首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This work reports on the optimization of PGA production by Bacillus licheniformis NCIM 2324 in solid state fermentation (SSF). In the first step, the one factor-at-a-time method was used to investigate the effect of solid substrates, initial moisture content, pH, and additional carbon and nitrogen source on PGA production; subsequently, response surface methodology (RSM) was used to establish the optimum concentrations of the key nutrients for higher PGA production. In the second step, the effects of amino acids and TCA cycle intermediates on the production of PGA were studied. The final optimized medium gave a maximum yield of 98.64 ± 1.61 mg gds−1 of PGA, which is significantly higher than that reported in the literature.  相似文献   

2.
Aiming at to enhance the production of penicillin G acylase (PGA) by Bacillus megaterium, we have performed flasks experiments using different medium composition. Using 51 g/L of casein hydrolyzed with Alcalase and 2.7 g/L of phenylacetic acid (PhAc), the following carbon substrates were tested, individually and combined: glucose, glycerol, and lactose (present in cheese whey). Glycerol and glucose showed to be effective nutrients for the microorganism growth but delayed the PGA production. Cheese whey always increased enzyme production and cell mass. However, lactose (present in cheese whey) was not a significant carbon source for B. megaterium. PhAc, amino acids, and small peptides present in the hydrolyzed casein were the actual carbon sources for enzyme production. Replacement of hydrolyzed casein by free amino acids, 10.0 g/L, led to a significant increase in enzyme production (app. 150%), with a preferential consumption of alanine, aspartic acid, glycine, serine, arginine, threonine, lysine, and glutamic acid. A decrease of the enzyme production was observed when 20.0 g/L of amino acids were used. Using the single omission technique, it was shown that none of the 18 tested amino acids was essential for enzyme production. The use of a medium containing eight of the preferentially consumed amino acids lead to similar enzyme production level obtained when using 18 amino acids. PhAc, up to 2.7 g/L, did not inhibit enzyme production, even if added at the beginning of the cultivation.  相似文献   

3.
Penicillin G amidase (PGA) is a key enzyme for the industrial production of penicillin G derivatives used in therapeutics. Escherichia coli ATCC 11105 is the more commonly used strain for PGA production. To improve enzyme yield, we constructed various recombinant E. coli HB101 and ATCC 11105 strains. For each strain, PGA production was determined for various concentrations of glucose and phenylacetic and (PAA) in the medium. The E. coli strain, G271, was identified as the best performer (800 U NIPAB/L). This strain was obtained as follows: an E. coli ATCC 11105 mutant (E. coli G133) was first selected based on a low negative effect of glucose on PGA production. This mutant was then transformed with a pBR322 derivative containing the PGA gene. Various experiments were made to try to understand the reason for the high productivity of E. coli G271. The host strain, E. coli G133, was found to be mutated in one (or more) gene(s) whose product(s) act(s) in trans on the PGA gene expression. Its growth is not inhibited by high glucose concentration in the medium. Interestingly, whereas glucose still exerts some negative effect on the PGA production by E. coli G133, PGA production by its transformant (E. coli G271) is stimulated by glucose. The reason for this stimulation is discussed. Transformation of E. coli G133 with a pBR322 derivative containing the Hindlll fragment of the PGA gene, showed that the performance of E. coli G271 depends both upon the host strain properties and the plasmid structure. Study of the production by the less efficient E. coli HB101 derivatives brought some light on the mechanism of regulation of the PGA gene. (c) 1993 John Wiley & Sons, Inc.  相似文献   

4.
An advanced solid-state fermentation (SSF) system (liquid medium absorbed on an inert support) has been applied to antibiotic production. The main components of this solid medium are: support (sugarcane bagasse), nutrients and water. The first two are solids and have to be considered to calculate the initial moisture content (IMC) of the medium. Earlier work indicated the importance of using high IMCs and concentrated media to obtain high penicillin yields in SSF. Nevertheless, the present work shows that high values of IMC or nutrients content can stimulate or inhibit penicillin production, depending on the strategy used to compensate this change (i.e. the proportions of the other two components). Conversely, increasing bagasse content always showed an inhibitory effect on the production. Since penicillin production depends on the combinations of these components, a global approach was used. The effect of the proportions of the three components on penicillin production was studied by means of a triangle of combinations and a 3D graph. It was possible to establish that high penicillin production is only obtained in a zone of low support content (10–12.5%). Surprisingly, one production maximum was observed in a zone of low moisture and high nutrients content (62 and 25.5% respectively); and another one in a zone of high moisture and a relatively low nutrients concentration (75.5 and 12.4% respectively).  相似文献   

