首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
Abstract: Total cerebral hemisphere nuclei purified from adult rabbit brain were subfractionated into neuronal and glial populations. Previous studies have shown that chromatin in neuronal nuclei is organized in an unusual nucleosome conformation compared with glial or kidney nuclei, i.e., a short DNA repeat length is present. We now analyze whether this difference in chromatin organization is associated with an alteration in the histone component of nucleosomes. Total histone isolated by acid/urea-protamine extraction of purified neuronal, glial, and kidney nuclei was analyzed by electrophoresis on SDS-polyacrylamide slab gels. Histone H1 that was selectively extracted from nuclei was also examined. Differences were not observed on SDS gels in the electrophoretic mobilities of histones associated with either the nucleosome core particle (histones H2A, H2B, H3, H4) or the nucleosome linker region (histone H1). Total histone and selectively extracted histone H1 were also analyzed on acid/urea slab gels that resolve histones on the basis of both molecular weight and charge differences. When analyzed in this system, differences with respect to electrophoretic mobility were not detected when comparing either selectively extracted histone H1 or total histone from neuronal and glial nuclei. Quantitative analyses were also performed and neuronal nuclei were found to contain less histone H1 per milligram DNA compared with glial or kidney nuclei. Neuronal nuclei also demonstrated a lower ratio of histone H1/core histone. These results suggest that the pronounced difference in chromatin organization in neuronal compared with glial nuclei, which is reflected by a short DNA repeat length in neurons, appears to be associated with quantitative differences in neuronal histone H1.  相似文献   

2.
The incubation in vitro of rat liver nuclei in the presence of S-adenosyl[methyl-3H]methionine ([3H] SAM) leads to the incorporation of a radioactive label not only into core histones H3 and H4, but also into linker histone H1. The addition of distamycin A to the incubation medium stimulates label incorporation into histone H1 by approximately six times and into histone H3 by around two times. The presence of distamycin facilitates histone H1 extraction by polyglutamic acid (poly(Glu)) and decreases UV-induced DNA—histone cross-link formation. These effects give evidence that the weakening H1—chromatin interaction by distamycin may be the result of a histone H1 position change relative toward the nucleosome and (or) a disturbance of the histone H1–H3 interactions, as these histones are exposed to additional methylation.  相似文献   

3.
The accumulation of histone H1o has been studied in neuronal and glial nuclei from rat cerebral cortex during postnatal development. In neurons H1o represents ~2% of the H1 content at birth and remains unchanged until day 8. Beyond this point H1o accumulates rapidly until day 18, where it levels off at 16% of H1. The midpoint of the transition is at day 14. In glial cells H1o represents ~2.5% of the H1 at birth. It starts to accumulate between days 18 and 21; its concentration raises rapidly up to day 30 slowing down from then on. At day 300 (the farthest point examined) it represents 21% of H1. These results are discussed in relation to the events of the postnatal development of the cerebral cortex in the rat. It is concluded that Ho probably does not suppress cell proliferation.  相似文献   

4.
Neuronal perikaryon were purified from rabbit cerebral hemispheres at early postnatal stages of brain development. When incubated in vitro these neuronal cells demonstrated the ability to incorporate labeled amino acids into total protein at a linear rate, however, incorporation of labeled thymidine was not apparent. Isolated neuronal perikaryon showed a transient ability to incorporate labeled lysine and arginine into both core (H3, H2B, H2A, H4) and linker (H1) histones between 30 and 90 hr following birth, with a maximum incorporation at 42 hr. This period of histone synthesis may correlate with the conversion of neuronal chromatin to a short DNA repeat length which occurs between 60 and 84 hr following birth.  相似文献   

5.
1. Protein composition of neuronal nuclei was studied at two stages of brain maturation, i.e., before (embryonic day 16; E16) and after (postnatal day 10; P10) shortening of the nucleosomal repeat length. Glial nuclei were analyzed in parallel as a control. 2. Total nuclear or HCl- and 5% perchloric acid (PCA)-soluble proteins were analyzed by different electrophoretic techniques. 3. Our results show an increase in the concentration of histone H1 zero with differentiation, although the H1 class undergoes an overall decrease. 4. The chromatin of mature neurons is also enriched in the ubiquinated form of histone H2A (A24), while the high-mobility group (HMG) proteins 1 and 2 seem to decrease slightly relative to core histones. 5. Both quantitative and qualitative differences in the abundance of nonhistone proteins relative to histones accompany neuronal terminal differentiation.  相似文献   

