首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Bacterial flagella, the organelles of motility, are commonly divided into two classes: 'plain' and 'complex'. The complex filaments are pairwise, helically perturbed forms of the plain filaments and have been reported to occur only in Rhizobium and Pseudomonas. Previously, we reconstructed and analysed the structure of the complex filaments of Rhizobium lupini H13-3 and determined their unique symmetry and origin of the perturbations (Trachtenberg et al., 1986, J Mol Biol 190: 569-576; 1987, 195: 603-620; 1998, 276: 759-773; Cohen-Krausz and Trachtenberg, 1998, J Struct Biol 122: 267-282). Here, we analyse the structure of the flagellar filament of the other known complex filament, that of Pseudomonas rhodos, as reconstructed from electron microscope images. Compared with the filament of R. lupini, the filament of P. rhodos is more flexible, as implied from high-intensity darkfield light microscopy and, although constructed from flagellins of higher molecular weights (59 versus 41 kDa), has similar symmetry. Using cryonegative stained specimens and low-dose, field emission electron microscopy, we reconstructed and averaged 158 filaments each containing 170 statistically significant layer lines. The three-dimensional density maps of P. rhodos clearly suggest, when compared with those of R. lupini and the right-handed Salmonella typhimurium SJW1655, that R. lupini is missing the outer flagellin domain (D3), that the interior of the complex filament is rather similar to that of the plain filament and that the radial spokes (connecting domains D0 and D1), present in individual density maps, average out because of their variability and implied flexibility. Extending the three-start grooves and ridges on the propeller's surface, in the form of an Archimedean screw, may further improve the motility of the cell in viscous environments.  相似文献   

2.
Structure of complex flagellar filaments in Rhizobium meliloti   总被引:11,自引:8,他引:3       下载免费PDF全文
The complex flagella of Rhizobium meliloti 2011 and MVII-1 were analyzed with regard to serology, fine structure, subunits, and amino acid composition. The serological identities of flagellar filaments of the two strains were demonstrated by double immunodiffusion with antiflagellin antiserum. The filaments had a diameter of 16 nm. Their morphology was dominated by the prominent undulations of an external three-start helix running at a 10-nm axial distance and at an angle of 32 degrees. Faint nearly axial striations indicated the presence of a tubular core of a different helical order. The complex filaments consisted of 40,000-dalton flagellin monomers. Typically, the amino acid composition was 3 to 4% higher in nonpolar residues and 5 to 7% lower in aspartic and glutamic acids (and their amides) than that of plain flagellar proteins. There were no immunochemical relationships among Pseudomonas rhodos, Rhizobium lupini, and R. meliloti complex flagella, suggesting that the latter represent a new class.  相似文献   

3.
Electron micrographs of negatively stained preparations were used to obtain a three-dimensional reconstruction of the complex flagellar filament of Rhizobium lupini H13-3. The complex filament has an organization similar to that of the more common plain filament, but the subunits are perturbed in a pairwise fashion to generate a very distinctive set of three continuous ridges of density along the outer surface of the filament. In the three-dimensional map, the design of the complex filament is similar to that of the plain filament described in the accompanying paper. The structures consist of 11 segmented rods of density lying at a radius of 65 to 70 A. The exterior surfaces of both kinds of filaments consist of features that protrude from the segmented rods. The interiors of both consist of arms that extend inwards from the rods. In the case of the complex filament, but not of the plain filament, the inner arms interact to generate three tubular features, which, together with the three outer ridges, may account for the more brittle and, by implication, stiffer nature of the complex filament.  相似文献   

4.
We determined and correlated the rigidity of Salmonella typhimurium, Escherichia coli, and Rhizobium lupini flagellar filaments representing various structural and polymorphic states (plain, complex, straight, superhelical, and right- and left-handed). Persistence length, from which the filament's rigidity and other parameters (Young's modulus, bending force constant, buckling persistence length, flexural deformation, and flexural time) were derived, was determined from electron micrographs of isolated, negatively stained filaments. Outer diameters and radii of strong intersubunit connectivity were determined from three-dimensional image reconstructions and radial mass density profiles from scanning transmission electron microscopy. All filaments appear to be highly rigid with no evident correlation with their helical sense or superhelicity. The complex filament of R. lupini is rigid to the extent that it becomes brittle. The overall flexibility of the flagellum seems to stem mainly from the hook and not from the filament. Polymorphism is probably related to the propelling properties and hydrodynamic shape of the filament rather than to its rigidity.  相似文献   

