal depends on the composition of the monolayer. Phosphatidylcholine supports cholesteryl ester transfer whereas sphingomyelin-cholesteryl ester monolayers are almost refractory to LTC. In contrast, LTC removes triacylglycerol from either a phosphatidylcholine or a sphingomyelin monolayer. The results suggest the existence of at least two lipid transfer proteins, one of which catalyzes the removal of cholesteryl ester and the other triacylglycerol. The role of these proteins as they relate to lipoprotein metabolism is discussed.  相似文献   

10.
ObjectiveOxidised low density lipoprotein (oxLDL) contributes to atherosclerosis, whereas high density lipoprotein (HDL) is known to be atheroprotective due, at least in part, to its ability to remove oxidised lipids from oxLDL. The molecular details of the lipid transfer process are not fully understood. We aimed to identify major oxidised lipid species of oxLDL and investigate their transfer upon co-incubation with HDL with varying levels of oxidation.Approach and resultsA total of 14 major species of oxidised phosphatidylcholine and oxidised cholesteryl ester from oxLDL were identified using an untargeted mass spectrometry approach. HDL obtained from pooled plasma of normolipidemic subjects (N = 5) was oxidised under mild and heavy oxidative conditions. Non-oxidised (native) HDL and oxidised HDL were co-incubated with oxLDL, re-isolated and lipidomic analysis was performed. Lipoprotein surface lipids, oxidised phosphatidylcholines and oxidised cholesterols (7-ketocholesterol and 7β-hydroxycholesterol), but not internal oxidised cholesteryl esters, were effectively transferred to native HDL. Saturated and monounsaturated lyso-phosphatidylcholines were also transferred from the oxLDL to native HDL. These processes were attenuated when HDL was oxidised under mild and heavy oxidative conditions. The impaired capacities were accompanied by an increase in a ratio of sphingomyelin to phosphatidylcholine and a reduction in phosphatidylserine content in oxidised HDL, both of which are potentially important regulators of the oxidised lipid transfer capacity of HDL.ConclusionsOur study has revealed the differential transfer efficiency of surface and internal oxidised lipids from oxLDL and their acceptance onto HDL. These capacities were modulated when HDL was itself oxidised.  相似文献   

11.
A study was undertaken to determine the relative association of lipid and apolipoproteins among lipoproteins produced during lipolysis of very low density lipoproteins (VLDL) in perfused rat heart. Human VLDL was perfused through beating rat hearts along with various combinations of albumin (0.5%), HDL2, the infranatant of d greater than 1.08 g/ml of serum, and labeled sucrose. The products were resolved by gel filtration, ultracentrifugation, and hydroxylapatite chromatography. The composition of the lipoprotein products was assessed by analysis of total lipid profiles by gas-liquid chromatography and immunoassay of apolipoproteins. A vesicle particle, which trapped and retained 1-2% of medium sucrose, co-isolated with VLDL and VLDL remnants by gel filtration chromatography but primarily with the low density lipoprotein (LDL) fraction when isolated by ultracentrifugation. The vesicle was resolved from apoB-containing LDL lipolysis products by hydroxylapatite chromatography of the lipoproteins. The vesicle lipoprotein contained unesterified cholesterol (34%), phosphatidylcholine and sphingomyelin (50%), cholesteryl ester (6%), triacylglycerol (5%), and apolipoprotein (5%). The apolipoprotein consisted of apoC-II (7%), apoC-III (93%), and trace amounts of apoE (1%). When viewed by electron microscopy the vesicles appeared as rouleaux structures with a diameter of 453 A, and a periodicity of 51.7 A. The mass represented by the vesicle particle in terms of the initial amount in VLDL was: cholesterol (5%), phosphatidylcholine and sphingomyelin (3%), apoC-II (0.5%), apoC-III (2.2%). The majority of the apoC and E released from apoB-containing lipoproteins was associated with neutral-lipid core lipoproteins proteins which possessed size characteristics of HDL. The vesicles were also formed in the presence of HDL and serum and were not disrupted by serum HDL. It is concluded that lipolysis of VLDL in vitro results in the production of VLDL remnants and LDL apoB-containing lipoproteins, as well as HDL-like lipoproteins. A vesicular lipoprotein which has many characteristics of lipoprotein X found in cholestasis, lecithin: cholesterol acyltransferase deficiency, and during Intralipid infusion is also formed. The majority of apolipoprotein C and E released from apoB-containing lipoproteins is associated with the HDL-like lipoprotein. It is suggested that the formation and stability of the vesicle lipoprotein may be related to the high ratio of cholesterol/phospholipid in this particle.  相似文献   

