首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The stability of many proteins is controlled by the ubiquitin proteolytic system, which recognizes specific substrates through the action of E3 ubiquitin ligases [1]. The SCFs are a recently described class of ubiquitin ligase that target a number of cell cycle regulators and other proteins for degradation in both yeast and mammalian cells [2] [3] [4] [5] [6]. Each SCF complex is composed of the core protein subunits Skp1, Rbx1 and Cul1 (known as Cdc53 in yeast), and substrate-specific adaptor subunits called F-box proteins [2] [3] [4]. To understand the physiological role of SCF complexes in mammalian cells, we generated mice carrying a deletion in the Cul1 gene. Cul1(-/-) embryos arrested around embryonic day 6.5 (E6.5) before the onset of gastrulation. In all cells of the mutant embryos, cyclin E protein, but not mRNA, was highly elevated. Outgrowths of Cul1(-/-) blastocysts had limited proliferative capacity in vitro and accumulated cyclin E in all cells. Within Cul1(-/-) blastocyst cultures, trophoblast giant cells continued to endocycle despite the elevated cyclin E levels. These results suggest that cyclin E abundance is controlled by SCF activity, possibly through SCF-dependent degradation of cyclin E.  相似文献   

2.
Ubiquitin-mediated degradation of the cyclin-dependent kinase inhibitor p27 provides a powerful route for enforcing normal progression through the mammalian cell cycle. According to a current model, the ubiquitination of p27 during S-phase progression is mediated by SCF(Skp2) E3 ligase that captures Thr187-phosphorylated p27 by means of the F-box protein Skp2, which in turn couples the bound substrate via Skp1 to a catalytic core complex composed of Cul1 and the Rbx/Roc RING finger protein. Here we identify Skp2 as a component of an Skp1-cullin-F-box complex that is based on a Cul1-Ro52 RING finger B-box coiled-coil motif family protein catalytic core. Ro52-containing complexes display E3 ligase activity and promote the ubiquitination of Thr187-phosphorylated p27 in a RING-dependent manner in vitro. The knockdown of Ro52 expression in human cells with small interfering RNAs causes the accumulation of p27 and the failure of cells to enter S phase. Importantly, these effects are abrogated by the simultaneous removal of p27. Taken together, these data suggest a key role for Ro52 RING finger protein in the regulation of p27 degradation and S-phase progression in mammalian cells and provide evidence for the existence of a Cul1-based catalytic core that utilizes Ro52 RING protein to promote ubiquitination.  相似文献   

3.
The DNA replication licensing factor Cdt1 is degraded by the ubiquitin-proteasome pathway during S phase of the cell cycle, to ensure one round of DNA replication during each cell division and in response to DNA damage to halt DNA replication. Constitutive expression of Cdt1 causes DNA re-replication and is associated with the development of a subset of human non-small cell-lung carcinomas. In mammalian cells, DNA damage-induced Cdt1 degradation is catalyzed by the Cul4-Ddb1-Roc1 E3 ubiquitin ligase. We report here that overexpression of the proliferating cell nuclear antigen (PCNA) inhibitory domain from the CDK inhibitors p21 and p57, but not the CDK-cyclin inhibitory domain, blocked Cdt1 degradation in cultured mammalian cells after UV irradiation. In vivo soluble Cdt1 and PCNA co-elute by gel filtration and associate with each other physically. Silencing PCNA in cultured mammalian cells or repression of pcn1 expression in fission yeast blocked Cdt1 degradation in response to DNA damage. Unexpectedly, deletion of Ddb1 in fission yeast cells also accumulated Cdt1 in the absence of DNA damage. We suggest that the Cul4-Ddb1 ligase evolved to ubiquitinate Cdt1 during normal cell growth as well as in response to DNA damage and a separate E3 ligase, possibly SCF(Skp2), evolved to either share or take over the function of Cdt1 ubiquitination during normal cell growth and that PCNA is involved in mediating Cdt1 degradation by the Cul4-Ddb1 ligase in response to DNA damage.  相似文献   

