首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A major locus for submergence tolerance mapped on rice chromosome 9   总被引:18,自引:0,他引:18  
Submergence stress is a widespread problem in rice-growing environments where drainage is impeded. A few cultivars can tolerate more than 10 days of submergence, but the genes conferring this tolerance have not been identified. We used randon-amplified polymorphic DNA (RAPD) and restriction fragment length polymorphism (RFLP) markers to map submergence tolerance in 169 F2 plants and the resulting F3 families of a cross between a tolerant indica rice line, IR40931-26, and a susceptible japonica line, PI543851. IR40931-26 inherited strong submergence tolerance from the unimproved cultivar FR13A. Eight-day old F3 seedlings were submerged for 14–16 days in 55-cm deep tanks, and tolerance was scored after 7 days recovery on a scale of 1 (tolerant) to 9 (susceptible). The tolerant and susceptible parents scored 1.5 and 8.4, respectively, and the F3 means ranged from 1.6 to 8.9. Two bulks were formed with DNA from F2 plants corresponding to the nine most tolerant and the nine most susceptible F3 families. Of 624 RAPD primers used to screen the bulks, five produced bands associated with either tolerance or susceptibility. These markers were mapped to a region of chromosome 9 by linkage to RFLP markers. A submergence tolerance quantitative trait locus (QTL), here designatedSub1, was located ca. 4 cM from the RFLP marker C1232 and accounted for 69% of the phenotypic variance for the trait.  相似文献   

2.
Hereditary spastic paraplegia (HSP) is a clinically and genetically heterogeneous group of disorders characterized by insidiously progressive spastic weakness in the legs. Genetic loci for autosomal dominant HSP exist on chromosomes 2p, 14q, and 15q. These loci are excluded in 45% of autosomal dominant HSP kindreds, indicating the presence of additional loci for autosomal dominant HSP. We analyzed a Caucasian kindred with autosomal dominant HSP and identified tight linkage between the disorder and microsatellite markers on chromosome 8q (maximum two-point LOD score 5.51 at recombination fraction 0). Our results clearly establish the existence of a locus for autosomal dominant HSP on chromosome 8q23-24. Currently this locus spans 6.2 cM between D8S1804 and D8S1774 and includes several potential candidate genes. Identifying this novel HSP locus on chromosome 8q23-24 will facilitate discovery of this HSP gene, improve genetic counseling for families with linkage to this locus, and extend our ability to correlate clinical features with different HSP loci.  相似文献   

3.
Hereditary spastic paraplegia is a genetically and phenotypically heterogeneous disorder. Both pure and complicated forms have been described, with autosomal dominant, autosomal recessive, and X-linked inheritance. Various loci (SPG1-SPG6) associated with this disorder have been mapped. Here, we report linkage analysis of a large consanguineous family affected with autosomal recessive spastic paraplegia with age at onset of 25-42 years. Linkage analysis of this family excluded all previously described spastic paraplegia loci. A genomewide linkage analysis showed evidence of linkage to chromosome 16q24.3, with markers D16S413 (maximum LOD score 3.37 at recombination fraction [theta] of .00) and D16S303 (maximum LOD score 3.74 at straight theta=.00). Multipoint analysis localized the disease gene in the most telomeric region, with a LOD score of 4.2. These data indicate the presence of a new locus linked to pure recessive spastic paraplegia, on chromosome 16q24.3, within a candidate region of 6 cM.  相似文献   

4.
Genetic loci for autosomal dominant pure hereditary spastic paraplegia (ADPHSP) have been mapped to chromosomes 2p, 8q, 12q, 14q, and 15q. We undertook a genomewide linkage screen of a large family with ADPHSP, for which linkage at all previously identified ADPHSP loci was excluded. Analysis of markers on chromosome 19q gave a peak pairwise LOD score of 3.72 at D19S420, allowing assignment of a novel ADPHSP locus (which we have termed "SPG12") to this region. Haplotype construction and analysis of recombination events narrowed the SPG12 locus to a 16.1-cM region between markers D19S868 and D19S902.  相似文献   