5.
Flagellar filaments are highly conserved structures in terms of the underlying symmetry of the polymer, subunit domain organization of the flagellin monomer, amino acid composition and primary sequence at the N and C termini. Traditionally, filaments are classified as “plain” or “complex.” In complex filaments, the helical lattice is perturbed in a pairwise manner such that the symmetry is reduced along the 6-start helical lines. Both plain (unperturbed) and complex (helically perturbed) components are helically symmetric and share a common lattice. The perturbation inRhizobium lupiniH13–3 results in a subunit composed of a dimer of flagellin. We have generated a ≈13 Å resolution three-dimensional density map of the complex filament ofR. lupiniH13–3 from low-dose images of negatively stained filaments. Compared to a previous map, which extended to only ≈25 Å resolution and which was generated from only five filaments containing six layer-lines each, the current map is a product of merging 139 data sets containing 66 layer-lines each. The higher resolution and improved signal-to-noise yield a detailed and interpretable density map. The density map is divided into four concentric rings. These amount to two dense cylinders interconnected by low density radial spokes and wrapped by a three-start external winding. The unperturbed component of the map is strikingly similar to the known plain filament maps and, in particular, to that ofCaulobacter crescentus. The helically perturbed component contributes mainly to the filaments's exterior (domain D3) where it comprises the tips of the outer domains interconnecting, pairwise, along the 11-start protofilaments and, again, laterally along the 6-start lines forming vertical and horizontal loops. Strong intersubunit connectivity occurs in the D2 shell and in the inner shell which is dominated by 3-start densities. The contribution of the complex component to the radial spokes seems negligible.  相似文献   

6.
Although plain and complex bacterial flagellar filaments differ in their physical properties and helical symmetry, they both appear to derive from a common underlying structure. Analysis of electron micrographs of complex filaments of Rhizobium lupini revealed that the unit cell has twice the length of that of plain filaments, with a corresponding reduction in helical symmetry whereby the six-start helical family present in plain filaments collapses into a three-start family. Mass per unit length measurements were made by scanning transmission electron microscopy. These, together with the unit cell dimensions and the molecular weight of the flagellin monomer, enabled the number of monomers per unit cell to be estimated. Whereas plain filaments have a single monomer per unit cell, complex filaments have two. These results suggest that complex filament structure differs from plain filament structure by a pairwise perturbation, or interaction, of the flagellin monomers. The additional bonding interactions involved in the perturbation in the complex filament may make it more rigid than the plain filament, which has no such perturbation.  相似文献   

7.
Scharf B 《Journal of bacteriology》2002,184(21):5979-5986
The soil bacterium Rhizobium lupini H13-3 has complex right-handed flagellar filaments with unusual ridged, grooved surfaces. Clockwise (CW) rotation propels the cells forward, and course changes (tumbling) result from changes in filament speed instead of the more common change in direction of rotation. In view of these novelties, fluorescence labeling was used to analyze the behavior of single flagellar filaments during swimming and tumbling, leading to a model for directional changes in R. lupini. Also, flagellar filaments were investigated for helical conformational changes, which have not been previously shown for complex filaments. During full-speed CW rotation, the flagellar filaments form a propulsive bundle that pushes the cell on a straight path. Tumbling is caused by asynchronous deceleration and stops of individual filaments, resulting in dissociation of the propulsive bundle. R. lupini tumbles were not accompanied by helical conformational changes as are tumbles in other organisms including enteric bacteria. However, when pH was experimentally changed, four different polymorphic forms were observed. At a physiological pH of 7, normal flagellar helices were characterized by a pitch angle of 30 degrees, a pitch of 1.36 micro m, and a helical diameter of 0.50 micro m. As pH increased from 9 to 11, the helices transformed from normal to semicoiled to straight. As pH decreased from 5 to 3, the helices transformed from normal to curly to straight. Transient conformational changes were also noted at high viscosity, suggesting that the R. lupini flagellar filament may adapt to high loads in viscous environments (soil) by assuming hydrodynamically favorable conformations.  相似文献   