4.
5.
NEDD8/Rub1 is a ubiquitin (Ub)-like molecule that covalently ligates to target proteins through an enzymatic cascade analogous to ubiquitylation. This modifier is known to target all cullin (Cul) family proteins. The latter are essential components of Skp1/Cul-1/F-box protein (SCF)-like Ub ligase complexes, which play critical roles in Ub-mediated proteolysis. To determine the role of the NEDD8 system in mammals, we generated mice deficient in Uba3 gene that encodes a catalytic subunit of NEDD8-activating enzyme. Uba3(-/-) mice died in utero at the periimplantation stage. Mutant embryos showed selective apoptosis of the inner cell mass but not of trophoblastic cells. However, the mutant trophoblastic cells could not enter the S phase of the endoreduplication cycle. This cell cycle arrest was accompanied with aberrant expression of cyclin E and p57(Kip2). These results suggested that the NEDD8 system is essential for both mitotic and the endoreduplicative cell cycle progression. beta-Catenin, a mediator of the Wnt/wingless signaling pathway, which degrades continuously in the cytoplasm through SCF Ub ligase, was also accumulated in the Uba3(-/-) cytoplasm and nucleus. Thus, the NEDD8 system is essential for the regulation of protein degradation pathways involved in cell cycle progression and morphogenesis, possibly through the function of the Cul family proteins.  相似文献   

6.
SCF is a ubiquitin ligase and is composed of Skp1, Cul1, F-box protein, and Roc1. The catalytic site of the SCF is the Cul1/Roc1 complex and RING-finger protein Roc1. It was shown earlier that when Cul1 was co-expressed with Roc1 in Sf-9 cells in a baculovirus protein expression system, Cul1 was highly neddylated in the cell, suggesting that Roc1 may function as a Nedd8-E3 ligase. However, there is no direct evidence that Roc1 is a Nedd8-E3 in an in vitro enzyme system. Here we have shown that Roc1 binds to Ubc12, E2 for Nedd8, but not to Ubc9, E2 for SUMO-1 and Roc1 RING-finger mutant, H77A, did not bind to Ubc12. In in vitro neddylation system using purified Cul1/Roc1 complex expressed in bacteria, Roc1 promotes neddylation of Cul1. These results demonstrate that Roc1 functions as a Nedd8-E3 ligase toward Cul1. Furthermore, Roc1 and Cul1 were ubiquitinylated in a manner dependent on the neddylation of Cul1 in vitro. In addition, Cul1 was degraded through the ubiquitin-proteasome pathway, and a non-neddylated mutant Cul1, K720R, was more stable than wild-type in intact cells. Thus, neddylation of Cul1 might regulate SCF function negatively via degradation of Cul1/Roc1 complex.  相似文献   

7.
Adenovirus type 5 (Ad5) inactivates the host cell DNA damage response by facilitating the degradation of Mre11, DNA ligase IV, and p53. In the case of p53, this is achieved through polyubiquitylation by Ad5E1B55K and Ad5E4orf6, which recruit a Cul5-based E3 ubiquitin ligase. Recent evidence indicates that this paradigm does not apply to other adenovirus serotypes, since Ad12, but not Ad5, causes the degradation of TOPBP1 through the action of E4orf6 alone and a Cul2-based E3 ubiquitin ligase. We now have extended these studies to adenovirus groups A to E. While infection by Ad4, Ad5, and Ad12 (groups E, C, and A, respectively) cause the degradation of Mre11, DNA ligase IV, and p53, infection with Ad3, Ad7, Ad9, and Ad11 (groups B1, B1, D, and B2, respectively) only affects DNA ligase IV levels. Indeed, Ad3, Ad7, and Ad11 cause the marked accumulation of p53. Despite this, MDM2 levels were very low following infection with all of the viruses examined here, regardless of whether they increase p53 expression. In addition, we found that only Ad12 causes the degradation of TOPBP1, and, like Ad5, Ad4 recruits a Cul5-based E3 ubiquitin ligase to degrade p53. Surprisingly, Mre11 and DNA ligase IV degradation do not appear to be significantly affected in Ad4-, Ad5-, or Ad12-infected cells depleted of Cul2 or Cul5, indicating that E1B55K and E4orf6 recruit multiple ubiquitin ligases to target cellular proteins. Finally, although Mre11 is not degraded by Ad3, Ad7, Ad9, and Ad11, no viral DNA concatemers could be detected. We suggest that group B and D adenoviruses have evolved mechanisms based on the loss of DNA ligase IV and perhaps other unknown molecules to disable the host cell DNA damage response to promote viral replication.  相似文献   

