首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
 Current records from three surveys at Bora Bay, Miyako Island, all showed strong unidirectional flows. Ocean water entered the lagoon over the shallower western half of the reef flat and exited the lagoon through a channel on the eastern side. Fourier transform of one of the survey data sets showed that this unidirectional flow is modulated on a cycle with a period half as long as the dominant M2 tidal cycle. The prominent features of the observed time-series current profiles were well reproduced using a numerical simulation that includes a depth dependent formulation of the wind-wave forced cross-reef water flow. The water residence times of the lagoon varied from 1.5 h to 3.7 h when calculated directly from the modeled current field, and from 2.0 h to 9.3 h when calculated as the time required for modeled particles to exit the lagoon. These residence times are surprisingly short and may help to explain how this reef supports high net organic production. Furthermore, the short particle residence times show the importance of analyzing currents on time scales smaller than the dominant tidal cycle to understand the fate of organic material produced in coral reefs. Accepted: 1 March 1998  相似文献   

2.
 Detailed measurements of water levels, and tide and wave-induced currents were undertaken to examine physical processes and their relationship with morphology in the Cocos (Keeling) Islands, a medium sized atoll in the Indian Ocean. Results indicate that the atoll structure controls both lagoon circulation and the spatial pattern of energy distribution. Lagoon circulation is tide dominated (currents 16–31 cms-1) with flushing (2–5 days) of the lagoon occurring through the deep leeward passages. Wave- and tide-driven unidirectional flows through shallow passages (26–65 cms-1) are important mechanisms of ocean to lagoon water exchange and contribute up to 24% of the lagoon neap tide prism. Reef flats are dominated by wave energy (maximum velocity 140 cms-1, east) with measurements of the attenuation of wave energy between reef flats and shallow lagoon (80–90%) conforming to measurements from fringing and barrier reefs. Spectral analysis shows that the characteristics of wave energy vary on different sectors of the atoll, with gravity wave energy dominating the east, and infragravity wave energy dominating the southern reef flat and passages. Wave setup at the reef crest is considered to be responsible for an identified 0.1 m higher water level in the southern as opposed to eastern and northern atoll, which promotes higher reef flat growth. Transmission of gravity waves across reef flats requires threshold water depths of 0.65 (east) and 0.70 m (south). The higher southern reef is an effective filter of gravity wave energy for most tidal elevations. Differences in the type and magnitude of physical processes within the atoll are discussed with relation to geomorphic development on Cocos. Accepted: 28 February 1998  相似文献   

3.
4.
Processes occurring during the early life stages of corals are important for the replenishment of coral assemblages and the resilience of coral reefs. However, the factors influencing early life stages of corals are not well understood, and the role of micro-topographic complexity for habitat associations of juvenile corals is largely unexplored. This study investigated the microhabitat distribution patterns of early life stages of corals and a potential macroalgal competitor (Turbinaria ornata) across two reef zones (reef crest and outer reef flat) on Lizard Island, Great Barrier Reef. In both reef zones, both corals and T. ornata were significantly more abundant in concealed microhabitats than in semi-concealed or open microhabitats (GLMM: P < 0.001). The prevalence of juvenile corals and T. ornata within concealed environments suggests that they might be effective refuges from grazing by herbivorous fishes. The density of juvenile corals was positively related, and density of T. ornata negatively related to the abundance of two groups of herbivorous fishes, pairing rabbitfishes, and surgeonfishes in the genus Zebrasoma (BEST ENV-BIO: r s  = 0.72, P < 0.01), which feed in concealed microhabitats. This correlative evidence suggests that crevices may be important for early life stages of both coral and macroalgae, and that a specific suite of crevice-feeding fishes may influence benthic community dynamics in these microhabitats.  相似文献   