5.
A locally isolated thermostable Bacillus strain producing polyglutamic acid (PGA) was characterized and identified based on 16S rRNA sequencing. Phylogenetic analysis revealed its closeness to Bacillus licheniformis. To evaluate the effect of different culture conditions on the production of PGA, Plackett–Burman factorial design was carried out. Fifteen variables were examined for their significance on PGA production. Among those variables, K2HPO4, KH2PO4, (NH4)2SO4 and casein hydrolysate were found to be the most significant variables that encourage PGA production. A correlation between cellular growth, PGA and the produced traces of polysaccharides was illustrated. An inverse relationship practice between cell dry weights and the produced PGA was demonstrated. On the other hand, a direct proportional relation was shown between polysaccharides on one side and cell dry weight and produced PGA on the other. The preoptimized medium, based on statistical analysis, showed a production of 33.5 g/l PGA, which is more than three times the basal medium.  相似文献   

6.
A mutant strain of E. coli EP1 harbouring pGL-5 was employed to develop a process for producing penicillin G acylase (PGA). In comparison with different carbon sources in the medium, it was found that the specific levels of PGA activity obtained in the glucose medium were the lowest. which was likely due to catabolic repression. Phenylacetic acid (PAA) was previously reported to be an regulatory inducer for PGA production, whereas in this study, the addition of PAA repressed both cell growth and enzyme expression. In a fed-batch culture, the increase of specific PGA activity followed the pattern of the cell concentration during the early to middle cell growth phase. With application of pure oxygen aeration and an appropriate medium design, the cell concentration reached 162 (g wet weight/l), which was 2.4 times higher compared to that of the original operation, and a specific PGA activity of 37 (IU/g wet weight) was achieved after 12 h of cultivation.  相似文献   

7.
Poly(-glutamic acid) (PGA) production in Bacillus subtilis IFO3335 was studied. When l-glutamic acid, citric acid, and ammonium sulfate were used as carbon and nitrogen sources, a large amount of PGA without a by-product such as a polysaccharide was produced. The time courses of cell growth, PGA, glutamic acid, and citric acid concentrations during cultivation were investigated. It was found that glutamic acid added to the medium was apparently not assimilated. It can be presumed that the glutamic acid unit in PGA is mainly produced from citric acid and ammonium sulfate. The PGA productivity was investigated at various concentrations of ammonium sulfate in the media, which caused the depression of cell growth, high productivity of PGA, and the production of PGA with a high relative molecular mass. The yield of PGA determined by gel permeation chromatography (GPC) reached approximately 20 g/l. This yield was the highest value for PGA production by B. subtilis IFO3335, suggesting that B. subtilis IFO3335 was a bacterium that could produce PGA effectively. Time courses relative to the molecular mass of PGA at various concentrations of ammonium sulfate were investigated. It was suggested that B. subtilis IFO3335 excreted a PGA degradation enzyme with the progress of cultivation and that PGA was degraded by this enzyme. Correspondence to: M. Kunioka  相似文献   

8.
Catharanthus roseus hairy root cultures, genetically transformed with Agrobacterium rhizogenes, produce a wide variety of indole alkaloids. The effect of sucrose, phosphate, nitrate, and ammonia concentrations on growth and indole alkaloid production of C. roseus hairy root cultures were studied by using statistical experimental designs and linear regression analysis. Contradictory effects of these nutrients on growth and indole alkaloid production were found. The maximal growth was obtained by having 77. 8 mg NaH(2)PO(4) . H(2)O/L and 1. 311 g KNO(3)/L in the medium, whereas the specific production of alkaloids was highest at the lowest levels of all the nutrients studied. The maximal dry weight was obtained with high values of sucrose and ammonia, but clear optimum concentrations could not be found. When having enough nutrients to support reasonable growth, it appeared difficult to affect the specific alkaloid production rates considerably. The growth (dry wt.) with the optimized nutrient concentrations in the medium was more than 50% better than in the control medium with about the same alkaloid production.  相似文献   