6.
7.
Changes in levels of biosynthesis of DNA, RNA, and histones were compared with relative proportions of each histone class during primitive erythropoiesis in embryonic chicks. We confirmed that erythrocyte-specific histone 5 (H5) was substantial in the earliest accessible, erythroblast-enriched stage and that it doubled in relative amount between polychromatic and orthochromatic stages to about 1 mol per 2 mol of each nucleosomal histone, still considerable less than in adult definitive erythrocytes. No other histones changed during primitive erythropoiesis, but the molar proportion of histone 1 (H1) always exceeded that of H5 in these cells, unlike definitive erythrocytes. The increase in content of H5 was accompanied by continued decline in synthesis of the other histones and DNA. The accumulation of H5 during development appears to occur in steps corresponding to the maturation of the primitive and definitive erythroid cell lines. Lysine-rich histones were more easily extracted from nuclei of the erythrosynthesis in whole cells and in isolated nuclei.  相似文献   

8.
The accumulation of messenger RNA coding for histone H3 in oogenesis of Xenopus laevis was studied by quantitative hybridization techniques, using a cloned genomic DNA fragment as a probe. This probe was isolated from cloned Xenopus histone DNA and contains most of the H3 coding sequences. Histone H3 mRNA accumulation was found to be completed before the maximum lampbrush stage. Hybridization of RNA blots with DNA probes containing genes for histones H2A, H2B, and H4 suggests the same accumulation pattern for the mRNAs coding for these histones as for histone H3 mRNA. The amount of H3 mRNA in the mature oocyte was established to be 130 ± 68 pg, i.e., about 5 × 108 copies.  相似文献   

9.
The processes of acetylation and phosphorylation of histones and nonhistone proteins (NHPs) in neuronal and glial nuclei purified from cerebral hemispheres of rats at 1, 10, and 30 days of age were investigated. Purified neuronal and glial nuclei were incubated in the presence of [3H]acetyl-CoA and of [gamma-32P]ATP. Histones and NHPs were extracted and fractionated by gel electrophoresis. Densitometric and radioactive patterns were obtained. The results showed an increase of acetylation and phosphorylation from 1 to 10 and 30 days of age in both neuronal and glial nuclei in almost all histone and NHP fractions. Among the histones, the H3 fraction was always more labeled than the other fractions and showed the most remarkable differences during postnatal development. In the NHP fractions, the increase in acetylation from 1 to 10 and 30 days of age was more evident in the low-molecular-weight region of neuronal nuclei than in the corresponding fraction of glial nuclei. The appearance of highly phosphorylated proteins (70,000-90,000 daltons)--absent at 1 day, appearing at 10 days, and more evident at 30 days of age--was observed in both neuronal and glial nuclei.  相似文献   

10.
The process of methylation of chromosomal proteins [histones and nonhistone proteins (NHP)] in neuronal and glial cell nuclei obtained from cerebral hemispheres of rats at 1, 10, and 30 days of age was investigated. Purified neuronal and glial nuclei were incubated in the presence of S-adenosyl[methyl-3H]methionine. Histone and NHPs were extracted and fractionated by polyacrylamide gel electrophoresis. The results obtained indicate remarkable differences in the process of methylation of histones and NHPs between neuronal and glial nuclei, especially during the first period of postnatal development. In both nuclear populations the histone fraction H3 was labeled to a greater degree than the other fractions and showed the major changes during postnatal development. The densitometric and radioactive patterns of NHPs show considerable changes in the two nuclear populations at the various ages examined. The main difference between neuronal and glial nuclei consists in the intense methylation of proteins with a molecular weight of approximately 100,000, which are present in neuronal nuclei and virtually absent in glial ones. The results obtained may be correlated with the different chromatin structures of neuronal and glial nuclei and with the patterns of maturation and differentiation of neuronal and glial cells during postnatal development.  相似文献   

11.
The age-related increase in cell volume and nuclear size of cultured human diploid fibroblasts reflected the accumulation of proteins in cytoplasm and nuclei of growth-retarded fibroblasts.Determination of the amount of nuclear proteins, which were fractionated into 0.15 M NaCl-soluble proteins, 0.4 N H2SO4-extractable proteins and residual acidic proteins, indicated that age-related increase in nuclear proteins was due mainly to the accumulation of residual acidic proteins.However, electrophoretic fractionation of histones from various passages of fibroblast cultures on acid urea polyacrylamide gel revealed that the relative amount of H1 fraction decreased with in vitro aging. This was further confirmed by mixing experiments examining the distribution of radioactivity of the histones from cell mixtures of young and senescent cultures labeled with [3H]lysine or [14C]lysine.A pulse label and chase experiment indicated that the observed decrease in the amount of histone H1 was mainly due to decrease in synthesis of histone H1 in senescent human fibroblast cultures.  相似文献   

