首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 299 毫秒
1.
Corals exhibit different responses to increasing temperature but it remains unclear whether this is determined exclusively by symbiont type or by intrinsic properties of the host. Here, we investigated the response to elevated temperature of symbionts of the same ITS2 type from three acroporid species from Bolinao, northwestern Philippines. Maximum quantum yield (Fv/Fm) of PSII was measured in symbionts subjected to 26°C (average winter temperature) and 31°C (average summer temperature) for up to 48 hrs. Greater reduction in Fv/Fm was observed for ex hospite than for in hospite symbionts. However, no significant differences in response could be discerned for symbionts associated with or originating from the different acroporids. Thus, while these findings confirm that the coral host can protect in hospite symbionts from temperature perturbations, for the acroporids in this study, there is still no evidence that host type confers differential thermal susceptibility to the symbionts or to the coral holobiont.  相似文献   

2.
Changing light environments force photoautotroph cells, including coral symbionts, to acclimate to maintain photosynthesis. Photosystem II (PSII) is subjected to photoinactivation at a rate proportional to the incident light, and cells must adjust their rates of protein repair to counter this photoinactivation. We examined PSII function in the coral symbiont Symbiodinium to determine the effect of photoacclimation on their capacity for PSII repair. Colonies of the coral Stylophora pistillata were collected from moderate light environments on the Lizard Island reef (Queensland, Australia) and transported to a local field station, where they were assigned to lower or higher light regimes and allowed to acclimate for 2 weeks. Following this photoacclimation period, the low-light acclimated corals showed greater symbiont density, higher chlorophyll per symbiont cell, and higher photosystem II protein than high-light acclimated corals did. Subsequently, we treated the corals with lincomycin, an inhibitor of chloroplastic protein synthesis, and exposed them to a high-light treatment to separate the effect of de novo protein synthesis in PSII repair from intrinsic susceptibility to photoinactivation. Low-light acclimated corals showed a sharp initial drop in PSII function but inhibition of PSII repair provoked only a modest additional drop in PSII function, compared to uninhibited corals. In high-light acclimated corals inhibition of PSII repair provoked a larger drop in PSII function, compared to uninhibited high-light corals. The greater lincomycin effects in the corals pre-acclimated to high-light show that high-light leads to an increased reliance on the PSII repair cycle.  相似文献   

3.
Inhibition of Calvin–Benson cycle (CBC) activity by thermal stress has been hypothesized to cause photoinhibition of photosystem II (PSII) in zooxanthellae of reef-building corals and consequently lead to bleaching. This study tests whether the interruption of CBC by glycolaldehyde (GA) leads to photoinhibition and subsequent coral bleaching in Stylophora pistillata. When S. pistillata was incubated with GA, the O2 evolution rate declined in a dose-dependent manner and the extent of photoinhibition, reflected by a decreased maximum quantum yield of PSII (F v/F m), was enhanced. The effect of GA on photoinhibition was similar to that of chloramphenicol (CAP), an inhibitor of protein synthesis in chloroplasts. When S. pistillata was incubated in weak light following a high-light-induced photoinhibitory treatment, the recovery of PSII from photoinhibition was suppressed in a similar manner to both GA- and CAP-treated samples. After incubation in moderate light at 26°C, S. pistillata showed a bleaching response only in presence of GA. These results suggest that coral bleaching-like responses are caused by interruption of the CBC activity in S. pistillata and are associated with accelerated photoinhibition through suppression of the protein synthesis-dependent repair of PSII but not to an increase in photodamage to PSII.  相似文献   