5.
Cuet  P.  Pierret  C.  Cordier  E.  Atkinson  M. J. 《Coral reefs (Online)》2011,30(1):37-43

Phosphate uptake (P-uptake) into coral reef communities has been hypothesized to be mass-transfer limited. One method of demonstrating mass-transfer limitation of P-uptake is to show dependence of P-uptake on water velocity. Water velocity across reef flats varies with tides and swell; thus, we measured P-uptake over the entire reef flat on eight different days, representing a range in water velocities. P-uptake was calculated from changes in P concentration of the water column. Changes in P concentration were measured by water sampling at six sites along a 300-m cross-reef transect while simultaneously measuring water velocity. To smooth the variability in phosphate concentrations, peristaltic pumps were used to get time-integrated water samples for 4–6 h at each site. Water velocities were measured in the middle of the transect using an acoustic Doppler current profiler and were averaged to match the time-integrated water sampling. Depth-averaged cross-reef water velocities were 0.031 ± 0.013 m s−1 (mean ± SD), while the root-mean-square water velocities, accounting for oscillatory flow, averaged 3.3 times higher, 0.101 ± 0.021 m s−1 (mean ± SD). Phosphate decreased along all transects. The first-order rate constant for P-uptake (S) was 8.5 ± 2.4 m d−1 (mean ± SD) and increased linearly with root-mean-square water velocity. The Stanton number derived from oscillatory flow, the ratio of the first-order rate constant for P-uptake to the root-mean-square water velocity (S/U rms), was (9.4 ± 1.2) × 10−4 (mean ± SD). P-uptake ranged from 0.2 to 1.1 mmol P m−2 d−1, demonstrating that P-uptake is variable on short time scales and is directly related to P concentration and water velocity.

  相似文献   

6.
Processes operating in the early life stages of corals are critical in ultimately establishing patterns of adult abundance. Mortality, in particular, is assumed to be very high during the first few months to years post-settlement, but the sources of this mortality are largely unknown. This study quantified early post-settlement survival for Acropora cytherea, spawned and reared in captivity and settled onto terracotta tiles. Replicate tiles were then deployed in the field at Lizard Island, in northern section of the Great Barrier Reef to examine the effects of grazing and sedimentation on survival of corals in two different habitats, the exposed reef crest and sheltered back reef. Overall, survivorship was broadly comparable between habitats, ranging from 37.7 to 64.5 % per month on the exposed reef crest and 53.1–64.3 % on the sheltered back reef. On the reef crest, the exclusion of herbivores increased survivorship by 22.4 %, from 42.1 to 64.5 % per month. Moreover, survivorship within the reef crest was negatively correlated with the density of parrotfish feeding scars on tiles after 4 weeks. In contrast, the exclusion of herbivores had no detectable effect on survivorship within the back reef, and no feeding scars were observed on tiles in this habitat. Difference in grazing-induced mortality between habitats is most likely related to differences in herbivore size and abundance, with parrotfish biomass being 5.5-fold greater on the reef crest than the back reef. Surprisingly, tile orientation had no effect on survivorship of A. cytherea in either habitat, despite a marked difference in the sediment cover on vertical (0 %) versus horizontal tiles (30 %) in the back reef. This is in marked contrast to previous studies that have reported sedimentation is a major cause of early post-settlement mortality in corals. Clearly, processes that cause mortality of newly settled corals, such as grazing and sedimentation, vary spatially.  相似文献   

7.
We examined the importance of picoplankton and virioplankton to reef trophodynamics at Ningaloo Reef, (north-western Australia), in May and November 2008. Picophytoplankton (Prochlorococcus, Synechococcus and picoeukaryotes), bacterioplankton (inclusive of bacteria and Archaea), virioplankton and chlorophyll a (Chl a) were measured at five stations following the consistent wave-driven unidirectional mean flow path of seawater across the reef and into the lagoon. Prochlorococcus, Synechococcus, picoeukaryotes and bacterioplankton were depleted to similar levels (~40% on average) over the fore reef, reef crest and reef flat (=‘active reef’), with negligible uptake occurring over the sandy bottom lagoon. Depletion of virioplankton also occurred but to more variable levels. Highest uptake rates, m, of picoplankton occurred over the reef crest, while uptake coefficients, S (independent of cell concentration), were similarly scaled over the reef zones, indicating no preferential uptake of any one group. Collectively, picophytoplankton, bacterioplankton and virioplankton accounted for the uptake of 29 mmol C m−2 day−1, with Synechococcus contributing the highest proportion of the removed C. Picoplankton and virioplankton accounted for 1–5 mmol N m−2 day−1 of the removed N, with bacterioplankton estimated to be a highly rich source of N. Results indicate the importance of ocean–reef interactions and the dependence of certain reef organisms on picoplanktonic supply for reef-level biogeochemistry processes.  相似文献   