8.
Cells of Pseudomonas rhodos 9-6 produce two morphologically distinct flagella termed plain and complex, respectively. Fine structure analyses by electron microscopy and optical diffraction showed that plain flagellar filaments are cylinders of 13-nm diameter composed of globular subunits like normal bacterial flagella. The structure comprises nine large-scale helical rows of subunits intersecting four small-scale helices of pitch angle 25 degrees . Complex filaments have a conspicuous helical sheath, 18-nm wide, of three close-fitting helical bands, each about 4.7-nm wide, separated by axial intervals, 4.7 nm wide, running at an angle of 27 degrees . The internal core has similar but not identical substructure to plain filaments. Unlike plain flagella, the complex species is fragile and does not aggregate in bundles. Mutants bearing only one of two types of flagellum were isolated. Cells with plain flagella showed normal translational motion, and cells with complex flagella showed rapid spinning. Isolated plain flagella consist of a 37,000-dalton subunit separable into two isoproteins. Complex filaments consist of a 55,000-dalton protein; a second 43,000-dalton protein was assigned to complex flagellar hooks. The results indicate that plain and complex flagella are entirely different in structure and composition and that the complex type represents a novel flagellar species. Its possible mode of action is discussed.  相似文献   

9.
The flagellar filament, the bacterial organelle of motility, is the smallest rotary propeller known. It consists of 1), a basal body (part of which is the proton driven rotary motor), 2), a hook (universal joint-allowing for off-axial transmission of rotary motion), and 3), a filament (propeller-a long, rigid, supercoiled helical assembly allowing for the conversion of rotary motion into linear thrust). Helically perturbed (so-called "complex") filaments have a coarse surface composed of deep grooves and ridges following the three-start helical lines. These surface structures, reminiscent of a turbine or Archimedean screw, originate from symmetry reduction along the six-start helical lines due to dimerization of the flagellin monomers from which the filament self assembles. Using high-resolution electron microscopy and helical image reconstruction methods, we calculated three-dimensional density maps of the complex filament of Rhizobium lupini H13-3 and determined its surface pattern and boundaries. The helical symmetry of the filament allows viewing it as a stack of identical slices spaced axially and rotated by constant increments. Here we use the closed outlines of these slices to explore, in two dimensions, the hydrodynamic effect of the turbine-like boundaries of the flagellar filament. In particular, we try to determine if, and under what conditions, transitions from laminar to turbulent flow (or perturbations of the laminar flow) may occur on or near the surface of the bacterial propeller. To address these questions, we apply the boundary element method in a manner allowing the handling of convoluted boundaries. We tested the method on several simple, well-characterized cylindrical structures before applying it to real, highly convoluted biological surfaces and to simplified mechanical analogs. Our results indicate that under extreme structural and functional conditions, and at low Reynolds numbers, a deviation from laminar flow might occur on the flagellar surface. These transitions, and the conditions enabling them, may affect flagellar polymorphism and the formation and dispersion of flagellar bundles-factors important in the chemotactic response.  相似文献   

