首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Many studies have clarified that poly(gamma-glutamic acid) (PGA) increases the solubility of Ca(2+), suggesting that PGA enhances calcium absorption in small intestine. However, there has been no report on the specific interaction between PGA and Ca(2+) in water. We studied the aqueous solution properties of PGA calcium salt (PGA-Ca complex). The chelating ability and binding strength of PGA for Ca(2+) were evaluated. PGA-Ca complex was soluble in water in contrast with the insolubility of poly(acrylic acid) (PAA) calcium salt and the chelating ability of PGA for Ca(2+) was almost the same than that of PAA. The globular conformation of PGA-Ca complex in water was estimated by SEC and viscosity measurements. The chelation of PGA for Ca(2+) was examined by 1H NMR. The present study showing the characteristics of PGA-Ca complex will provide useful information of the calcium absorption by PGA in vivo.  相似文献   

2.
A study of the production of poly(gamma-glutamic acid) (PGGA) by Bacillus licheniformis NCIMB 11709 grown on medium E in shake flasks at 30 degrees C is reported. The enantiomeric composition of PGGA was found to be highly sensitive to the concentration of Mn++, especially when the ion is present in small amounts (相似文献   

3.
This review article deals with the chemistry and biosynthesis of poly-(gamma-glutamic acid) (gamma-PGA) produced by various strains of Bacillus. Potential applications of gamma-PGA as thickener, cryoprotectant, humectant, drug carrier, biological adhesive, flocculant, or heavy metal absorbent, etc. with biodegradability in the fields of food, cosmetics, medicine and water treatments are also reviewed.  相似文献   

4.
Protease producing halotolerant bacterium was isolated from saltern pond sediment (Tuticorin) and identified as Bacillus licheniformis (TD4) by 16S rRNA gene sequencing. Protease production was enhanced by optimizing the culture conditions. The nutritional factors such as carbon and nitrogen sources, NaCl and also physical parameters like incubation time, pH, agitation, inoculum size were optimized for the maximum yield of protease. Studies on the effect of different carbon and nitrogen sources revealed that xylose and urea enhances the enzyme production. Thus, with selected C–N sources along with 1 M NaCl the maximum protease production (141.46 U/mg) was obtained in the period of 24 h incubation at pH 8 under 250 rpm compared to the initial enzyme production (89.87 U/mg).  相似文献   

5.
Partially benzylamidated, amphipathic poly(gamma-glutamic acid) (BzPGA) was synthesized from poly(gamma-glutamic acid) (PGA) and benzylamine by direct amidation in dimethyl sulfoxide (DMSO). Benzylamine and PGA were heated in DMSO for 1 to 26 h at temperatures between 110 and 130 degrees C, producing derivatives of various degrees of benzylamidation as a function of the reaction time and temperature. Neither any carboxyl-activating agent nor catalyst is needed for the reaction to proceed. After purification by dialysis, the product was identified by 1H and 13C 1D and 2D NMR in DMSO-d(6). BzPGA prepared by the new direct amidation method was identical to that obtained with a conventional carbodiimide-mediated reaction in water. The one-pot amidation procedure described in the present article can probably be applied to the synthesis of amides from other amines and carboxylic acids.  相似文献   

6.
Adsorption of mercury(II) by an extracellular biopolymer, poly(gamma-glutamic acid) (gamma-PGA), was studied as a function of pH, temperature, agitation time, ionic strength, light and heavy metal ions. An appreciable adsorption occurred at pH>3 and reached a maximum at pH 6. Isotherms were well predicted by Redlich-Peterson model with a dominating Freundlich behavior, implying the heterogeneous nature of mercury(II) adsorption. The adsorption followed an exothermic and spontaneous process with increased orderliness at solid/solution interface. The adsorption was rapid with 90% being attained within 5 min for a 80 mg/L mercury(II) solution, and the kinetic data were precisely described by pseudo second order model. Ionic strength due to added sodium salts reduced the mercury(II) binding with the coordinating ligands following the order: Cl(-) >SO(4)(2-) >NO(3)(-). Both light and heavy metal ions decreased mercury(II) binding by gamma-PGA, with calcium(II) ions showing a more pronounced effect than monovalent sodium and potassium ions, while the interfering heavy metal ions followed the order: Cu(2+) > Cd(2+) > Zn(2+). Distilled water adjusted to pH 2 using hydrochloric acid recovered 98.8% of mercury(II), and gamma-PGA reuse for five cycles of operation showed a loss of only 6.5%. IR spectra of gamma-PGA and Hg(II)-gamma-PGA revealed binding of mercury(II) with carboxylate and amide groups on gamma-PGA.  相似文献   