12.
To establish interaction of atherogenic low-density lipoproteins (LDL) with the erythrocyte membrane, the content of lipid components in blood cells and serum LDL was studied in healthy people (donors) and in 12 species of vertebrates (the mammals non-predisposed to atherosclerosis — birds and fish). Lipid composition of blood cells and LDL was also analyzed in patients with pathologies: ischemic heart disease (IHD), bronchial asthma (BA), and chronic obstructive bronchitis (COB), as well as in 2 species of mammals predisposed to atherosclerosis, in whose blood LDL predominated. The content of lipids in the blood cells and LDL of the studied vertebrates has been found to depend on their taxonomy and on the clear trends either for an increase in the cholesterol content and a decrease in the phosphatidylcholine level in patients, particularly with IHD, or for a rise of the ratio of the content of the more saturated sphingomyelin and cholesterol to the less saturated phosphatidylcholine from the lower to the higher organisms, including humans (donors). The highest levels of free cholesterol in blood cells of total cholesterol in LDL, as well as of parameters of ratio of the cholesterol/phosphatidylcholine content have been revealed in patients, especially with IHD, and in the mammals predisposed to atherosclerosis, i.e. in representatives with predominance of blood LDL, in contrast to donors and the mammals resistant to atherosclerosis. The highest parameters of lipid components were determined in blood cells and LDL in patients with IHD. The lipid LDL composition affects directly the composition and ratio of lipids in blood cells.  相似文献   

13.
Hepatic lipase can enhance the delivery of high-density lipoprotein (HDL) cholesterol to cells by a process which does not involve apoprotein catabolism. The incorporation of HDL-free (unesterified) cholesterol, phospholipid, and cholesteryl ester by cells has been compared to establish the mechanism of this delivery process. Human HDL was reconstituted with 3H-free cholesterol and [14C]sphingomyelin, treated with hepatic lipase in the presence of albumin to remove the products of lipolysis, reisolated, and then incubated with cultured rat hepatoma cells. Relative to control HDL, modification of HDL with hepatic lipase stimulated both the amount of HDL-free cholesterol taken up by the cell and the esterification of HDL-free cholesterol but did not affect the delivery of sphingomyelin. Experiments utilizing HDL reconstituted with 14C-free cholesterol and [3H]cholesteryl oleoyl ether suggest that hepatic lipase enhances the incorporation of HDL-esterified cholesterol. However, the amount of free cholesterol delivered as a result of treatment with hepatic lipase was 4-fold that of esterified cholesterol. On the basis of HDL composition, the cellular incorporation of free cholesterol was about 10 times that which would occur by the uptake and degradation of intact particles. The preferential incorporation of HDL-free cholesterol did not require the presence of lysophosphatidylcholine. To correlate the events observed at the cellular level with alterations in lipoprotein structure, high-resolution, proton-decoupled 13C nuclear magnetic resonance spectroscopy (90.55 MHz) was performed on HDL3 in which the cholesterol molecules were replaced with [4-13C]cholesterol by particle reconstitution.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
Lipid composition of homogenate and neuronal and glial nuclei of the brain cortex of Wistar rats was studied under normal conditions and after seizures induced by injection of picrotoxin. Seizures increased contents of lysophosphatidylcholine, sphingomyelin, and total phospholipids in the homogenate. In neuronal nuclei contents of total phospholipids, sphingomyelin, phosphatidylcholine, and phosphatidylserine decreased, and contents of free fatty acids and lysophosphatidylcholine increased. In glial nuclei content of total phospholipids decreased and content of free fatty acids increased. The role of changes in the lipid composition of the neocortex cells during seizures and the involvement of lipid messengers in signal mechanisms are discussed.  相似文献   

15.
The present study was undertaken to analyze whether the changes induced by dietary manipulations in the chemical composition of HDL, particularly in total phospholipids, phosphatidylcholine and sphingomyelin fatty acid composition, modified their fluidity. 12 healthy women, aged 26-49 years were studied. They consumed, over periods of 5 weeks, various isocaloric diets, each containing 30% of the calories as fat. 15.6% of the total calories were provided successively by olive oil, soybean oil, corn oil, and milk fats. The HDL fluorescence anisotropy was measured with 1,6-diphenyl-1,3,5-hexatriene (DPH) by fluorescence polarization. The HDL from the monounsaturated diet, olive oil, were the most fluid particles. The HDL fluorescence anisotropy was positively correlated with their free cholesterol percentage and negatively correlated with their triacylglycerol content and their triacylglycerol/phospholipid ratio. Moreover, the HDL fluorescence anisotropy was negatively correlated with the percentage of oleic acid in their total phospholipids and particularly in the phosphatidylcholine. These results suggest that the percentages of triacylglycerol and oleic acid in phospholipids of HDL have a fluidifying effect on these lipoproteins.  相似文献   