10.
We obtained a three-dimensional reconstruction of the flagellar filament of Caulobacter crescentus CB15 from electron micrographs of negatively stained preparations. The C. crescentus filament appears, both in negative stain and in the frozen-hydrated state, significantly smoother and narrower than other filaments. Its helical symmetry, and unit cell size, however, are similar to that of other filaments. Although the molecular weight of the C. crescentus flagellin is about half that of other plain flagellins, there is only one monomer per unit cell as indicated by diffraction studies and by linear mass density measurements with the scanning transmission electron microscope. Alignment of the primary amino acid sequences of Salmonella typhimurium (serotype i) and C. crescentus (29,000 Mr) flagellins shows that whereas there is homology at the amino and carboxyterminal ends of the two sequences, the central segment of the S. typhimurium sequence has no homology to that of C. crescentus. A correlated comparison between the three-dimensional reconstructions of the two filaments and primary amino acid sequences of the two flagellins suggests that: (1) the C. crescentus subunit is missing the outer molecular domain but is, otherwise, similar to that of S. typhimurium; (2) the outer molecular domain in S. typhimurium corresponds, therefore, to a central stretch of the primary amino acid sequence; and (3) the outer molecular domain, missing in C. crescentus, is not obligatory for flagellar motility.  相似文献   

11.
The proximal hooks of plain and complex flagella produced by a strain of Pseudomonas rhodos have been analyzed by electron microscopy and optical diffraction and filtering. Plain flagellar hooks are cone-shaped, 70 nm long, and 13 to 21.5 nm wide, and consist of helically arranged subunits. Complex flagellar hooks are cylinders, 180 to 190 nm long, and 15 to 16 nm wide, and are composed of globular subunits. The structure comprises four small-scale helical rows of subunits intersecting bewteen 10 and 11 large-scale helices of pitch angle 80 degrees. The axial and lateral dimensions of the unit cell, which define the surface lattice, are 4.9 and 4.7 nm, respectively. In addition, a core structure, approximately 5 nm wide, has been demonstrated inside the hook cylinder. Complex flagellar hooks were isolated and purified by gradient centrifugation after acid degradation of the attached filaments. Isolated hook particles have an average sedimentation constant of 130S and consist of a protein of molecular weight 43,000. A model of the complex flagellar hook is presented, and its possible role in flagellar assembly and rotation is discussed.  相似文献   

12.
1. The complex flagella of Rhizobium lupini H13-3 differ from plain bacterial flagella in the fine structure of their filaments dominated by conspicuous helical bands, in their fragility and their resistance against heat decomposition. To elucidate the basis of these differences, the composition of complex filaments and their subunits was analysed. 2. Isolated complex flagella containing the filament and hook protions were purified by differential centrifugation. Hooks were separated by ultracentrifugation after acid degradation of filaments at pH 2. The complex filaments consist of 43 000 dalton monomers (cx-flagellin), the hooks are composed of 41 000 dalton subunits. 3. Amino acid analysis of cx-flagellin indicated the presence of approx. 417 amino acid residues. These comprise 47% hydrophobic residues and 21% Asp and Glu (or amides), but no Cys, His, Pro and Trp. No carbohydrate, phosphate or lipid moieties have been detected. Fingerprint analysis after tryptic digestion yields approx. 36 peptides, about half of them clustered in the neutral region. A comparison with the composition of varous known flagellins from plain flagella indicates a 7% higher content of hydrophobic amino acid residues in complex filaments; this is largely compensated for by the higher content of Glu and Asp (presumably as Gln and Asn) in plain filaments. 4. Immunodiffusion and immunoelectrophoresis of cx-flagellin yield single precipitin bands indicating homogeneity. In contrast, isoelectric focusing lead to three close-running bands around pH4.7. When isolated, the two major bands again produced an "isoelectric spectrum" suggesting that it reflects an allomorphism of cx-flagellin. 5. Self-assembly experiments with cx-flagellin lead to coiled fibres including helical regions, but not to intact filaments. The products resemble heat-denatured complex filaments and may represent intermediates between monomers and complete polymers.  相似文献   

13.
Electron micrographs of frozen-hydrated preparations of flagellar filaments of Salmonella typhimurium were used to obtain a three-dimensional reconstruction of the structure. The filaments were obtained from the mutant SJW1660, which produces straight, left-handed filaments. The subunits in this filament are thought to be all in the L-state. The structure consists of a set of 11 longitudinal segmented rods of density that lie at a radius of 70 A. The outermost feature of the filament is a set of knobs of density that project outward from the rods. The interior of the filaments consists of arms that extend inward radially from the segmented rods. The 11 segmented rods and their interconnections are noteworthy because current theories regarding filament structure involve switching of subunits between the L and R states co-operatively along the directions of the rods.  相似文献   