7.
Ca-induced renaturation of Bacillus licheniformis alpha-amylase in the presence of urea has been employed to determine the binding constants of the ion. The native enzyme is folded at 3M urea while the Ca-depleted protein is largely unfolded at this denaturant concentration. Refolding of the protein has been monitored by circular dichroism and the titration curves have been analyzed assuming a model of three independent binding sites. The stoichiometry has been taken from X-ray studies. The refolded protein exhibits a secondary structure that is similar but not identical to that of the native protein. The binding constants have been used to construct a phase diagram that illustrates the contribution of Ca-binding to the resistance against urea unfolding.  相似文献   

8.
The purpose of this study was to enhance the production of polyhydroxyalkanoate (PHA) by sequential mutation of Bacillus licheniformis PHAs-007, using UV and N-methyl-N′-nitro-N-nitrosoguanidine (NTG). In addition, the effect of nutrient additions and environmental conditions were optimized to increase the production of PHA. Bacillus licheniformis PHAs-007 produced high amounts of PHA (64.09 ~ 68.80% of DCW) under both synthetic and renewable substrates. After mutagenesis treatment, mutant M2-12 was selected from 380 strains, based on its high biomass and PHA concentration. The mutant M2-12 gave the highest value of specific growth rate (0.09/h), biomass (22.24 g/L) and PHA content (19.55 g/L) under optimal conditions, consisting of 3% palm oil mill effluent, with no additional trace elements, at 45oC and pH 7. The mutant strain showed higher resistance to substrate concentrations, as well as pH and temperature, than the wild type. The accumulation of PHA was increased by 3.18-fold compared to the wild type, and the production of PHA by the mutant M2-12 was constantly retained over 12 times of cultivation. The mutation and optimization strategy appear to be suitable for producing high density PHA, reducing the medium cost and consequently lowering the production cost. Interestingly, the mutant strain could synthesize the novel PHA copolymers such as 3-hydroxyvalerate and 3-hydroxyhexanoate, which were not produced by the wild type.  相似文献   

9.
Parameters affecting the fermentative lactic acid (LA) production are summarized and discussed: microorganism, carbon- and nitrogen-source, fermentation mode, pH, and temperature. LA production is compared in terms of LA concentration, LA yield and LA productivity. Also by-product formation and LA isomery are discussed.  相似文献   

10.
Combination of statistical optimization and mutagenesis to isolate hypersecretory strains is studied to maximize phytase production from Aspergillus niger NCIM 563 under submerged fermentation. The overall results obtained show a remarkable 5.98-fold improvement in phytase production rates when compared to that using basal medium. Optimization of culture conditions from parent strain is studied first by the Plackett–Burman technique to evaluate the effects of 11 variables for phytase production. The results showed that glucose, MgSO4, KCl, incubation period, and MnSO4 are the most significant variables affecting enzyme production. Further optimization in these variables, using a central composite design technique, resulted in 3.74-fold increase in the yield of phytase production to 254,500 U/l when compared with the activity observed with basal media (68,000 U/l) in shake flask. Our experiments show that the phytase from A. niger NCIM 563 exhibits desirable activity in simulated gastric fluid conditions with low pH and also improved thermostability when compared to commercial phytase. The improved yield demonstrates the potential applicability of phytase enzyme as a source of phytase supplement for phosphorus nutrition and environmental protection in animal feed industry. Physical and chemical mutagenesis experiments were carried out in parallel to isolate hypersecretory mutants that could possibly further enhance the enzyme production. Using optimized media conditions of the parent strain, our results show that mutant strain A. niger NCIM 1359 increased the phytase activity by another 1.6-fold to 407,200 U/l.  相似文献   