8.
Morphology can contain valuable information about the ecological performance of reef fishes, but it has rarely been used in combination with social traits. Social behavior is known to influence the ecological role of fishes; however, the ecological basis for pairing in reef fishes is not well understood. Field observations of 2,753 individuals, in 47 species in six families of biting reef fishes (Acanthuridae, Chaetodontidae, Kyphosidae, Labridae, Pomacanthidae, Siganidae), were used in combination with six morphological measurements, to examine the morphology of fishes in different social systems. A principal components analysis of morphological traits segregated species with high proportions of pairing individuals from non-pairing species along principal component 1, explaining 40.8 % of the variation. Pairing species were characterized by large eyes, concave foreheads, pointed snouts, deep bodies, and small maximum sizes. There was a significant positive relationship between these morphological traits (i.e., scores on PC1) and the prevalence of pairing within the Chaetodontidae (r 2 = 0.59; P = 0.026), Siganidae (r 2 = 0.72; P = 0.004), and Acanthuridae (r 2 = 0.82; P < 0.001). This was consistent when traits were corrected for phylogenetic effects. No pattern was evident in the scarine Labridae (r 2 = 0.15; P = 0.17). The morphological characteristics found among pairing species suggest that pairing species share common ecological traits, including foraging for small prey items in micro-topographically complex environments such as reef crevices. These ecological traits may have played a role in the evolution of pairing behavior and subsequently led to the development of reproductive patterns based on monogamy.  相似文献   

9.
We studied 344 samples from Well XK-1 in Xisha Islands, South China Sea, and identified 66 species of larger benthic foraminifera, providing critical evidence for biostratigraphy and palaeoenvironmental interpretation of the Miocene reef carbonate sequence. Three assemblages are recognized, namely, Spiroclypeus higginsiBorelis pygmaeus Assemblage (Letter Stage Te5, Early Miocene, 1256.28–1180.15 m), NephrolepidinaMiogypsina Assemblage (Tf, Middle Miocene, 1031.10–577.04 m), and CycloclypeusHeterostegina Assemblage (Tg, Late Miocene, 468.13–380.42 m). On the basis of the palaeoecological preference of the larger foraminifera, we interpret that the Miocene carbonate sequence was deposited mainly in a warm tropical shallow water environment, characterized by five stages of continuous long-term evolution: backreef lagoon to shelf in the Early Miocene, normal to frontal reef in the early Middle Miocene, backreef lagoon to shelf in the later Middle Miocene, normal to frontal reef in the early Late Miocene, and proximal forereef shelf in the later Late Miocene.  相似文献   

10.
 The 9 km2 uplifted lagoon of Taiaro Atoll (15°45′S, 144°38′W) is hypersaline due to its isolation from the ocean, yet it contains a high diversity of fish. The question unifying our expedition was to discover whether these assemblages could be self-sustaining despite very limited contact with the ocean. Although we were constrained by time, collections of fish larvae showed that some species can complete their life-cycle within the lagoon, while others differed genetically between the lagoon and the ocean, consistent with restricted gene flow. The lagoon contained few oceanic species of zooplankton, confirming its general isolation, but nevertheless some fish species may depend upon infrequent colonisation from the ocean (when large waves drive water over the normally dry reef crest). Isotopic signatures in fish otoliths suggest the basis for a more definitive and inclusive test of the sources of the lagoonal assemblage. Accepted: 28 August 1997  相似文献   

11.
Coral reefs are characterized by intense herbivory. Spatial patterns in herbivory—particularly along the depth gradient—influence the distribution and abundance of algae. Depth gradients in herbivorous reef fishes are generally assumed to be temporally stable, but this assumption has rarely been questioned. Here, we use underwater visual census and herbivore exclusion experiments to study the community composition and temporal patterns in habitat use by roving herbivorous fishes in an environment characterized by profound seasonal changes in algal biomass and distribution and extreme summer temperatures. Among the 18 species of roving herbivores recorded, parrotfishes were dominant in species richness and biomass, while regional endemic species represented 77 % of the total biomass. During most of the year, roving herbivores aggregate in the shallow reef zones and their biomass declines with depth. The herbivore community on the reef flat is distinct from that in deeper zones. The former is characterized by Siganus rivulatus, Acanthurus gahhm and Hipposcarus harid, while the deeper reef zones are characterized by S. ferrugineus, Chlorurus sordidus and Ctenochaetus striatus. In summer, the distinct community structures among reef zones are lost as reef flat herbivores tend to exploit deeper reef zones and some reef crest species venture on to the reef flat. This summer change in herbivore distribution is also reflected in reduced turf biomass and increased yield to herbivores in the deeper reef zones. Habitat use is related to the feeding mode such that browsers dominate the reef flat and scrapers the reef crest, while the seasonal changes correspond to changes in availability of targeted algal resources. These seasonal changes appear to be driven by the extreme temperatures in summer, reaching 36 °C on the shallow reef flat.  相似文献   