14.
15.
Archaea, constituting a third domain of life between Eubacteria and Eukarya, characteristically inhabit extreme environments. They swim by rotating flagellar filaments that are phenomenologically and functionally similar to those of eubacteria. However, biochemical, genetic and structural evidence has pointed to significant differences but even greater similarity to eubacterial type IV pili. Here we determined the three-dimensional symmetry and structure of the flagellar filament of the acidothermophilic archaeabacterium Sulfolobus shibatae B12 using transmission electron microscopy (TEM) and scanning transmission electron microscopy (STEM). Processing of the cryo-negatively stained filaments included analysis of their helical symmetry and subsequent single particle reconstruction. Two filament subunit packing arrangements were identified: one has helical symmetry, similar to that of the extreme halophile Halobacterium salinarum, with ten subunits per 5.3 nm repeat and the other has helically arranged stacked disks with C3 symmetry and 12 subunits per repeat. The two structures are related by a slight twist. The S. shibatae filament has a larger diameter compared to that of H. salinarum, at the opposite end of the archaeabacterial phylogenetic spectrum, but the basic three-start symmetry and the size and arrangement of the core domain are conserved and the filament lacks a central channel. This similarity suggests a unique and common underlying symmetry for archaeabacterial flagellar filaments.  相似文献   

16.
The supramolocular structure of hemoglobin S has been studied by electron microscopy and computer-based image reconstruction. Negatively stained fibers prepared by the lysis of sickled cells or the stirring of hemoglobin S hemolysates have been observed to be almost exclusively of the 20-nm diameter form. These fibers have a periodic variation in diameter between the extremes of 18 nm and 23 nm. Computed Fourier transforms of the fibers show a, highly complex pattern of reciprocal space maxima, with 30 maxima on 20 layer-lines clearly resolved. The Bessel orders of the maxima were assigned with the aid of a newly developed technique, a combined real-space Fourier-space reconstruction method (REFORM). This method utilizes the filtered image produced by the inverse Fourier transform of the low-resolution maxima to calculate in real space the crosssection of a helical fiber. The REFORM analysis indicated that the fibers have an elliptical cross-section and are composed of 14 hexagonally packed filaments with 10 outer filaments surrounding four inner filaments. On the basis of this cross-section, the Bessel orders of all the maxima were assigned, permitting the calculation of three-dimensional reconstructions by Fourier Bessel synthesis. From these reconstructions details of the location of hemoglobin S molecules of each filament were obtained. Hemoglobin S molecules are staggered in adjacent filaments to produce a closely packed helical structure. Reconstructions of fibers at various stages of disassembly revealed a stable intermediate containing 10 filaments which could be characterized in terms of the loss of two pairs of specific outer filaments. A partially disassembled fiber with only six filaments at positions corresponding to three inner and three outer filaments of the parent structure was also identified. The six-filament structure appears to be produced from the 10-filament structure by the loss of two specific pairs of filaments. Thus pairs of filaments are evidently significant structural units in the stabilization of the complete fibers and the orientation of the molecules in these pairs may be related to the filament pairs known to occur in crystals of hemoglobin S.  相似文献   