12.
—The incorporation of [3H]thymidine into nuclear DNA of rat brain progressively increased from birth until the 8th postnatal day and it was lowest in the adult brain. When isolated nuclei from brain cells were separated into a neuronal- and a glial-rich fraction (composed of glial and neuroblast nuclei in young animals), the specific radioactivity of the DNA was higher in the glial-rich fraction at all ages investigated. The incorporation of [3H]leucine into proteins of rat brain was considerably higher in the 8-than in the 1-day-old rat. The greatest difference in the rate of protein synthesis between 8- and 1-day-old brain occurred in the nuclear proteins, especially those associated with DNA. There was an accumulation of protein and RNA in nuclei from brain cells from birth to the 8th postnatal day. The increased content of proteins occurred primarily in the fraction soluble in buffered saline (nuclear sap).  相似文献   

13.
K. Kurtz  J. Ausi  M. Chiva 《Tissue & cell》2009,41(5):334-344
An interesting characteristic of decapod crustacean sperm nuclei is that they do not contain highly packaged chromatin. In the present study we re-examine the presence of DNA-interacting proteins in sperm nuclei of the brachyuran Maja brachydactyla. Although previous reports have indicated that, unlike the majority of sperm cells, DNA of decapod sperm is not organized by basic proteins, in this work we show that: (1) histones are present in sperm of M. brachydactyla; (2) histones are associated with sperm DNA; (3) histone H3 appears in lower proportions than the other core histones, while histone H2B appears in higher proportions; and (4) histone H3 in sperm nuclei is acetylated. This work complements a previous study of sperm histones of Cancer pagurus and supports the suggestion that decapod crustacean sperm chromatin deserves further attention.  相似文献   

14.
The reaction product obtained from HeLa cell nuclei incubated with [3H]NAD was specifically hydrolyzed with snake venom phosphodiesterase. Analysis of the hydrolyzed product revealed that it is a homopolymer consisting of 4–5 repetition of ADP-ribose units. The [3H]poly ADP-ribosylated histone fraction was anslyzed by urea-acetic acid polyacrylamide gel electrophoresis. The radioactive peak was clearly separated from the stained histone H1 band, while a slight overlap was observed. When chromatographed on a SP-Sephadex C-50 column, more than 90% of the radioactivity of [3H]poly(ADP-ribose) was eluted in accordance with histones but not with nonhistone contaminants. On a sodium dodecyl sulfate polyacrylamide gel electrophoresis, a major radioactive peak appeared at a position very close to the histone Hl band, which disappeared by the treatment with alkali prior to electrophoresis. A selective extraction of histone Hl with 5% perchloric acid showed that histone Hl contained about 85% of the radioactivity incorporated into whole histones.  相似文献   

15.
The optimum conditions of in vitro incorporation of sodium [3H]acetate into sliced rat liver were studied. The incubations with sliced liver from three different ages of rats were performed in the presence of sodium n-butyrate. It was found that butyrate decreases the incorporation of sodium [3H]acetate into the homogenate, isolated nuclei, non-histone chromosomal proteins and histones for all age groups. The acetylations of non-histone chromosomal proteins and histones increase with age upto 2-months and decrease in 4-month-old rats both in the absence and presence of butyrate. Liver nuclei were fractionated by the simple method of zonal centrifugation into three classes, namely diploid stromal, diploid parenchymal and tetraploid parenchymal nuclei. The acetylations of non-histone chromosomal proteins and histones in three classes of nuclei of three ages of rats were studied in the presence and absence of butyrate. Butyrate can decrease the overall acetylations of non-histone chromosomal proteins and histones but increase the amount of polyacetylated histone H4 in all classes of nuclei of the three ages.  相似文献   

16.
17.
Assembly of newly replicated chromatin.   总被引:53,自引:0,他引:53  
A Worcel  S Han  M L Wong 《Cell》1978,15(3):969-977
Mild staphylococcal nuclease digestions under isotonic conditions release fragments of a 200 Å diameter fiber from nuclei of Drosophila melanogaster tissue culture cells. These soluble fragments have high sedimentation coefficients (30–100S) and show tightly packed nucleosomes in the electron microscope. Under the same conditions, newly replicated chromatin is released as more slowly sedimenting fragments (14S). Within 20 min after DNA replication, the nascent chromatin gradually matures into compact supranucleosomal structures which are indistinguishable from bulk chromatin on the isokinetic sucrose gradients.We have used this fractionation technique to examine the question of the fate and assembly of the new histones. After short pulses with either 35S-methionine or 3H-lysine, the radioactive histones do not co-sediment with the bulk chromatin but appear instead in the fractions where the newly replicated DNA is found. Furthermore, the various nascent histones appear in different fractions on the gradient: histones H3 and H4 in 10–15S structures, histones H2A and H2B in 15–50S structures and histone H1 in 30–100S structures. These results, together with the analysis of pulse and pulse-chase experiments of both nascent DNA and histones, strongly suggest that histones H3 and H4 are deposited first on the nascent DNA (during or slightly after the DNA is replicated), histones H2A and H2B are deposited next (2–10 min later) and histone H1 is deposited last (10–20 min after DNA replication). A high turnover 20,000 dalton protein is also associated with the newly replicated chromatin.  相似文献   