12.
For a period of 22 months beginning in September 2003, an array of four current profilers were deployed on the Puerto Morelos fringing reef lagoon, a microtidal Caribbean environment characterised by the influence of the Yucatan Current (YC) and a Trade Wind regime. The dataset includes water currents, bottom pressure, and surface waves complemented with coastal meteorological data and surface currents from an acoustic Doppler current profiler moored 12 km offshore. Normal circulation conditions consisted of a surface wave-induced flow entering the lagoon over a shallow reef flat and strong flows exiting through northern and southern channels. This wave induced flow was modulated by a low-frequency sea level change related to a geostrophic response to the YC variability offshore, with tidal and direct wind forcing playing additional minor roles. Under extended summer low-wave height conditions, together with a decrease in sea level from the intensification of the offshore current, the exchange of the lagoon with the adjacent ocean was drastically reduced. Under normal wave conditions (H S = 0.8 ± 0.4 m, mean ± SD), water residence time was on average 3 h, whereas during Hurricane Ivan’s extreme swell (H S = 6 m) it decreased to 0.35 h.  相似文献   

13.
The elevation of reefs and coastal deposits during the last Interglaciation (MIS-5e) indicates that sea level reached a highstand of as much as 6 m above the present, but it is uncertain how rapidly this level was attained and how it impacted reef development. To investigate this problem, I made a detailed sedimentological analysis of a well-dated reef from the northeast coast of the stable Yucatan Peninsula. Two linear reef tracts were delineated which are offset and at different elevations. The lower reef tract crops out along northern shore for 575 m and extends from below present mean sea level to +3 m. The reef crest facies consists of large Acropora palmata colonies dispersed within a coral boulder-gravel and is flanked by an A. cervicornis-dominated reef-front and a large area of lagoonal framework formed by coalesced patches of A. cervicornis and Montastraea spp. Constituents in the upper centimetre of the lower tract are heavily encrusted by a cap of crustose corallines and, in places, are levelled by a discontinuous marine-erosion surface. The upper reef tract crops out ~150 m inland up to an elevation of +5.8 m and parallels the southern section of shore for ~400 m. It also consist of an A. palmata-dominated crest facies flanked by reef-front, back-reef and lagoonal frameworks. In this case, however, lagoonal frameworks are dominated by a sediment-tolerant assemblage of branching coralline algae. Also different is the lack of encrustation by corallines, and the infiltration of upper tract facies by beach-derived shell-gravels from regressive shoreface deposits above. These results indicate that the lower reef tract and lagoonal patch-reefs formed at a sea level of +3 m. Final capping by crustose corallines and discontinuous marine erosion indicates that the lower tract was terminated by the complete demise of corals on the crest but only patchy demise in the lagoon. Areas of continuous framework accretion between the lagoonal patch reefs and the upper reef-tract, however, require that the demise of this reef was ecologically synchronous with initiation of the upper reef-tract, which had back-stepped 100 m into the lagoon. In this new position, the upper tract developed a reef crest that corresponded to a final sea-level position of +6 m. Reef flat development at +5 m and large in-place colonies of A. palmata at the base of the crest unit indicate, however, that sea level must have risen rapidly from +3 to more than +5 m to accommodate back-stepping. This sea-level jump created a higher energy wave field that mobilized back-reef and lagoonal sediments, and the resulting high sediment flux eroded lagoonal framework and prevented the recovery of the submerged lower reef crest. So this single jump in sea level was responsible not only for reef demise and back-stepping but also for marine erosion and suppression of subsequent reef development—features that elsewhere have been used to support multiple sea-level excursions during the last interglacial.  相似文献   

14.
A two-week study, at Tague Reef, St. Croix, USVI investigated the magnitude and spatial variation of tides, sea level differences, infragravity waves, and unidirectional cross-reef currents on a modern coral reef. Infragravity oscillations of water level (∼ 27 min period) of 1–2 cm height correlate with a quarter wavelength resonance over the shelf. Particle displacements associated with these waves may be important to the dispersive characteristics of the reef environment. Estimates of cross-reef mass transport per unit width ranged from 0.058 to 0.032 m2s -1. Sea level differences across the reef (1–4 cm) varied at diurnal and infragravity periods with contributions from wave set-up, and a small contribution from cross-shelf wind stress to the observed sea level differences. The quadratic bottom friction coefficient over the reef was estimated at 0.06–0.2, 20–70 times greater than on open shelves, reflecting the reef’s extreme bottom roughness. Accepted: 28 February 1998  相似文献   