8.
F-box and WD-40 domain protein 7 (Fbw7) provides substrate specificity for the Skp1-Cullin1-F-box protein (SCF) ubiquitin ligase complex that targets multiple oncoproteins for degradation, including cyclin E, c-Myc, c-Jun, Notch, and mammalian target of rapamycin (mTOR). Fbw7 is a bona fide tumor suppressor, and loss-of-function mutations in FBXW7 have been identified in diverse human tumors. Although much is known about targets of the Fbw7 ubiquitin ligase pathway, relatively little is known about the regulation of Fbw7 expression. We identified a panel of candidate microRNA regulators of Fbw7 expression within a study of gene expression alterations in primary erythroblasts obtained from cyclin ET74A T393A knock-in mice, which have markedly dysregulated cyclin E expression. We found that overexpression of miR-223, in particular, significantly reduces FBXW7 mRNA levels, increases endogenous cyclin E protein and activity levels, and increases genomic instability. We next confirmed that miR-223 targets the FBXW7 3′-untranslated region. We then found that reduced miR-223 expression in primary mouse embryonic fibroblasts leads to increased Fbw7 expression and decreased cyclin E activity. Finally, we found that miR-223 expression is responsive to acute alterations in cyclin E regulation by the Fbw7 pathway. Together, our data indicate that miR-223 regulates Fbw7 expression and provide the first evidence that activity of the SCFFbw7 ubiquitin ligase can be modulated directly by the microRNA pathway.  相似文献   

9.
YY Choo  T Hagen 《PloS one》2012,7(7):e41350
Cullin E3 ligases are the largest family of ubiquitin ligases with diverse cellular functions. One of seven cullin proteins serves as a scaffold protein for the assembly of the multisubunit ubiquitin ligase complex. Cullin binds the RING domain protein Rbx1/Rbx2 via its C-terminus and a cullin-specific substrate adaptor protein via its N-terminus. In the Cul3 ubiquitin ligase complex, Cul3 substrate receptors contain a BTB/POZ domain. Several studies have established that Cul3-based E3 ubiquitin ligases exist in a dimeric state which is required for binding of a number of substrates and has been suggested to promote ubiquitin transfer. In two different models, Cul3 has been proposed to dimerize either via BTB/POZ domain dependent substrate receptor homodimerization or via direct interaction between two Cul3 proteins that is mediated by Nedd8 modification of one of the dimerization partners. In this study, we show that the majority of the Cul3 proteins in cells exist as dimers or multimers and that Cul3 self-association is mediated via the Cul3 N-terminus while the Cul3 C-terminus is not required. Furthermore, we show that Cul3 self-association is independent of its modification with Nedd8. Our results provide evidence for BTB substrate receptor dependent Cul3 dimerization which is likely to play an important role in promoting substrate ubiquitination.  相似文献   

10.
The ubiquitin-proteasome pathway plays an important role in control of the abundance of cell cycle regulators. Mice lacking Skp2, an F-box protein and substrate recognition component of an Skp1-Cullin-F-box protein (SCF) ubiquitin ligase, were generated. Although Skp2(-/-) animals are viable, cells in the mutant mice contain markedly enlarged nuclei with polyploidy and multiple centrosomes, and show a reduced growth rate and increased apoptosis. Skp2(-/-) cells also exhibit increased accumulation of both cyclin E and p27(Kip1). The elimination of cyclin E during S and G(2) phases is impaired in Skp2(-/-) cells, resulting in loss of cyclin E periodicity. Biochemical studies showed that Skp2 interacts specifically with cyclin E and thereby promotes its ubiquitylation and degradation both in vivo and in vitro. These results suggest that specific degradation of cyclin E and p27(Kip1) is mediated by the SCF(Skp2) ubiquitin ligase complex, and that Skp2 may control chromosome replication and centrosome duplication by determining the abundance of cell cycle regulators.  相似文献   

11.
Cullin 4 (Cul4), a member of the evolutionally conserved cullin protein family, serves as a scaffold to assemble multisubunit ubiquitin E3 ligase complexes. Cul4 interacts with the Ring finger-containing protein ROC1 through its C-terminal cullin domain and with substrate recruiting subunit(s) through its N-terminus. Previous studies have demonstrated that Cul4 E3 ligase ubiquitylates key regulators in cell cycle control and mediates their degradation through the proteasomal pathway, thus contributing to genome stability. Recent studies from several groups have revealed that Cul4 E3 ligase can target histones for ubiquitylation, and importantly, ubiquitylation of histones may facilitate the cellular response to DNA damage. Therefore, histone ubiquitylation by Cul4 E3 ligase constitutes a novel mechanism through which Cul4 regulates chromatin function and maintains genomic integrity. We outline these studies and suggest that histone ubiquitylation might play important roles in Cul4-regualted chromatin function including the cellular response to DNA damage and heterochromatin gene silencing.  相似文献   