16.
Infection and inflammation induce the acute-phase response (APR), leading to multiple alterations in lipid and lipoprotein metabolism. Plasma triglyceride levels increase from increased VLDL secretion as a result of adipose tissue lipolysis, increased de novo hepatic fatty acid synthesis, and suppression of fatty acid oxidation. With more severe infection, VLDL clearance decreases secondary to decreased lipoprotein lipase and apolipoprotein E in VLDL. In rodents, hypercholesterolemia occurs attributable to increased hepatic cholesterol synthesis and decreased LDL clearance, conversion of cholesterol to bile acids, and secretion of cholesterol into the bile. Marked alterations in proteins important in HDL metabolism lead to decreased reverse cholesterol transport and increased cholesterol delivery to immune cells. Oxidation of LDL and VLDL increases, whereas HDL becomes a proinflammatory molecule. Lipoproteins become enriched in ceramide, glucosylceramide, and sphingomyelin, enhancing uptake by macrophages. Thus, many of the changes in lipoproteins are proatherogenic. The molecular mechanisms underlying the decrease in many of the proteins during the APR involve coordinated decreases in several nuclear hormone receptors, including peroxisome proliferator-activated receptor, liver X receptor, farnesoid X receptor, and retinoid X receptor. APR-induced alterations initially protect the host from the harmful effects of bacteria, viruses, and parasites. However, if prolonged, these changes in the structure and function of lipoproteins will contribute to atherogenesis.  相似文献   

17.
In a previous study we demonstrated that highly purified lipid-transfer protein facilitated the transfer of triglyceride, cholesteryl ester, and phosphatidylcholine between plasma lipoproteins. It remained unclear, however, whether these lipids were transferred by independent sites on the lipid-transfer protein. To address this point, we have studied the protein-mediated transfer of triglyceride, cholesteryl ester, and phosphatidylcholine as a function of the concentration and lipid composition of donor and acceptor lipoproteins. Lipoproteins labeled in vitro, reconstituted lipoproteins of defined lipid composition, and phosphatidylcholine liposomes with or without triglyceride and/or cholesteryl ester have been used to investigate the inter-relationships of lipids transferred by the lipid-transfer protein. In studies of initial (less than or equal to 10-13%) transfer, we found that, although absolute transfer rates were affected, the ratio of cholesteryl ester to triglyceride transferred was independent of donor and acceptor lipoprotein concentrations and acceptor lipoprotein lipid composition. With reconstituted lipoproteins as donor, we demonstrated that this ratio was linearly related to the ratio of cholesteryl ester to triglyceride in the donor particle; the sum of triglyceride and cholesteryl ester transferred remained constant and independent of the lipid composition of the donor. Experiments with intact lipoproteins labeled in vitro and with small unilamellar vesicles in the presence and absence of p-chloromercuriphenylsulfonate, confirmed the interdependence of triglyceride and cholesteryl ester transfer. In contrast, under all assay conditions, no correlation was found between the amount of phosphatidylcholine transferred and the transfer of triglyceride and/or cholesteryl ester. We conclude that triglyceride and cholesteryl ester compete for transfer and that the extent of transfer for each lipid is determined by its relative concentration in the donor particle, whereas phosphatidylcholine transfer is independent of triglyceride and cholesteryl ester transfer. The data also strongly support the conclusion that lipid transfer protein promotes both the exchange and net transfer of triglyceride and cholesteryl ester and that the net transfer process proceeds by a reciprocal exchange of triglyceride and cholesteryl ester without net transfer of core lipid between lipoproteins.  相似文献   