17.
Zusammenfassung Zellen von Rhizobium lupini H 13-3 besitzen 5–10 peritrich inserierte komplexe Geißeln, deren Feinstruktur durch Hochauflösungs-Elektronenmikroskopie und lichtoptische Diffraktion analysiert wurde. Das Geißelfilament hat einen Durchmesser von 160 Å und besteht aus einem zylindrischen Kern (Durchmesser ca. 110 Å), der fest von drei Bändern einer helikalen Scheide umgeben ist. Die Scheidenbänder sind 49 Å breit, durch 49 Å-Intervalle voneinander getrennt und haben eine Steigung von 31°. Die komplexen Geißelfilamente bestehen aus einem 43 000-Dalton-Protein, das den Kern und die helikale Scheide aufbaut. Beide gehen übergangslos aus dem proximalen Geißelhaken hervor, der einen Durchmesser von 150 Å und eine Länge von 600 bis 800 Å hat. Die Diffraktionsanalyse des Geißelhakens zeigte eine helikale Grundanordnung von globulären Untereinheiten, die ein Oberflächengitter von 5 parallelen Schrauben (Steigung 29° bzw. 33°) bilden, von denen jede fast 11 Untereinheiten pro Helixungang trägt. Die komplexen Geißeln von R. lupini H 13-3 und Pseudomonas rhodos [Schmitt et al.: J. Bact. 117, 844–857 (1974)] sind ein neuer Typ von Bakteriengeißeln. Sie zeigen deutliche Übereinstimmung in der Feinstruktur, der festen Verbindung von helikaler Scheide und Geißelhaken sowie in der Fragilität ihrer Filamente; sie unterscheiden sich deutlich im Molekulargewicht der Flagellinmonomeren (43 000 bzw. 55 000). Zellen von R. lupini H 13-3 führen schnelle, vibrierende Translationsbewegungen aus. Mögliche Mechanismen der Bewegung komplexer Geißeln werden diskutiert.
Fine structure analysis of the complex flagella of Rhizobium lupini H 13-3
Cells of Rhizobium lupini H 13-3 possess 5 to 10 peritrichously inserted complex flagella, which were analyzed by high resolution electron microscopy and by optical diffraction. The flagellar filament has a diameter of 160 Å; it consists of a cylindrical core (diameter approximately 110 Å) surrounded by three close-fitting bands of a helical sheath. The helical bands are 49 Å wide, separated by axial intervals, 49 Å wide, and run at an angle of 31°. Complex filaments consist of a 43 000-dalton protein representing the core and the helical sheath. These originate from the proximal hook, which has a diameter of 150 Å and a length of 600 to 800 Å. The diffraction analysis of the hook showed a helical arrangement of globular subunits forming a surface of 5 parallel small-scale helices (pitch-angles 29° and 33°, respectively), each carrying almost 11 subunits per period. The complex flagella of R. lupini H 13-3 and Pseudomonas rhodos [Schmitt, et al.: J. Bact. 117, 844–857 (1974)] represent a novel type of bacterial flagella. There is agreement in their fine structures, in the intimate connection of the helical sheath and the core, and in the fragility of their filaments. Thery are clearly distinguished by the molecular weights of their flagellin monomers (43 000 and 55 000, respectively). Cells of R. lupini H 13-3 show fast, vibrating, translational motions. Possible mechanisms of complex flagellar motion are discussed.
Herrn Professor Wolfram Heumann zum 60. Geburtstag gewidmet.  相似文献   

18.
Using the combined techniques of cryoelectron microscopy and image analysis, we generated three-dimensional reconstructions of flagellar filaments from straight, right-handed (SJW1655-R) and straight, left-handed (SJW1660-L) Salmonella typhimurium mutants, both of which have the same parental strain (SJW1103). In the filaments from SJW1655, all flagellin subunits have the same conformation (R), while in filaments from SJW1660, the subunits are all in the alternate (L) conformation. The difference between the two three-dimensional density maps reveal the structural changes that accompany switching of the flagellin subunits between the two conformations. In going from the R to L state, the subunit undergoes a rotation 30 degrees clockwise about a radial axis and 38 degrees clockwise about a vertical axis, and suffers a 50 degrees bend of the outer, relative to the inner, subunit domain. The intersubunit spacing, along the 11-start protofilaments, changes from 51.6 A in the right-handed filament to 52.1 A in the left-handed filament. In order to produce the correct corkscrew shape in native filaments, the change in contacts that produces this shortening of 0.5 A must occur among the inner domains at a radius of about 30 A. We suggest that the changes in the middle domains of the subunit are the switch that forces changes in the inner domains.  相似文献   