15.
High photosynthetic benthic primary production (P) represents a key ecosystem service provided by tropical coral reef systems. However, benthic P budgets of specific ecosystem compartments such as macrophyte-dominated reef lagoons are still scarce. To address this, we quantified individual and lagoon-wide net (Pn) and gross (Pg) primary production by all dominant functional groups of benthic primary producers in a typical macrophyte-dominated Caribbean reef lagoon near Puerto Morelos (Mexico) via measurement of O2 fluxes in incubation experiments. The photosynthetically active 3D lagoon surface area was quantified using conversion factors to allow extrapolation to lagoon-wide P budgets. Findings revealed that lagoon 2D benthic cover was primarily composed of sand-associated microphytobenthos (40%), seagrasses (29%) and macroalgae (27%), while seagrasses dominated the lagoon 3D surface area (84%). Individual Pg was highest for macroalgae and scleractinian corals (87 and 86 mmol O2 m−2 specimen area d−1, respectively), however seagrasses contributed highest (59%) to the lagoon-wide Pg. Macroalgae exhibited highest individual Pn rates, but seagrasses generated the largest fraction (51%) of lagoon-wide Pn. Individual R was highest for scleractinian corals and macroalgae, whereas seagrasses again provided the major lagoon-wide share (68%). These findings characterise the investigated lagoon as a net autotrophic coral reef ecosystem compartment revealing similar P compared to other macrophyte-dominated coastal environments such as seagrass meadows and macroalgae beds. Further, high lagoon-wide P (Pg: 488 and Pn: 181 mmol O2 m−2 lagoon area d−1) and overall Pg:R (1.6) indicate substantial benthic excess production within the Puerto Morelos reef lagoon and suggest the export of newly synthesised organic matter to surrounding ecosystems.  相似文献   

16.
Luhuitou fringing reef at Hainan Island (northern South China Sea) has experienced severe anthropogenic disturbance, with live coral cover declining by > 80 % since the 1960 s. To assess the size structure of Porites lutea, we measured the sizes of 1,857 colonies from the reef flat (0 m) and slope (2–4 m depth). Both populations were positively skewed and leptokurtic in shape, indicating a high abundance of smaller colonies (averaging 21.4 ± 2.3 cm on the flat and 31.9 ± 2.8 cm on the slope). Age structure of populations was determined through growth rates extracted from X-rays of P. lutea cores. The majority of colonies (> 95 %) were < 50 yr old, with 55 % of P. lutea on the reef flat having recruited following the establishment of a marine reserve in 1990. The abundance of younger colonies indicates significant recovery of P. lutea following the removal of chronic anthropogenic disturbance.  相似文献   

17.
Patients with diabetes mellitus exhibit peripheral arterioles lesions that is associated with reduced blood flow. Here, we intended to assess the acral arterioles lesion in patients with type 2 diabetes based on the rate of blood flow by multigate spectral Doppler ultrasonography. Fifty-two patients with type 2 DM were divided into two groups. Group 1 included 13 men and 12 women with an average age of 60.60 ± 14.03 years and a duration of type 2 diabetes for 2.44 ± 1.50 years. Group 2 included 17 men and 11 women with an average age of 64.25 ± 10.84 years and type 2 diabetes for 12.57 ± 6.26 years. Age-matched control subjects (n = 52) were recruited (30 men and 22 woman, mean age of 61.19 ± 10.38 years). A multigate spectral Doppler algorithm was applied to the acral finger of the thumb of the right hand to test the arteriole diameter and hemodynamic parameters, including diameter of the acral finger arterioles (D), area of the blood flow profile of the acral finger arterioles (A max) and hemodynamic parameters. Patients with diabetes exhibited a significant reduction in the arteriole diameter (1.63 ± 0.18 and 1.57 ± 0.22 mm, respectively, P < 0.001 for both) compared to control subjects (2.09 ± 0.17 mm). A max were significantly reduced in patients with diabetes (61.35 ± 10.66 mm2/s for group 1 and 46.50 ± 6.59 mm2/s for group 2, P < 0.001 for both) compared to that in control subjects (77.93 ± 12.37 mm2/s). Furthermore, a significant difference in Amax was found between group 1 and group 2 (P < 0.001). The vascular resistance index (RI) was significantly higher in both patient groups 0.58 ± 0.06 for group 1 (P < 0.001) and 0.64 ± 0.07 for group 2 (P < 0.001) than that in control subjects (0.48 ± 0.04). The RI value of the acral finger arterioles differed significantly between group 1 and group 2 (P < 0.01). Diabetic patients exhibited a weak blood flow in the acral finger arterioles. The multigate spectral Doppler technology can be used to test blood flow in the acral finger arterioles and provide hemodynamic data for systematic analyses of the peripheral arteriole lesions in diabetes.  相似文献   