11.
Summary The cellulase-free xylanase from an alkalophilic thermophilic Bacillus was stable at pH 7.0 to 10.0 at 50 ° for 3 days.At 60 ° the enzyme showed a decrease in stability with a half- life of 3 h. Addition of various additives had no effect on the enzyme stability at 60 °. Glycine (0.5M) increased the enzyme half-life 6-fold at pH 7.0 to 9.0 and at 60 and 70 °. Xylan could offer protection against thermoinactivation of the xylanase at pH 7.0 and 8.0 at 60 ° and only a marginal increase at pH 9.0 at 70 ° was observed.  相似文献   

12.
Murakami S  Aoki N 《Biomacromolecules》2006,7(7):2122-2127
Novel bio-based hydrogels were prepared by cross-linking of microbial poly(gamma-glutamic acid) (PGA) with saccharides such as glucose, maltotriose, and cyclodextrin (CD) in the presence of water-soluble carbodiimide in dimethyl sulfoxide (DMSO) by one-pot synthesis at 25 degrees C for 24 h. The degradation of the gels in alkaline solution (pH 9) at 37 degrees C was also investigated. The PGA gels cross-linked with various neutral saccharides were obtained in relatively high recovery yields by use of a base like 4,4-(dimethylamino)pyridine. The PGA gel cross-linked by glucose showed the highest water absorption of 3000 g/g. The PGA gels cross-linked by CDs showed higher water absorption than those cross-linked by the corresponding linear saccharides. It was revealed that the water absorption of the PGA gel was affected by the cross-linker content and also the structure of cross-linkers as they had an effect on the cross-linking density of the PGA gel. The PGA gels were hydrolyzed under alkaline condition (pH 9) at 37 degrees C. The degradation rate was higher when the cross-linker content of the gel was lower.  相似文献   

13.
Amphiphilic graft copolymers consisting of poly(gamma-glutamic acid) (gamma-PGA) as the hydrophilic backbone and L-phenylalanine ethylester (L-PAE) as the hydrophobic side chain were synthesized by grafting L-PAE to gamma-PGA. The nanoparticles were prepared by a precipitation method, and about 200 nm-sized nanoparticles were obtained due to their amphiphilic properties. The hydrolytic and enzymatic degradation of these gamma-PGA nanoparticles was studied by gel permeation chromatography (GPC), scanning electron microscopy (SEM), dynamic light scattering (DLS) and (1)H NMR measurements. The hydrolysis ratio of gamma-PGA and these hydrophobic derivatives was found to decrease upon increasing the hydrophobicity of the gamma-PGA derivates. The pH had an effect on the hydrolytic degradation of the polymer. The hydrolysis of the polymer could be accelerated by alkaline conditions. The degradation of the gamma-PGA backbone by gamma-glutamyl transpeptidase (gamma-GTP) resulted in a dramatic change in nanoparticle morphology. With increasing time, the gamma-PGA nanoparticles began to decrease in size and finally disappeared completely. Moreover, the gamma-PGA nanoparticles were degraded by four different enzymes (Pronase E, protease, cathepsin B and lipase) with different degradation patterns. The enzymatic degradation of the nanoparticles occurred via the hydrolysis of gamma-PGA as the main chain and L-PAE as the side chain. In the case of the enzymatic degradation of gamma-PGA nanoparticles with Pronase E, the size of the nanoparticles increased during the initial degradation stage and decreased gradually when the degradation time was extended. Nanoparticles composed of biodegradable amphiphilic gamma-PGA with reactive function groups can undergo further modification and are expected to have a variety of potential pharmaceutical and biomedical applications, such as drug and vaccine carriers.  相似文献   