12.
Cullin-Ring ubiquitin ligases regulate protein turnover by promoting the ubiquitination of substrate proteins, targeting them for proteasomal degradation. It has been shown previously that mutations in Cullin3 (Cul3) causing deletion of 57 amino acids encoded by exon 9 (Cul3Δ9) cause hypertension. Moreover, RhoA activity contributes to vascular constriction and hypertension. We show that ubiquitination and degradation of RhoA is dependent on Cul3 in HEK293T cells in which Cul3 expression is ablated by either siRNA or by CRISPR-Cas9 genome editing. The latter was used to generate a Cul3-null cell line (HEK293TCul3KO). When expressed in these cells, Cul3Δ9 supported reduced ubiquitin ligase activity toward RhoA compared with equivalent levels of wild-type Cul3 (Cul3WT). Consistent with its reduced activity, binding of Cul3Δ9 to the E3 ubiquitin ligase Rbx1 and neddylation of Cul3Δ9 were impaired significantly compared with Cul3WT. Conversely, Cul3Δ9 bound to substrate adaptor proteins more efficiently than Cul3WT. Cul3Δ9 also forms unstable dimers with Cul3WT, disrupting dimers of Cul3WT complexes that are required for efficient ubiquitination of some substrates. Indeed, coexpression of Cul3WT and Cul3Δ9 in HEK293TCul3KO cells resulted in a decrease in the active form of Cul3WT. We conclude that Cul3Δ9-associated ubiquitin ligase activity toward RhoA is impaired and suggest that Cul3Δ9 mutations may act dominantly by sequestering substrate adaptors and disrupting Cul3WT complexes.  相似文献   

13.
14.
15.
Phosphoinositide signaling pathways regulate numerous processes in eukaryotic cells, including migration, proliferation, and survival. The regulatory lipid phosphatidylinositol 4,5-bisphosphate is synthesized by two distinct classes of phosphatidylinositol phosphate kinases (PIPKs), the type I and II PIPKs. Although numerous physiological functions have been identified for type I PIPKs, little is known about the functions and regulation of type II PIPK. Using a yeast two-hybrid screen, we identified an interaction between the type IIbeta PIPK isoform (PIPKIIbeta) and SPOP (speckle-type POZ domain protein), a nuclear speckle-associated protein that recruits substrates to Cul3-based ubiquitin ligases. PIPKIIbeta and SPOP interact and co-localize at nuclear speckles in mammalian cells, and SPOP mediates the ubiquitylation of PIPKIIbeta by Cul3-based ubiquitin ligases. Additionally, stimulation of the p38 MAPK pathway enhances the ubiquitin ligase activity of Cul3-SPOP toward multiple substrate proteins. Finally, a kinase-dead PIPKIIbeta mutant enhanced ubiquitylation of Cul3-SPOP substrates. The kinase-dead PIPKIIbeta mutant increases the cellular content of its substrate lipid phosphatidylinositol 5-phosphate (PI5P), suggesting that PI5P may stimulate Cul3-SPOP activity through a p38-dependent signaling pathway. Expression of phosphatidylinositol-4,5-bisphosphate 4-phosphatases that generate PI5P dramatically stimulated Cul3-SPOP activity and was blocked by the p38 inhibitor SB203580. Taken together, these data define a novel mechanism whereby the phosphoinositide PI5P leads to stimulation of Cul3-SPOP ubiquitin ligase activity and also implicate PIPKIIbeta as a key regulator of this signaling pathway through its association with the Cul3-SPOP complex.  相似文献   

16.
The concentrations and functions of many cellular proteins are regulated by the ubiquitin pathway. Cullin family proteins bind with the RING-finger protein Roc1 to recruit the ubiquitin-conjugating enzyme (E2) to the ubiquitin ligase complex (E3). Cul1 and Cul7, but not other cullins, bind to an adaptor protein, Skp1. Cul1 associates with one of many F-box proteins through Skp1 to assemble various SCF-Roc1 E3 ligases that each selectively ubiquitinate one or more specific substrates. Here, we show that Cul3, but not other cullins, binds directly to multiple BTB domains through a conserved amino-terminal domain. In vitro, Cul3 promoted ubiquitination of Caenorhabditis elegans MEI-1, a katanin-like protein whose degradation requires the function of both Cul3 and BTB protein MEL-26. We suggest that in vivo there exists a potentially large number of BCR3 (BTB-Cul3-Roc1) E3 ubiquitin ligases.  相似文献   