4.
Increased seawater temperature causes photoinhibition due to accumulation of photodamaged photosystem II (PSII) in symbiotic algae (genus Symbiodinium) within corals, and it is assumed to be associated with coral bleaching. To avoid photoinhibition, photosynthetic organisms repair the photodamaged PSII through replacing the PSII proteins, primarily the D1 protein, with newly synthesised proteins. However, in experiments using cultured Symbiodinium strains, the PSII repair of Symbiodinium has been suggested not to be related to the synthesis of the D1 protein. In this study, we examined the relationship between the recovery of PSII photochemical efficiency (F V/F M) and the content of D1 protein after high-light and high-temperature treatments using the bleaching-sensitive coral species, Pocillopora damicornis and Acropora millepora, and the bleaching-tolerant coral species, Montipora digitata and Pavona decussata. When corals were exposed to strong light (600 µmol photons m?2 s?1) at elevated temperature (32 °C) for 8 h, significant bleaching occurred in bleaching-sensitive coral species although an almost similar extent of reduced PSII function was found across all coral species tested. During a subsequent 15-h recovery under low light (10 µmol photons m?2 s?1) at optimal temperature (22 °C), the reduced F V/F M recovered close to initial levels in all coral species, but the reduced D1 content recovered only in one coral species (Pavona decussata). D1 content was therefore not strongly linked to chloroplast protein synthesis-dependent PSII repair. These results demonstrate that the recovery of photodamaged PSII does not always correspond with the recovery of D1 protein content in Symbiodinium within corals, suggesting that photodamaged PSII can be repaired by a unique mechanism in Symbiodinium within corals.  相似文献   

5.
Diatoms host chlorophyll a/c chloroplasts distinct from green chloroplasts. Diatoms now dominate the eukaryotic oceanic phytoplankton, in part through their exploitation of environments with variable light. We grew marine diatoms across a range of temperatures and then analyzed their PSII function and subunit turnover during an increase in light to mimic an upward mixing event. The small diatom Thalassiosira pseudonana initially responds to increased photoinactivation under blue or white light with rapid acceleration of the photosystem II (PSII) repair cycle. Increased red light provoked only modest PSII photoinactivation but triggered a rapid clearance of a subpool of PsbA. Furthermore, PsbD and PsbB content was greater than PsbA content, indicating a large pool of partly assembled PSII repair cycle intermediates lacking PsbA. The initial replacement rates for PsbD (D2) were, surprisingly, comparable to or higher than those for PsbA (D1), and even the supposedly stable PsbB (CP47) dropped rapidly upon the light shift, showing a novel aspect of rapid protein subunit turnover in the PSII repair cycle in small diatoms. Under sustained high light, T. pseudonana induces sustained nonphotochemical quenching, which correlates with stabilization of PSII function and the PsbA pool. The larger diatom Coscinodiscus radiatus showed generally similar responses but had a smaller allocation of PSII complexes relative to total protein content, with nearly equal stiochiometries of PsbA and PsbD subunits. Fast turnover of multiple PSII subunits, pools of PSII repair cycle intermediates, and photoprotective induction of nonphotochemical quenching are important interacting factors, particularly for small diatoms, to withstand and exploit high, fluctuating light.  相似文献   

6.
Coral species in a similar habitat often show different bleaching susceptibilities. It is not understood which partner of coral-zooxanthellae complexes is responsible for differential stress susceptibility. Stress susceptibilities of in hospite and isolated zooxanthellae from five species of corals collected from shallow water in Okinawa were compared. To estimate stress susceptibility, we measured the maximum quantum yields (Fv/Fm) of in hospite and isolated zooxanthellae after 3-h exposure to either 28 or 34 °C at various light intensities and their recovery after 12 h under dim light at 26 °C. Significant reduction in photochemical efficiency (Fv/Fm) of photosystem II (PSII) was observed in in hospite zooxanthellae exposed to high light intensity (1000 μmol quanta m−2 s−1), while PSII activity of isolated zooxanthellae decreased significantly even at a lower light intensity (70 μmol quanta m−2 s−1). The recovery of the PSII activity after 12 h was incomplete in both in hospite and isolated zooxanthellae, indicating the presence of chronic photoinhibition. The stress susceptibility of isolated zooxanthellae was more variable among species than in hospite zooxanthellae. The order of stress susceptibility among the five coral species was different between in hospite and isolated zooxanthellae. The present results suggest that the host plays a significant role in determining bleaching susceptibility of corals, though zooxanthellae from different host have different stress susceptibilities.  相似文献   