14.
Nanoparticles are considered to be efficient tools for inducing potent immune responses by an Ag carrier. In this study, we examined the effect of Ag-carrying biodegradable poly(gamma-glutamic acid) (gamma-PGA) nanoparticles (NPs) on the induction of immune responses in mice. The NPs were efficiently taken up by dendritic cells (DCs) and subsequently localized in the lysosomal compartments. gamma-PGA NPs strongly induced cytokine production, up-regulation of costimulatory molecules, and the enhancement of T cell stimulatory capacity in DCs. These maturational changes of DCs involved the MyD88-mediated NF-kappaB signaling pathway. In vivo, gamma-PGA NPs were preferentially internalized by APCs (DCs and macrophages) and induced the production of IL-12p40 and IL-6. The immunization of mice with OVA-carrying NPs induced Ag-specific CTL activity and Ag-specific production of IFN-gamma in splenocytes as well as potent production of Ag-specific IgG1 and IgG2a Abs in serum. Furthermore, immunization with NPs carrying a CD8(+) T cell epitope peptide of Listeria monocytogenes significantly protected the infected mice from death. These results suggest that Ag-carrying gamma-PGA NPs are capable of inducing strong cellular and humoral immune responses and might be potentially useful as effective vaccine adjuvants for the therapy of infectious diseases.  相似文献   

15.
Poly-gamma-D-glutamic acid from Bacillus licheniformis is a water-soluble, nontoxic, nonimmunogenic exopolymer. Using synthetic linkers, the alpha-carboxylate side chains of PGA were conjugated to an exposed thiol side chain of an antibody F(ab') fragment, Mc109F4. Analysis of the PGA-Mc109F4 conjugate by gel filtration HPLC revealed a mixture of multivalent conjugates. The PGA-Mc109F4 conjugate retained biological activity, but showed a lower binding affinity to target BCL3B3 cells than free Mc109F4 F(ab')(2) by flow cytometry, and a lower efficacy for BCL3B3 growth inhibition than free Mc109F4 F(ab')(2). PGA was also conjugated with the free amino group of glycopeptide antibiotic vancomycin. The PGA-vancomycin conjugate showed slightly lower antibacterial activity than free vancomycin versus susceptible Bacillus subtilis, but slightly higher activity versus intrinsically resistant Leuconostoc mesenteroides.  相似文献   

16.
A statistical approach response surface methodology (RSM) was used to study the production of succinic acid from Bacteroides fragilis. The most influential parameters for succinic acid production obtained through one-at-a-time method were glucose, tryptone, sodium carbonate, inoculum size and incubation period. These resulted in the production of 5.4gL(-1) of succinic acid in 48h from B. fragilis under anaerobic conditions. Based on these results, a statistical method, face-centered central composite design (FCCCD) falling under RSM was employed for further enhancing the succinic acid production and to monitor the interactive effect of these parameters, which resulted in a more than 2-fold increase in yield (12.5gL(-1) in 24h). The analysis of variance (ANOVA) showed the adequacy of the model and the verification experiments confirmed its validity. On subsequent scale-up in a 10-L bioreactor using conditions optimized through RSM, 20.0gL(-1) of succinic acid was obtained in 24h. This clearly indicated that the model stood valid even on large scale. Thus, the statistical optimization strategy led to an approximately 4-fold increase in the yield of succinic acid. This is the first report on the use of FCCCD to improve succinic acid production from B. fragilis. The present study provides useful information about the regulation of succinic acid synthesis through manipulation of various physiochemical parameters.  相似文献   