17.
When mammalian cells experience radiation insult, DNA replication is stalled to prevent erroneous DNA synthesis. UV-irradiation triggers proteolysis of Mcm10, an essential human replication factor, inhibiting the ongoing replication. Here, we report that Mcm10 associates with E3 ubiquitin ligase comprising DNA damage-binding protein, DDB1, cullin, Cul4 and ring finger protein, Roc1. Depletion of DDB1, Roc1 or Cul4 abrogates the UV-triggered Mcm10 proteolysis, implying that Cul4-Roc1-DDB1 ubiquitin ligase mediates Mcm10 downregulation. The purified Cul4-Roc1-DDB1 complex ubiquitinates Mcm10 in vitro, proving that Mcm10 is its substrate. By screening the known DDB1 interacting proteins, we discovered that VprBP is the substrate recognition subunit that targets Mcm10 for degradation. Hence, these results establish that Cul4-DDB1-VprBP ubiquitin ligase mediates the stress-induced proteolysis of replication factor, Mcm10.  相似文献   

18.
Faithful cell-cycle progression is tightly controlled by the ubiquitin-proteasome system. Here we identify a human Cullin 3-based E3 ligase (Cul3) which is essential for mitotic division. In a complex with the substrate-specific adaptors KLHL9 and KLHL13, Cul3 is required for correct chromosome alignment in metaphase, proper midzone and midbody formation, and completion of cytokinesis. This Cul3-based E3 ligase removes components of the chromosomal passenger complex from mitotic chromosomes and allows their accumulation on the central spindle during anaphase. Aurora B directly binds to the substrate-recognition domain of KLHL9 and KLHL13 in vitro, and coimmunoprecipitates with the Cul3 complex during mitosis. Moreover, Aurora B is ubiquitylated in a Cul3-dependent manner in vivo, and by reconstituted Cul3/KLHL9/KLHL13 ligase in vitro. We thus propose that the Cul3/KLHL9/KLHL13 E3 ligase controls the dynamic behavior of Aurora B on mitotic chromosomes, and thereby coordinates faithful mitotic progression and completion of cytokinesis.  相似文献   

19.
Substrate-specific protein degradation mediated by the ubiquitin proteasome system (UPS) is crucial for the proper function of the cell. Proteins are specifically recognized and ubiquitinated by the ubiquitin ligases (E3s) and are then degraded by the proteasome. BTB proteins act as the substrate recognition subunit that recruits their cognate substrates to the Cullin 3-based multisubunit E3s. Recently, it was reported that missense mutations in KLHL7, a BTB-Kelch protein, are related to autosomal dominant retinitis pigmentosa (adRP). However, the involvement of KLHL7 in the UPS and the outcome of the adRP causative mutations were unknown. In this study, we show that KLHL7 forms a dimer, assembles with Cul3 through its BTB and BACK domains, and exerts E3 activity. Lys-48-linked but not Lys-63-linked polyubiquitin chain co-localized with KLHL7, which increased upon proteasome inhibition suggesting that KLHL7 mediates protein degradation via UPS. An adRP-causative missense mutation in the BACK domain of KLHL7 attenuated only the Cul3 interaction but not dimerization. Nevertheless, the incorporation of the mutant as a heterodimer in the Cul3-KLHL7 complex diminished the E3 ligase activity. Together, our results suggest that KLHL7 constitutes a Cul3-based E3 and that the disease-causing mutation inhibits ligase activity in a dominant negative manner, which may lead to the inappropriate accumulation of the substrates targeted for proteasomal degradation.  相似文献   

20.
Cell adhesion to the extracellular matrix (ECM) is a requirement for proliferation that is typically lost in malignant cells. In the absence of adhesion, nontransformed cells arrest in G1 with increased levels of the cyclin-dependent kinase inhibitor p27. We have reported previously that the degradation of p27 requires its phosphorylation on Thr-187 and is mediated by Skp2, an F-box protein that associates with Skp1, Cul1, and Roc1/Rbx1 to form the SCF(Skp2) ubiquitin ligase complex. Here, we show that the accumulation of Skp2 protein is dependent on both cell adhesion and growth factors but that the induction of Skp2 mRNA is exclusively dependent on cell adhesion to the ECM. Conversely, the expression of the other three subunits of the SCF(Skp2) complex is independent of cell anchorage. Phosphorylation of p27 on Thr-187 is also not affected significantly by the loss of cell adhesion, demonstrating that increased p27 stability is not dependent on p27 dephosphorylation. Significantly, ectopic expression of Skp2 in nonadherent G1 cells resulted in p27 downregulation, entry into S phase, and cell division. The ability to induce adhesion-independent cell cycle progression was potentiated by coexpressing Skp2 with cyclin D1 but not with cyclin E, indicating that Skp2 and cyclin D1 cooperate to rescue proliferation in suspension cells. Our study shows that Skp2 is a key target of ECM signaling that controls cell proliferation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号