7.
In obligate symbioses, the host’s survival relies on the successful acquisition and maintenance of symbionts. Symbionts can either be transferred from parent to offspring via direct inheritance (vertical transmission) or acquired anew each generation from the environment (horizontal transmission). With vertical symbiont transmission, progeny benefit by not having to search for their obligate symbionts, and, with symbiont inheritance, a mechanism exists for perpetuating advantageous symbionts. But, if the progeny encounter an environment that differs from that of their parent, they may be disadvantaged if the inherited symbionts prove suboptimal. Conversely, while in horizontal symbiont acquisition host survival hinges on an unpredictable symbiont source, an individual host may acquire genetically diverse symbionts well suited to any given environment. In horizontal acquisition, however, a potentially advantageous symbiont will not be transmitted to subsequent generations. Adaptation in obligate symbioses may require mechanisms for both novel symbiont acquisition and symbiont inheritance. Using denaturing-gradient gel electrophoresis and real-time PCR, we identified the dinoflagellate symbionts (genus Symbiodinium) hosted by the Red Sea coral Stylophora pistillata throughout its ontogenesis and over depth. We present evidence that S. pistillata juvenile colonies may utilize both vertical and horizontal symbiont acquisition strategies. By releasing progeny with maternally derived symbionts, that are also capable of subsequent horizontal symbiont acquisition, coral colonies may acquire physiologically advantageous novel symbionts that are then perpetuated via vertical transmission to subsequent generations. With symbiont inheritance, natural selection can act upon the symbiotic variability, providing a mechanism for coral adaptation.  相似文献   

8.
The objective of this study was to test whether elevated pCO2 predicted for the year 2100 (85.1 Pa) affects bleaching in the coral Seriatopora caliendrum (Ehrenberg 1834) either independently or interactively with high temperature (30.5 °C). Response variables detected the sequence of events associated with the onset of bleaching: reduction in the photosynthetic performance of symbionts as measured by maximum photochemical efficiency (F v/F m) and effective photochemical efficiency (ΔF/F m′) of PSII, declines in net photosynthesis (P net) and photosynthetic efficiency (alpha, α), and finally, reduced chlorophyll a and symbiont concentrations. S. caliendrum was collected from Nanwan Bay, Taiwan, and subjected to combinations of temperature (27.7 vs. 30.5 °C) and pCO2 (45.1 vs. 85.1 Pa) for 14 days. High temperature reduced values of all dependent variables (i.e., bleaching occurred), but high pCO2 did not affect Symbiodinium photophysiology or productivity, and did not cause bleaching. These results suggest that short-term exposure to 81.5 Pa pCO2, alone and in combination with elevated temperature, does not cause or affect coral bleaching.  相似文献   

9.
The main cofactors involved in the oxygen evolution activity of Photosystem II (PSII) are located in two proteins, D1 (PsbA) and D2 (PsbD). In Thermosynechococcus elongatus, a thermophilic cyanobacterium, the D1 protein is encoded by either the psbA1 or the psbA3 gene, the expression of which is dependent on environmental conditions. It has been shown that the energetic properties of the PsbA1-PSII and those of the PsbA3-PSII differ significantly (Sugiura, M., Kato, Y., Takahashi, R., Suzuki, H., Watanabe, T., Noguchi, T., Rappaport, F., and Boussac, A. (2010) Biochim. Biophys. Acta 1797, 1491–1499). In this work the structural stability of PSII upon a PsbA1/PsbA3 exchange was investigated. Two deletion mutants lacking another PSII subunit, PsbJ, were constructed in strains expressing either PsbA1 or PsbA3. The PsbJ subunit is a 4-kDa transmembrane polypeptide that is surrounded by D1 (i.e. PsbA1), PsbK, and cytochrome b559 (Cyt b559) in existing three-dimensional models. It is shown that the structural properties of the PsbA3/ΔPsbJ-PSII are not significantly affected. The polypeptide contents, the Cyt b559 properties, and the proportion of PSII dimer were similar to those found for PsbA3-PSII. In contrast, in PsbA1/ΔPsbJ-PSII the stability of the dimer is greatly diminished, the EPR properties of the Cyt b559 likely indicates a decrease in its redox potential, and many other PSII subunits are lacking. These results shows that the 21-amino acid substitutions between PsbA1 and PsbA3, which appear to be mainly conservative, must include side chains that are involved in a network of interactions between PsbA and the other PSII subunits.  相似文献   