17.
The nutritional medium requirement for biosurfactant production by Bacillus licheniformis K51 was optimized. The important medium components, identified by the initial screening method of Plackett-Burman, were H3PO4, CaCl2, H3BO3, and Na-EDTA. Box-Behnken response surface methodology was applied to further optimize biosurfactant production. The optimal concentrations for higher production of biosurfactants were (g/l): glucose, 1.1; NaNO3, 4.4; MgSO4 x 7H2O, 0.8; KCl, 0.4; CaCl2, 0.27; H3PO4, 1.0 ml/l; and trace elements (mg/l): H3BO3, 0.25; CuSO4, 0.6; MnSO4, 2.2; Na2MoO4, 0.5; ZnSO4, 6.0; FeSO4, 8.0; CoCl2, 1.0; and Na-EDTA, 30.0. Using this statistical optimization method, the relative biosurfactant yield as critical micelle dilution (CMD) was increased from 10x to 105x, which is ten times higher than the non-optimized rich medium.  相似文献   

18.
An alkaline protease was isolated from culture filtrate of B. subtilis NCIM 2713 by ammonium sulphate precipitation and was purified by gel filtration. With casein as a substrate, the proteolytic activity of the purified protease was found to be optimal at pH 8.0 and temperature 70 degrees C. The purified protease had molecular weight 20 kDa, Isoelectric point 5.2 and km 2.5 mg ml(-1). The enzyme was stable over the pH range 6.5-9.0 at 37 degrees C for 3 hr. During chromatographic separation this protease was found to be susceptible to autolytic degradation in the absence of Ca2+. Ca2+ was not only required for the enzyme activity but also for the stability of the enzyme above 50 degrees C. About 62% activity was retained after 60 min at pH 8.0 and 55 degrees C. DFP and PMSF completely inhibited the activity of this enzyme, while in the presence of EDTA only 33% activity remained. However, it was not affected either by sulfhydryl reagent, or by divalent metal cations, except SDS and Hg2+. The results indicated that this is a serine protease.  相似文献   

19.
Abstract

Response surface methodology (RSM) was employed to enhance the production of a thermostable alkaline protease from Bacillus circulans. Significant influences of peptone, yeast extract, and glucose on protease production were noted with a one-variable-at-a-time optimization strategy. Then, a full factorial central composite design (CCD) was applied to study the effects of glucose, peptone, and yeast extract to determine the optimal concentrations of these compounds for protease production by B. circulans under shake flask fermentation conditions. The statistical reliability and significance of the model was validated by an F-test for analysis of variance (ANOVA); enzyme production was improved significantly under optimized conditions. The enzyme was purified by ammonium sulphate fractionation, and gel filtration chromatography. Maximum enzyme activity was observed at 60°C temperature, and at pH 10. Alkaline protease from B. circulans showed excellent compatibility and stability in the presence of commercial detergents like Ariel, Surf Excel, Tide, Rin, Nirma, Wheel, and Doctor and showed excellent blood destaining effectiveness with commercial detergents.  相似文献   

20.
Basic fibroblast growth factor (FGF-2) mitogenic activities of sulfonated poly(gamma-glutamic acid) (gamma-PGA-S) were investigated with chlorate-treated L929 fibroblast culture tests. When 72% of the carboxyl groups in gamma-PGA were sulfonated (gamma-PGA-S72), cell numbers reached a maximum. The activity of gamma-PGA-S72 was higher than that of gamma-PGA and synthetic heparinoids and was almost comparable to that of heparin. Cytotoxicity of gamma-PGA-S72 was not observed, regardless of the degree of sulfonation. FGF-2-protective effects of gamma-PGA-S72 against acid and thermal inactivation were also evaluated, and gamma-PGA-S72 showed higher FGF-2-protective effects in comparison to nonsulfonated gamma-PGA. The steric structures of various sulfonated gamma-PGA-Ss were analyzed by molecular modeling (molecular orbital method (MOPAC)) and indicated that gamma-PGA-Ss are helical in vacuo. Results from MOPAC and the molecular mechanics method (MM2) demonstrated that electrostatic interactions can take place between sulfonic and carboxyl groups of gamma-PGA-S and basic amino acid residues in FGF-2. gamma-PGA-S72 can interact with FGF-2 strongly.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号