5.
Photoperiod response is a key determinant for barley adaptation to diverse environments. A major quantitative trait locus (QTL) for response to long photoperiod was identified in Australia (Perth, 31°56??S) and China (Wuhan, 30°33??N) using 178 doubled haploid lines derived from a cross of an Australian barley, Baudin, and a Canadian barley, AC Metcalfe. The QTL was detected as a major QTL in the 18-h photoperiod glasshouse experiments and mapped to the Xp12m50B199?CXp13m47B399 interval on chromosome 4H with a LOD score of 57 in Australia and confirmed in China. The single QTL accounted for 77.48 and 37.81% of phenotypic variation for long photoperiod response in Australia and China, respectively. The same QTL also controlled heading date in Australia, under normal and extended photoperiod conditions, and in China, under extended photoperiod and late-sown conditions. The QTL advanced heading date by 27.8?days in Australia and 42.5?days in China under a 18-h photoperiod. In addition, QTL for heading date were identified on chromosomes 2H and 3H. The chromosome 3H QTL was associated with the denso gene and detected in all conditions, but the chromosome 2H QTL was only detected in Australia. The new photoperiod response QTL, Qhea.BM.4-13/Qpho.BM.4-13, on chromosome 4H and its associated markers will provide an alternative for plant breeders developing new varieties for different environments using marker-assisted selection.  相似文献   

6.
7.
Leber congenital amaurosis (LCA) is a clinically and genetically heterogeneous autosomal recessive retinal dystrophy and the most common genetic cause of congenital visual impairment. We used a DNA pooling strategy comparing the genotypes of affected to unaffected control pools in a genome-wide search for identity-by-descent on a consanguineous Saudi Arabian LCA family. A shift to homozygosity was observed in the affected DNA pool compared with the control pool at linked markers D14S606 and D14S610. Genotyping of individual DNA samples from the entire pedigree for marker D14S74, closely linked to these loci, and several flanking markers confirmed linkage with a ZMAX=13.29 at θ=0.0. These data assign a third locus (LCA3) for LCA to chromosome 14q24. This locus and the previously identified loci are excluded for other Saudi Arabian pedigrees, both confirming that this clinical disorder is genetically heterogeneous and that additional LCA genes remain to be identified. Received: 5 February 1998 / Accepted: 2 June 1998  相似文献   

8.
Coeliac disease is a common multifactorial disease with a strong genetic component, which is not entirely explained by the HLA association. Four previous whole-genome screens have produced somewhat inconsistent results suggesting genetic heterogeneity. We attempted to overcome this problem by performing a genome-wide scan in a Finnish sub-population, expected to be more homogeneous than the general population of Finland. The families in our study originate from the northeastern part of Finland, the Koilliskaira region, which has been relatively isolated since its founding in the 16th century. Genealogical studies have confirmed that the families share a common ancestor in the 16th century. Nine families with altogether 23 patients were genotyped for 399 microsatellite markers and the data were analysed with parametric linkage analysis using two dominant and one recessive model. A region on chromosome 15q11-q13 was implicated with a LOD score of 3.14 using a highly penetrant dominant model. Addition of more markers and one more sib-pair increased the LOD score to 3.74. This result gives preliminary evidence for existence of a susceptibility factor in this chromosomal region.  相似文献   

9.
10.
Bipolar affective disorder (BAD) affects approximately 1% of the population and shows strong heritability. To identify potential BAD susceptibility loci, we undertook a 15-cM genome screen, using 214 microsatellite markers on the 35 most informative individuals of a large, statistically powerful pedigree. Data were analyzed by parametric two-point linkage methods under several diagnostic models. LOD scores >1.00 were obtained for 21 markers, with four of these >2.00 for at least one model. The remaining 52 individuals in the family were genotyped with these four markers, and LOD scores remained positive for three markers. A more intensive screen was undertaken in these regions, with the most positive results being obtained for chromosome 4q35. Using a dominant model of inheritance with 90% maximum age-specific penetrance and including bipolar I, II, schizoaffective/mania, and unipolar individuals as affected, we obtained a maximum two-point LOD score of 2.20 (theta = .15) at D4S1652 and a maximum three-point LOD score of 3.19 between D4S408 and D4S2924. Nonparametric analyses further supported the presence of a locus on chromosome 4q35. A maximum score of 2.62 (P=.01) was obtained between D4S1652 and D4S171 by use of the GENEHUNTER program, and a maximum score of 3.57 (P=.0002) was obtained at D4S2924 using the affected pedigree member method. Analysis of a further 10 pedigrees suggests the presence of this locus in at least one additional family, indicating a possible predisposing locus and not a pedigree-specific mutation. Our results suggest the presence of a novel BAD susceptibility locus on chromosome 4q35.  相似文献   