10.
Coral bleaching occurs when environmental stress induces breakdown of the coral-algae symbiosis and the host initiates algae expulsion. Two types of coral bleaching had been thoroughly discussed in the scientific literature; the first is primarily associated with mass coral bleaching events; the second is a seasonal loss of algae and/or pigments. Here, we describe a phenomenon that has been witnessed for repeated summers in the mesophotic zone (40–63 m) in the northern Red Sea: seasonal bleaching and recovery of several hermatypic coral species. In this study, we followed the recurring bleaching process of the common coral Stylophora pistillata. Bleaching occurred from April to September with a 66% decline in chlorophyll a concentration, while recovery began in October. Using aquarium and transplantation experiments, we explored environmental factors such as temperature, photon flux density and heterotrophic food availability. Our experiments and observations did not yield one single factor, alone, responsible for the seasonal bleaching. The dinoflagellate symbionts (of the genus Symbiodinium) in shallow (5 m) Stylophora pistillata were found to have a net photosynthetic rate of 56.98–92.19 µmol O2 cm−2 day−1. However, those from mesophotic depth (60 m) during months when they are not bleached are net consumers of oxygen having a net photosynthetic rate between −12.86 - (−10.24) µmol O2 cm−2 day−1. But during months when these mesophotic corals are partially-bleached, they yielded higher net production, between −2.83–0.76 µmol O2 cm−2 day−1. This study opens research questions as to why mesophotic zooxanthellae are more successfully meeting the corals metabolic requirements when Chl a concentration decreases by over 60% during summer and early fall.  相似文献   

11.

Background

Reef corals are heterotrophic coelenterates that achieve high productivity through their photosynthetic dinoflagellate symbionts. Excessive seawater temperature destabilises this symbiosis and causes corals to “bleach,” lowering their photosynthetic capacity. Bleaching poses a serious threat to the persistence of coral reefs on a global scale. Despite expanding research on the causes of bleaching, the mechanisms remain a subject of debate.

Methodology/Principal Findings

This study determined how light and food availability modulate the effects of temperature stress on photosynthesis in two reef coral species. We quantified the activities of Photosystem II, Photosystem I and whole chain electron transport under combinations of normal and stressful growth temperatures, moderate and high light levels and the presence or absence of feeding of the coral hosts. Our results show that PS1 function is comparatively robust against temperature stress in both species, whereas PS2 and whole chain electron transport are susceptible to temperature stress. In the symbiotic dinoflagellates of Stylophora pistillata the contents of chlorophyll and major photosynthetic complexes were primarily affected by food availability. In Turbinaria reniformis growth temperature was the dominant influence on the contents of the photosynthetic complexes. In both species feeding the host significantly protected photosynthetic function from high temperature stress.

Conclusions/Significance

Our findings support the photoinhibition model of coral bleaching and demonstrate that PS1 is not a major site for thermal damage during bleaching events. Feeding mitigates bleaching in two scleractinian corals, so that reef responses to temperature stresses will likely be influenced by the coinciding availabilities of prey for the host.  相似文献   

12.

Background

Coral reefs worldwide are in decline. Much of the mortality can be attributed to coral bleaching (loss of the coral''s intracellular photosynthetic algal symbiont) associated with global warming. How corals will respond to increasing oceanic temperatures has been an area of extensive study and debate. Recovery after a bleaching event is dependent on regaining symbionts, but the source of repopulating symbionts is poorly understood. Possibilities include recovery from the proliferation of endogenous symbionts or recovery by uptake of exogenous stress-tolerant symbionts.