18.
The initial plasma acceptor of unesterified cholesterol and phospholipids from peripheral cells has been identified as pre-beta migrating, lipid-free, or lipid-poor apolipoprotein (apo) A-I (pre-beta apoA-I). Pre-beta apoA-I is formed when plasma factors, such as cholesteryl ester transfer protein (CETP), remodel high-density lipoproteins (HDL). The aim of this study is to determine how phospholipids influence pre-beta apoA-I formation during the CETP-mediated remodeling of HDL. Reconstituted HDL (rHDL) containing either 1-palmitoyl-2-oleoyl phosphatidylcholine (POPC), 1-palmitoyl-2-linoleoyl phosphatidylcholine (PLPC), 1-palmitoyl-2-arachidonyl phosphatidylcholine (PAPC), or 1-palmitoyl-2-docosahexanoyl phosphatidylcholine (PDPC) as the only phospholipid were prepared. The rHDL were comparable in size and core lipid/protein molar ratio and contained only cholesteryl esters in their core and apoA-I as the sole apolipoprotein. The (POPC)rHDL, (PLPC)rHDL, (PAPC)rHDL, and (PDPC)rHDL were respectively incubated for 0-24 h with CETP and microemulsions containing triolein and either POPC, PLPC, PAPC, or PDPC. The rate at which the rHDL were depleted of core lipids and remodeled to small particles varied widely with (POPC)rHDL < (PLPC)rHDL < (PDPC)rHDL approximately (PAPC)rHDL. Pre-beta apoA-I was not formed in the (POPC)rHDL incubations. Pre-beta apoA-I was apparent by 24 h in the (PLPC)rHDL incubations and by 12 h in the (PAPC)rHDL and (PDPC)rHDL incubations. The enhanced formation of pre-beta apoA-I in the (PAPC)rHDL and (PDPC)rHDL incubations reflected the increased core lipid depletion of the particles combined with the destabilization and progressive exclusion of apoA-I from the particle surface. In conclusion, these results show that phospholipids play a key role in the CETP-mediated remodeling of rHDL and pre-beta apoA-I formation.  相似文献   

19.
Mice bearing the Ehrlich ascites tumor were fed diets rich in either coconut oil or sunflower oil. From 20 to 40% less lipid was present in the ascites tumor fluid when the mice were fed the sunflower oil diet. This was associated with a reduction in the amount of very low density lipoproteins (VLDL) and high density lipoproteins (HDL), the main lipoprotein fractions present in the ascites tumor fluid. The VLDL from the mice fed sunflower oil contained more cholesteryl esters and a lower free to esterified cholesterol ratio than those from the mice fed coconut oil. Very little change occurred in the composition of the HDL. All of the lipids contained in both lipoprotein fractions exhibited appreciable differences in fatty acid composition. Much more monoenoic and less polyenoic fatty acid were present in the lipids from the mice fed the coconut oil diet, but no appreciable change in saturated fatty acid content occurred. Similar changes in fatty acid composition were observed in the blood plasma of the tumor-bearing mice. There was no qualitative difference in the apolipoprotein patterns of either the ascites fluid VLDL or HDL. Pyrene fluorescence studies indicated that the fluidity of the VLDL was increased when the mice were fed the sunflower oil diets. No difference in HDL fluidity, however, was observed by this technique. These results indicate that the amount, composition, and physical properties of certain of the lipoproteins contained in the ascites tumor fluid can be modified by changing the composition of the dietary fat fed to mice bearing the Ehrlich ascites tumor.  相似文献   

20.
To investigate interaction of atherogenic low-density lipoproteins (LDL) with erythrocytic membrane, the content of lipid components in blood cells and serum LDL was studied in human in norm (donors) and in 12 species of vertebrates (the mammals non-predisposed to atherosclerosis - birds and fish). Lipid composition of blood cells and LDL was analyzed also in patients with pathologies: ischemic heart disease (IHD), bronchial asthma (BA), and chronic obstructive bronchitis (COB), and in 2 species of mammals predisposed to atherosclerosis, in whose blood LDL predominates. The content of lipids in cells and LDL of the studied vertebrates has been found to depend on their taxonomy and the clear trends both to an increase of the cholesterol content and to a decrease if the phosphatidylcholine level in patients, particu- larly with IHD, and on a rise of the ratio of the content of the more saturated sphingomyelin and cholesterol to the less saturated phosphatidylcholine from the lower to the higher organisms, including humans (donors). The highest levels of free cholesterol in blood cells, of total cholesterol in LDL, and of ration of the cholesterol/phosphatidylcholine content have been revealed in patients, especially with 1HB, and in the mammals predisposed to atherosclerosis, i. e., in representatives with predominance of blood LDL, unlike donors and the mammals resistant to atherosclerosis. The highest parameters of lipid components were determined in cells and LDL inhuman with IHD. The lipid LDL composition affects directly the composition and ratio of lipids in blood cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号