19.
Three-dimensional (3-D) helical reconstructions computed from electron micrographs of negatively stained dispersed F-actin filaments invariably revealed two uninterrupted columns of mass forming the "backbone" of the double-helical filament. The contact between neighboring subunits along the thus defined two long-pitch helical strands was spatially conserved and of high mass density, while the intersubunit contact between them was of lower mass density and varied among reconstructions. In contrast, phalloidinstabilized F-actin filaments displayed higher and spatially more conserved mass density between the two long-pitch helical strands, suggesting that this bicyclic hepta-peptide toxin strengthens the intersubunit contact between the two strands. Consistent with this distinct intersubunit bonding pattern, the two long-pitch helical strands of unstabilized filaments were sometimes observed separated from each other over a distance of two to six subunits, suggesting that the intrastrand intersubunit contact is also physically stronger than the interstrand contact. The resolution of the filament reconstructions, extending to 2.5 nm axially and radially, enabled us to reproducibly "cut out" the F-actin subunit which measured 5.5 nm axially by 6.0 nm tangentially by 3.2 nm radially. The subunit is distinctly polar with a massive "base" pointing towards the "barbed" end of the filament, and a slender "tip" defining its "pointed" end (i.e., relative to the "arrowhead" pattern revealed after stoichiometric decoration of the filaments with myosin subfragment 1). Concavities running approximately parallel to the filament axis both on the inner and outer face of the subunit define a distinct cleft separating the subunit into two domains of similar size: an inner domain confined to radii less than or equal to 2.5-nm forms the uninterrupted backbone of the two long-pitch helical strands, and an outer domain placed at radii of 2-5-nm protrudes radially and thus predominantly contributes to the outer part of the massive base. Quantitative evaluation of successive crossover spacings along individual F-actin filaments revealed the deviations from the mean repeat to be compensatory, i.e., short crossovers frequently followed long ones and vice versa. The variable crossover spacings and diameter of the F-actin filament together with the local unraveling of the two long-pitch helical strands are explained in terms of varying amounts of compensatory "lateral slipping" of the two strands past each other roughly perpendicular to the filament axis. This intrinsic disorder of the actin filament may enable the actin moiety to play a more active role in actin-myosin-based force generation than merely act as a rigid passive cable as has hitherto been assumed.  相似文献   

20.
Although the phenomenology and mechanics of swimming are very similar in eubacteria and archaeabacteria (e.g. reversible rotation, helical polymorphism of the filament and formation of bundles), the dynamic flagellar filaments seem completely unrelated in terms of morphogenesis, structure and amino acid composition. Archeabacterial flagellar filaments share important features with type IV pili, which are components of retractable linear motors involved in twitching motility and cell adhesion. The archeabacterial filament is unique in: (1) having a relatively smooth surface and a small diameter of approximately 100A as compared to approximately 240A of eubacterial filaments and approximately 50A of type IV pili; (2) being glycosylated and sulfated in a pattern similar to the S-layer; (3) being synthesized as pre-flagellin with a signal-peptide cleavable by membrane peptidases upon transport; and (4) having an N terminus highly hydrophobic and homologous with that of the olygomerization domain of pilin.The synthesis of archeabacterial flagellin monomers as pre-flagellin and their post-translational, extracellular glycosylation suggest a different mode of monomer transport and polymerization at the cell-proximal end of the filament, similar to pili rather than to eubacterial flagellar filaments. The polymerization mode and small diameter may indicate the absence of a central channel in the filament.Using low-electron-dose images of cryo-negative-stained filaments, we determined the unique symmetry of the flagellar filament of the extreme halophile Halobacterium salinarum strain R1M1 and calculated a three-dimensional density map to a resolution of 19A. The map is based on layer-lines of order n=0, +10, -7, +3, -4, +6, and -1. The cross-section of the density map has a triskelion shape and is dominated by seven outer densities clustered into three groups, which are connected by lower-density arms to a dense central core surrounded by a lower-density shell. There is no evidence for a central channel. On the basis of the homology with the oligomerization domain of type IV pilin and the density distribution of the filament map, we propose a structure for the central core.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号