Methodology/Principal Findings

To test one of these possibilities, the ability of corals to acquire exogenous symbionts, bleached colonies of Porites divaricata were exposed to symbiont types not normally found within this coral and symbiont acquisition was monitored. After three weeks exposure to exogenous symbionts, these novel symbionts were detected in some of the recovering corals, providing the first experimental evidence that scleractinian corals are capable of temporarily acquiring symbionts from the water column after bleaching. However, the acquisition was transient, indicating that the new symbioses were unstable. Only those symbiont types present before bleaching were stable upon recovery, demonstrating that recovery was from the resident in situ symbiont populations.

Conclusions/Significance

These findings suggest that some corals do not have the ability to adjust to climate warming by acquiring and maintaining exogenous, more stress-tolerant symbionts. This has serious ramifications for the success of coral reefs and surrounding ecosystems and suggests that unless actions are taken to reverse it, climate change will lead to decreases in biodiversity and a loss of coral reefs.  相似文献   

13.
Growth anomaly (GA) is a commonly observed coral disease that impairs biological functions of the affected tissue. GA is prevalent at Wai ‘ōpae tide pools, southeast Hawai ‘i Island. Here two distinct forms of this disease, Type A and Type B, affect the coral, Montipora capitata . While the effects of GA on biology and ecology of the coral host are beginning to be understood, the impact of this disease on the photophysiology of the dinoflagellate symbiont, Symbiodinium spp., has not been investigated. The GA clearly alters coral tissue structure and skeletal morphology and density. These tissue and skeletal changes are likely to modify not only the light micro-environment of the coral tissue, which has a direct impact on the photosynthetic potential of Symbiodinium spp., but also the physiological interactions within the symbiosis. This study utilized Pulse amplitude modulation fluorometry (PAM) to characterize the photophysiology of healthy and GA-affected M . capitata tissue. Overall, endosymbionts within GA-affected tissue exhibit reduced photochemical efficiency. Values of both Fv/Fm and ΔF/ Fm’ were significantly lower (p<0.01) in GA tissue compared to healthy and unaffected tissues. Tracking the photophysiology of symbionts over a diurnal time period enabled a comparison of symbiont responses to photosynthetically available radiation (PAR) among tissue conditions. Symbionts within GA tissue exhibited the lowest values of ΔF/Fm’ as well as the highest pressure over photosystem II (p<0.01). This study provides evidence that the symbionts within GA-affected tissue are photochemically compromised compared to those residing in healthy tissue.  相似文献   

14.
Dynamic symbioses may critically mediate impacts of climate change on diverse organisms, with repercussions for ecosystem persistence in some cases. On coral reefs, increases in heat-tolerant symbionts after thermal bleaching can reduce coral susceptibility to future stress. However, the relevance of this adaptive response is equivocal owing to conflicting reports of symbiont stability and change. We help reconcile this conflict by showing that change in symbiont community composition (symbiont shuffling) in Orbicella faveolata depends on the disturbance severity and recovery environment. The proportion of heat-tolerant symbionts dramatically increased following severe experimental bleaching, especially in a warmer recovery environment, but tended to decrease if bleaching was less severe. These patterns can be explained by variation in symbiont performance in the changing microenvironments created by differentially bleached host tissues. Furthermore, higher proportions of heat-tolerant symbionts linearly increased bleaching resistance but reduced photochemical efficiency, suggesting that any change in community structure oppositely impacts performance and stress tolerance. Therefore, even minor symbiont shuffling can adaptively benefit corals, although fitness effects of resulting trade-offs are difficult to predict. This work helps elucidate causes and consequences of dynamism in symbiosis, which is critical to predicting responses of multi-partner symbioses such as O. faveolata to environmental change.  相似文献   