11.
Hypospadias is a common malformation (1/300 boys) where the urethra opens on the ventral side of the penis. It is considered a complex disorder with both genetic and environmental factors involved in the pathogenesis. To identify the chromosomal loci involved in the pathogenesis of hypospadias, we performed a genome-wide linkage analysis in a three-generational family showing autosomal dominant inheritance of hypospadias. Fifteen individuals, whereof seven affected, were genotyped within a total of 426 microsatellite markers and the genotyping results were analyzed using parametric and non-parametric linkage analyses. The genome-wide linkage analysis and subsequent fine mapping gave a maximum linkage in both parametric (LOD score 2.71) and non-parametric (NPL score 5.01) single-point analyses for marker D7S640. A susceptibility haplotype shared by all affected boys was identified with the centromeric and telomeric boundaries defined by markers D7S2519 and D7S2442, respectively. This suggests a novel hypospadias locus at chromosome 7q32.2-q36.1 that encompasses 18.2 Mb (25 cM) and harbors hundreds of genes. Mutation analysis of two genes within the region, the AKR1D1 (aldo-keto reductase family 1, member D1) gene involved in the androgen pathway and the PTN gene coding for pleiotrophin, an embryonic differentiation and growth factor, was performed but without putative findings.  相似文献   

12.
Amelogenesis imperfecta (AI) is a collective term used to describe phenotypically diverse forms of defective tooth enamel development. AI has been reported to exhibit a variety of inheritance patterns, and several loci have been identified that are associated with AI. We have performed a genome-wide scan in a large Brazilian family segregating an autosomal dominant form of AI and mapped a novel locus to 8q24.3. A maximum multipoint LOD score of 7.5 was obtained at marker D8S2334 (146,101,309 bp). The disease locus lies in a 1.9 cM (2.1 Mb) region according to the Rutgers Combined Linkage-Physical map, between a VNTR marker (at 143,988,705 bp) and the telomere (146,274,826 bp). Ten candidate genes were identified based on gene ontology and microarray-facilitated gene selection using the expression of murine orthologues in dental tissue, and examined for the presence of a mutation. However, no causative mutation was identified.  相似文献   

13.
A susceptibility locus for migraine with aura, on chromosome 4q24   总被引:18,自引:0,他引:18  
Migraine is a complex neurovascular disorder with substantial evidence supporting a genetic contribution. Prior attempts to localize susceptibility loci for common forms of migraine have not produced conclusive evidence of linkage or association. To date, no genomewide screen for migraine has been published. We report results from a genomewide screen of 50 multigenerational, clinically well-defined Finnish families showing intergenerational transmission of migraine with aura (MA). The families were screened using 350 polymorphic microsatellite markers, with an average intermarker distance of 11 cM. Significant evidence of linkage was found between the MA phenotype and marker D4S1647 on 4q24. Using parametric two-point linkage analysis and assuming a dominant mode of inheritance, we found for this marker a maximum LOD score of 4.20 under locus homogeneity (P=.000006) or locus heterogeneity (P=.000011). Multipoint parametric (HLOD = 4.45; P=.0000058) and nonparametric (NPL(all) = 3.43; P=.0007) analyses support linkage in this region. Statistically significant linkage was not observed in any other chromosomal region.  相似文献   

14.
Xiao S  Bu L  Zhu L  Zheng G  Yang M  Qian M  Hu L  Liu J  Zhao G  Kong X 《Genomics》2001,74(2):180-185
Gingival fibromatosis (GINGF) is an oral disorder characterized by enlargement of the gingiva. It occurs either as the sole phenotype or combined with other symptoms. Thus far, one GINGF locus has been mapped on chromosome 2, at 2p21, and a second possible locus has been mapped to 2p13. However, the genes responsible for this disorder have not been elucidated. We identified a four-generation Chinese GINGF family in which the disease manifests within 1 year after birth. After exclusion of the two known GINGF loci in this family, we performed a genome-wide search to map the chromosome location of the responsible gene. We identified a new locus, GINGF2, on chromosome 5q13-q22 with a maximum two-point lod score of 4.31 at D5S1721 (theta = 0.00). Haplotype analysis placed the critical region in the interval defined by D5S1491 and D5S1453. Within this region, calcium/calmodulin-dependent protein kinase IV (CAMK4) is a strong candidate.  相似文献   

