首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到4条相似文献,搜索用时 0 毫秒
1.
Treatment of P-type ATPases (from mammalian sources) by fluorescein isothiocyanate (ITC) revealed the ITC label on a lysine residue that was than considered as essential for binding of ATP in the ATP-binding site of these enzymes. On the other hand, experiments with site directed mutagenesis excluded the presence of an essential lysine residue that would be localized in the ATP binding sites of ATPases. Other previous studies, including those of ourselves, indicated that the primary site of isothiocyanate interaction may be the sulflhydryl group of a cysteine residue and this may be essential for binding of ATP. In addition considerable knowledge accumulated since yet also about the differences in stability of reaction product of isothiocyanates with SH- or NH2- groups. Based upon evaluation of the data available up to now, in present paper the following tentative roles for lysine and cysteine residues located in the ATP-binding site of P-type ATPases are proposed: The positively charged micro-domain of the lysine residue may probably attract the negatively charged phosphate moiety of the ATP molecule whereas the cysteine residue may probably be responsible for recognition and binding of ATP by creation of a proton bridge with the amino group in position 6 on the adenosine ring of ATP.  相似文献   

2.
As clinical academic medical departments strive to improve the quality of their research, clinicians and scientists are forced into closer liaison. In many cases, clinical departments now have research laboratories directed by "basic scientists" but often staffed, in part at least, by doctors. To someone who has not worked in one, these laboratories may seem uncompromising and forbidding work environments. This article presents a "case report" written from the viewpoints of the doctor, the scientist, and the professor.  相似文献   

3.
Confocal and electron microscopy images, and WB analysis of cellular fractions revealed that HP1γ is in the nucleus but also in the cytoplasm of C2C12 myoblasts, myotubes, skeletal and cardiac muscles, N2a, HeLa and HEK293T cells. Signal specificity was tested with different antibodies and by HP1γ knockdown. Leptomycin B treatment of myoblasts increased nuclear HP1γ, suggesting that its nuclear export is Crm-1-dependent. HP1γ exhibited a filamentous pattern of staining partially co-localizing with actin in the cytoplasm of myotubes and myofibrils. Immunoelectron microscopic analysis showed high-density immunogold particles that correspond to HP1γ localized to the Z-disk and A-band of the sarcomere of skeletal muscle. HP1γ partially co-localized with actin in C2C12 myotubes and murine myofibrils. Importantly, actin co-immunoprecipitated with HP1γ in the nuclear and cytosolic fractions of myoblasts. Actin co-immunoprecipitated with HP1γ in myoblasts incubated in the absence or presence of the actin depolymerizing agent cytochalasin D, suggesting that HP1γ may interact with G-and F-actin. In the cytoplasm, HP1γ was associated to the perinuclear actin cap that controls nuclear shape and position. In the nucleus, re-ChIP assays showed that HP1γ-actin associates to the promoter and transcribed regions of the house keeping gene GAPDH, suggesting that HP1γ may function as a scaffold protein for the recruitment of actin to control gene expression. When HP1γ was knocked-down, myoblasts were unable to differentiate or originated thin myotubes. In summary, HP1γ is present in the nucleus and the cytoplasm interacting with actin, a protein complex that may exert different functions depending on its subcellular localization.  相似文献   

4.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号