15.
The early effects of heat stress on the photosynthesis of symbiotic dinoflagellates (zooxanthellae) within the tissues of a reef-building coral were examined using pulse-amplitude-modulated (PAM) chlorophyll fluorescence and photorespirometry. Exposure of Stylophora pistillata to 33 and 34 °C for 4 h resulted in (1) the development of strong non-photochemical quenching (qN) of the chlorophyll fluorescence signal, (2) marked decreases in photosynthetic oxygen evolution, and (3) decreases in optimal quantum yield (Fv/Fm) of photosystem II (PSII). Quantum yield decreased to a greater extent on the illuminated surfaces of coral branches than on lower (shaded) surfaces, and also when high irradiance intensities were combined with elevated temperature (33 °C as opposed to 28 °C). qN collapsed in heat-stressed samples when quenching analysis was conducted in the absence of oxygen. Collectively, these observations are interpreted as the initiation of photoprotective dissipation of excess absorbed energy as heat (qN) and O2-dependent electron flow through the Mehler-Ascorbate-Peroxidase cycle (MAP-cycle) following the point at which the rate of light-driven electron transport exceeds the capacity of the Calvin cycle. A model for coral bleaching is proposed whereby the primary site of heat damage in S. pistillata is carboxylation within the Calvin cycle, as has been observed during heat damage in higher plants. Damage to PSII and a reduction in Fv/Fm (i.e. photoinhibition) are secondary effects following the overwhelming of photoprotective mechanisms by light. This secondary factor increases the effect of the primary variable, temperature. Potential restrictions of electron flow in heat-stressed zooxanthellae are discussed with respect to Calvin cycle enzymes and the unusual status of the dinoflagellate Rubisco. Significant features of our model are that (1) damage to PSII is not the initial step in the sequence of heat stress in zooxanthellae, and (2) light plays a key secondary role in the initiation of the bleaching phenomena.  相似文献   

16.
Bleaching is a worldwide phenomenon affecting coral reefs. During elevated temperature and light conditions (bleaching), expelled zooxanthellae show distinct patterns in photosynthetic health. An innovative new device was used to collect individual expelled zooxanthellae, when a coral was exposed to bleaching conditions. This has provided new insight into the photosynthetic condition and abundance of expelled zooxanthellae. It has been assumed that expelled zooxanthellae were dead or moribund; however, we have found individual cells can have healthy effective quantum yields (?PSII) >0.65 after 8 h of bleaching conditions (500 μmol photons m−2 s−1, 33 °C). The population of expelled zooxanthellae from Cyphastrea serailia and Pocillopora damicornis showed distinct patterns in the frequency distribution of ?PSII over time and between locations (sun versus shade) within a colony. During the first 4 h of exposure to bleaching conditions, only 5% of expelled individual cells from P. damicornis were photosynthetically inactive (?PSII<0.05), whereas for C. serailia, this was 30%. The overall photosynthetic health of expelled zooxanthellae from C. serailia was better than P. damicornis (0.53±0.13 and 0.38±0.13 after 8 h, respectively). This was generally reflected by the in hospite measurement of the coral, yet, the in hospite cells always had a higher ?PSII than expelled cells, suggesting that host tissue provided added photoprotection for the zooxanthellae.  相似文献   

17.

Introduction

Rising seawater temperatures are threatening the persistence of coral reefs; where above critical thresholds, thermal stress results in a breakdown of the coral-dinoflagellate symbiosis and the loss of algal symbionts (coral bleaching). As symbiont-derived organic products typically form a major portion of host energy budgets, this has major implications for the fitness and persistence of symbiotic corals.

Objectives

We aimed to determine change in autotrophic carbon fate within individual compounds and downstream metabolic pathways in a coral symbiosis exposed to varying degrees of thermal stress and bleaching.

Methods

We applied gas chromatography–mass spectrometry coupled to a stable isotope tracer (13C), to track change in autotrophic carbon fate, in symbiont and host individually, following exposure to elevated water temperature.