15.
16.
A locus for migraine without aura maps on chromosome 14q21.2-q22.3   总被引:8,自引:0,他引:8  
Migraine is a common and disabling neurological disease of unknown origin characterized by a remarkable clinical variability. It shows strong familial aggregation, suggesting that genetic factors are involved in its pathogenesis. Different approaches have been used to elucidate this hereditary component, but a unique transmission model and causative gene(s) have not yet been identified. We report clinical and molecular data from a large Italian pedigree in which migraine without aura (MO) segregates as an autosomal dominant trait. After exclusion of any association between MO and the known familial hemiplegic migraine and migraine with aura loci, we performed a genomewide linkage analysis using 482 polymorphic microsatellite markers. We obtained significant evidence of linkage between the MO phenotype and the marker D14S978 on 14q22.1 (maximum two-point LOD score of 3.70, at a recombination fraction of 0.01). Multipoint parametric analysis (maximum LOD score of 5.25 between markers D14S976 and D14S978) and haplotype construction showed strong evidence of linkage in a region of 10 cM flanked by markers D14S1027 and D14S980 on chromosome 14q21.2-q22.3. These results indicate the first evidence of a genetic locus associated with MO on chromosome 14.  相似文献   

17.
18.
We report a highly polymorphic, sequence-tagged microsatellite site (STMS) at the D5S99 locus that was previously identified by a less informative restriction fragment length polymorphism (RFLP). This marker, which was also localized to the physical map of chromosome 5q by fluorescent in situ hybridization (FISH), should assist in the precision mapping of genes in the area 5q33–34.  相似文献   

19.
Familial amyotrophic lateral sclerosis (FALS) affects 5%-10% of cases of amyotrophic lateral sclerosis (ALS) and is inherited as an autosomal dominant condition with incomplete penetrance. One-fifth of these cases of FALS are associated with mutations in copper/zinc-dependent superoxide dismutase (SOD1), but the gene defect in the remaining 80% of familial cases is, as yet, unknown. We have carried out a preliminary genome screen, using a U.K. resource of families lacking SOD1 mutations, to identify other potential disease loci and have identified a putative locus on chromosome 16q12.1-q12.2. The region associated with disease was further refined in the major family that contributed to this result and was localized to D16S409-D16S3032, a 14.74-cM genetic interval that corresponds to a physical distance of 6.6 Mb, which coincides with a region independently identified by two further research groups in the United States and the United Kingdom.  相似文献   

20.
A second locus for familial high myopia maps to chromosome 12q.   总被引:30,自引:0,他引:30       下载免费PDF全文
Myopia, or nearsightedness, is the most common eye disorder worldwide. "Pathologic" high myopia, or myopia of <=-6.00 diopters, predisposes individuals to retinal detachment, macular degeneration, cataract, or glaucoma. A locus for autosomal dominant pathologic high myopia has been mapped to 18p11.31. We now report significant linkage of high myopia to a second locus at the 12q21-23 region in a large German/Italian family. The family had no clinical evidence of connective-tissue abnormalities or glaucoma. The average age at diagnosis of myopia was 5.9 years. The average spherical-component refractive error for the affected individuals was -9.47 diopters. Markers flanking or intragenic to the genes for the 18p locus, Stickler syndromes type I and II (12q13.1-q13.3 and 6p21.3), Marfan syndrome (15q21.1), and juvenile glaucoma (chromosome 1q21-q31) showed no linkage to the myopia in this family. The maximum LOD score with two-point linkage analysis in this pedigree was 3.85 at a recombination fraction of .0010, for markers D12S1706 and D12S327. Recombination events identified markers D12S1684 and D12S1605 as flanking markers that define a 30.1-cM interval on chromosome 12q21-23, for the second myopia gene. These results confirm genetic heterogeneity of myopia. The identification of this gene may provide insight into the pathophysiology of myopia and eye development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号