18.
A series of surveys were carried out to characterize the physical and biological parameters of the Millennium Atoll lagoon during a research expedition in April of 2009. Millennium is a remote coral atoll in the Central Pacific belonging to the Republic of Kiribati, and a member of the Southern Line Islands chain. The atoll is among the few remaining coral reef ecosystems that are relatively pristine. The lagoon is highly enclosed, and was characterized by reticulate patch and line reefs throughout the center of the lagoon as well as perimeter reefs around the rim of the atoll. The depth reached a maximum of 33.3 m in the central region of the lagoon, and averaged between 8.8 and 13.7 m in most of the pools. The deepest areas were found to harbor large platforms of Favia matthaii, which presumably provided a base upon which the dominant corals (Acropora spp.) grew to form the reticulate reef structure. The benthic algal communities consisted mainly of crustose coralline algae (CCA), microfilamentous turf algae and isolated patches of Halimeda spp. and Caulerpa spp. Fish species richness in the lagoon was half of that observed on the adjacent fore reef. The lagoon is likely an important nursery habitat for a number of important fisheries species including the blacktip reef shark and Napoleon wrasse, which are heavily exploited elsewhere around the world but were common in the lagoon at Millennium. The lagoon also supports an abundance of giant clams (Tridacna maxima). Millennium lagoon provides an excellent reference of a relatively undisturbed coral atoll. As with most coral reefs around the world, the lagoon communities of Millennium may be threatened by climate change and associated warming, acidification and sea level rise, as well as sporadic local resource exploitation which is difficult to monitor and enforce because of the atoll''s remote location. While the remote nature of Millennium has allowed it to remain one of the few nearly pristine coral reef ecosystems in the world, it is imperative that this ecosystem receives protection so that it may survive for future generations.  相似文献   

19.
Efficient reef management strategies rely on detailed knowledge of biological exchange dynamics. At present, available connectivity information on Mexican Atlantic reefs is scarce, particularly concerning the Veracruz Reef System (VRS), which is located in the south-western Gulf of Mexico. This study used a hierarchically nested sampling design to evaluate the levels of genetic connectivity both within and between the Mexican Caribbean (MC) and VRS reef regions; all of the studied reefs are marine protected areas. Microsatellites were used as genetic markers, and bicolor damselfish (Stegastes partitus) recruits were used as a biological model. The paired genetic differentiation index between regions (Fst (ENA) = 0.008) was lower than the global index (Fst (ENA) = 0.027), suggesting that the stronger restrictions to gene flow may be located inside the regions rather than between them. The AMOVA results supported this explanation, as the differences were only non-significant between regions. In the VRS, Santiaguillo reef was associated with low genetic connectivity levels, whilst within the MC region the group formed by Chinchorro Bank and Cozumel exhibited a restriction to gene flow with Puerto Morelos, their northernmost reef. Despite their spatial separation, reefs from different regions (Puerto Morelos and Anegada de Adentro) showed the lowest, albeit significant, genetic difference, meaning that a subtle genetic connectivity exists at the regional scale. The detected composite flow pattern is likely related to self-recruitment and cohesive dispersal processes interacting with current patterns, which may favour genetic connections under specific conditions. The results presented here suggest that coral reef management in the Mexican Atlantic Ocean should consider large scale measures in addition to appropriate local actions to protect reef fish populations.  相似文献   

20.
The detrimental effect of biofilms on skin friction for near wall flows is well known. The diatom genera Gomphonema and Tabellaria dominated the biofilm mat in the freshwater open channels of the Tarraleah Hydropower Scheme in Tasmania, Australia. A multi-faceted approach was adopted to investigate the drag penalty for biofouled 1.0 m × 0.6 m test plates which incorporated species identification, drag measurement in a recirculating water tunnel and surface characterisation using close-range photogrammetry. Increases in total drag coefficient of up to 99% were measured over clean surface values for biofouled test plates incubated under flow conditions in a hydropower canal. The effective roughness of the biofouled surfaces was found to be larger than the physical roughness; the additional energy dissipation was caused in part by the vibration of the biofilms in three-dimensions under flow conditions. The data indicate that there was a roughly linear relationship between the maximum peak-to-valley height of a biofilm and the total drag coefficient.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号