Results

Thermal stress resulted in partner-specific changes in carbon fate, which progressed with heat stress duration. We detected modifications to carbohydrate and fatty acid metabolism, lipogenesis, and homeostatic responses to thermal, oxidative and osmotic stress. Despite pronounced photodamage, remaining in hospite symbionts continued to produce organic products de novo and translocate to the coral host. However as bleaching progressed, we observed minimal 13C enrichment of symbiont long-chain fatty acids, also reflected in 13C enrichment of host fatty acid pools.

Conclusion

These data have major implications for our understanding of coral symbiosis function during bleaching. Our findings suggest that during early stage bleaching, remaining symbionts continue to effectively translocate a variety of organic products to the host, however under prolonged thermal stress there is likely a reduction in the quality of these products.
  相似文献   

18.
The response of a number of species to high light levels was examined to determine whether chlorophyll fluorescence from photosystem (PS) II measured at ambient temperature could be used quantitatively to estimate the photon yield of O2 evolution. In many species, the ratio of the yield of the variable (FV) and the maximum chlorophyll fluorescence (FM) determined from leaves at ambient temperature matched that from leaves frozen to 77K when reductions in FV/FM and the photon yield resulted from exposure of leaves to high light levels under favorable temperatures and water status. Under conditions which were less favorable for photosynthesis, FV/FM at ambient temperature often matched the photon yield more closely than FV/FM measured at 77K. Exposure of leaves to high light levels in combination with water stress or chilling stress resulted in much greater reductions in the photon yield than in FV/FM (at both ambient temperature and 77K) measured in darkness, which would be expected if the site of inhibition was beyond PSII. Following chilling stress, FV/FM determined during measurement of the photon yield in the light was depressed to a degree more similar to that of the depression of photon yield, presumably as a result of regulation of PSII in response to greatly reduced electron flow.Abbreviations and Symbols Fo yield of instantaneous fluorescence - FM yield of maximum fluorescence - FV yield of variable fluorescence - PFD photon flux density (400–700 nm) - PSI (II) photosystem I (II) This work was supported by the Deutsche Forschungsgemeinchaft. W.W.A. gratefully acknowledges the support of Fellowships from the North Atlantic Treaty Organization and the Alexander von Humboldt-Stiftung. We also thank Maria Lesch for plant maintenance.  相似文献   

19.
20.
The role of both host and dinoflagellate symbionts was investigated in the response of reef-building corals to thermal stress in the light. Replicate coral nubbins of Stylophora pistillata and Porites cylindrica from the GBR were exposed to either 28 °C (control) or 32 °C for 5 days before being returned to an ambient reef temperature (28 °C). S. pistillata was found to contain either Symbiodinium genotype C1 or C8a, while P. cylindrica had type C15 based on ITS genotyping. Analysis of the quantum yield of photosystem (PS) II fluorescence of the symbionts in P. cylindrica showed that light-induced excitation pressure on the C15 Symbiodinium was significantly less, and the steady state quantum yield of PSII fluorescence at noon (ΔF/Fm′) greater, than that measured in C1/C8a Symbiodinium sp. from S. pistillata. Immunoblots of the PS II D1 protein were significantly lower in Symbiodinium from S. pistillata compared to those in P. cylindrica after exposure to thermal stress. The biochemical markers, heat-stress protein (HSP) 70 and superoxide dismutase (SOD), were significantly greater in P. cylindrica before the experiment, and both species of coral increased their biosynthesis of HSP 70 and SOD when exposed to thermal stress. Concentrations of MAAs, glycerol, and lipids were not significantly affected by thermal stress in these experiments, but DNA damage was greater in heat-stressed S. pistillata compared to P. cylindrica. There was minimal coral mucus, which accounts for up to half of the total energy budget of a coral and provides the first layer of defense for invading microbes, produced by S. pistillata after heat stress compared to P. cylindrica. It is concluded that P. cylindrica contains a heat resistant C15 Symbiodinium and critical host proteins are present at higher concentrations than observed for S. pistillata, the combination of which provides greater protection from bleaching conditions of high temperature in the light.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号