18.
Summary The effect of secondary stimulation with estrogen on synthesis of nuclear and nucleolar proteins is studied in chick oviduct.Isolated nuclei and nucleoli have a protein/DNA ratio of 5.2 and 5.6, respectively. 35% of nuclear and nucleolar protein is recovered in the histone fraction after hydroxylapatite chromatography. Gel electrophoretic separations of nuclear and nucleolar nonhistones are largely similar as to visible bands and distribution of radioactivity. Nucleoli bind 1.4 times more [3H] estradiol as compared to whole nuclei.Nucleolar histones are labelled slightly more actively with [3H] leucine than nuclear histones; nucleolar nonhistones are labelled about 3 times more actively than nuclear nonhistones. An 18 hour secondary stimulation with estrogen increases the radioactivity of histones by 6-fold and that of nonhistones by 2.5-fold in whole nuclei as well as in nucleoli. Stimulation appears to increase preferentially radioactivity of nonhistones at 50 000 daltons. As this change is observed in whole nuclei and nucleoli and is not reduced with hydroxyurea, it is suggested that this may be related to a gross structural reorganisation of chromatin induced by the hormone.  相似文献   

19.
The histones present in mature oocytes and embryos of Urechis caupo and their pattern of synthesis during early development have been characterized. Acid-soluble proteins extracted from mature oocyte germinal vesicles and from embryonic nuclei were analyzed by two-dimensional polyacrylamide gel electrophoresis. Histones are accumulated in the mature oocytes in amounts sufficient to provide for the assembly of chromatin through the 32- to 64-cell stage of embryogenesis. Two H1 histones, which appear to be variants, were found. Germinal vesicles and cleavage-stage nuclei are enriched in H1M (maternal). During late cleavage a faster-migrating H1, H1E (embryonic), appears among the nuclear histones and, as embryogenesis continues, replaces H1M as the predominant H1. No new core histone variants are detected during early development. Examination of [3H]lysine-labeled histones from germinal vesicles and embryonic nuclei reveals stage-specific patterns of histone synthesis. H1M is the major H1 species synthesized in mature oocytes. After fertilization, a switch to the predominant synthesis of H1E occurs. Comparison of the [3H]lysine incorporated into H1E and core histones indicates that H1E synthesis is disproportionately high from midcleavage through the midblastula stage. By the gastrula stage, a balanced synthesis of H1E and each core histone is established. The results indicate that there is noncoordinate regulation of H1 and core histone synthesis during Urechis development.  相似文献   

20.
《Epigenetics》2013,8(1):25-32
Mutations within the gene encoding methyl CpG binding protein 2 (MECP2) cause the autism-spectrum neurodevelopmental disorder Rett Syndrome (RTT). MECP2 recruits histone deacetylase to methylated DNA and acts as a long-range regulator of methylated genes. Despite ubiquitous MECP2 expression, the phenotype of RTT and the Mecp2-deficient mouse is largely restricted to the postnatal brain. Since Mecp2-deficient mice have a defect in neuronal maturation, we sought to understand how MECP2/Mecp2 mutations globally affect histone modifications during postnatal brain development by an immunofluorescence approach. Using an antibody specific to acetylated histone H3 lysine 9 (H3K9ac), a bright punctate nuclear staining pattern was observed as MECP2 expression increased in early postnatal neuronal nuclei. As neurons matured in juvenile and adult brain samples, the intensity of H3K9ac staining was reduced. Mecp2-deficient mouse and RTT cerebral neurons lacked this developmental reduction in H3K9ac staining compared to age-matched controls, resulting in a significant increase in neuronal nuclei with bright H3K9ac punctate staining. In contrast, trimethylated histone H3 lysine 9 (H3K9me3) localized to heterochromatin independent of MeCP2, but showed significantly reduced levels in Mecp2 deficient mouse and RTT brain. Autism brain with reduced MECP2 expression displayed similar histone H3 alterations as RTT brain. These observations suggest that MeCP2 regulates global histone modifications during a critical postnatal stage of neuronal maturation. These results have implications for understanding the molecular pathogenesis of RTT and autism in which MECP2 mutation or deficiency corresponds with arrested neurodevelopment.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号