9.
A bacterium that produced a large amount of poly(γ-glutamic acid) (PGA) when it was grown aerobically in a culture medium containing ammonium salt and sugar as sources of nitrogen and carbon, respectively, was isolated from soil. The bacterium, strain TAM-4, was classified as Bacillus subtilis. The maximum PGA production (22.1 mg/ml) was obtained when it was grown in a medium containing 1.8% ammonium chloride and 7.5% fructose at 30°C for 96 h with shaking. Some properties of the PGA obtained at different times of cultivation were investigated by gel permeation chromatography, SDS–PAGE, and measurement of viscosity, and calculation of the d/l ratio of glutamic acid constituting PGA. The results suggested that PGA was elongated with no changes in the diastereoisomer ratio in the molecule.  相似文献   

10.
A nutrient medium was elaborated for the efficient production of glutamyl endopeptidase by the recombinant Bacillus subtilis strain AJ73 bearing the Bacillus intermedius 3-19 glutamyl endopeptidase gene within a multicopy plasmid. Optimal concentrations of the main nutrients, peptone and inorganic phosphate, were found using a multifactor approach. To provide for active growth and efficient glutamyl endopeptidase production, the cultivation medium of the recombinant strain should be enriched in phosphorus, organic and inorganic nitrogen sources, and yeast extract. Complex protein substrates, such as casein and gelatin, enhanced the biosynthesis of glutamyl endopeptidase. At the same time, easily metabolizable carbon sources suppressed it. The production of glutamyl endopeptidase was stimulated by the bivalent cations Ca2+, Mg2+, and Co2+.  相似文献   

11.
重组青霉素G酰化酶在枯草芽孢杆菌中的表达条件优化   总被引:2,自引:0,他引:2  
 为获得巨大芽孢杆菌青霉素 G酰化酶 (PGA)的高产菌株和条件 ,构建了分泌表达 PGA的基因工程枯草杆菌菌株 ,对表达条件进行了优化 .以 LB作为初始培养基 ,考察了温度、苯乙酸、装液量、碳源对于工程菌 PGA产量的影响 .实验发现重组细胞产酶不再需要变温和苯乙酸诱导 .充足的通气量和适当浓度的淀粉可使细胞密度及 PGA表达量大为提高 .表达条件优化后 ,菌体 A60 0由 3提高到 2 0 ,PGA的表达量由 3~ 6U/ml提高到 35~ 40 U/ml,为目前生产用巨大芽孢杆菌表达量的 6倍 .  相似文献   

12.
The Escherichia coli penicillin G amidase (PGA), which is a key enzyme in the production of penicillin G derivatives is generated from a precursor polypeptide by an unusual internal maturation process. We observed the accumulation of the PGA precursor polypeptide in the insoluble material recovered after sonication of recombinant E. coli JM109 cells grown at 26°C. The aggregated nature of the accumulated molecules was demonstrated using detergents and chaotrophic agents in solubilization assays. The periplasmic location of the aggregates was shown by trypsin-accessibility experiments performed on the spheroplast fraction. Finally, we showed that addition of sucrose or glycerol in the medium strongly reduces this periplasmic aggregation and as a consequence PGA production is substantially increased. Thus, periplasmic aggregation of the PGA precursor polypeptide limits PGA production by recombinant E. coli and this limitation can be overcome by addition in the medium of a non-metabolizable sugar, such as sucrose, or of glycerol.  相似文献   

13.
A medium based on less expensive nutrient sources, such as corn starch hydrolyzate (hydrol), corn steep liquor (CSL), urea and potassium phosphate was used for the growth of the yeast Phaffia rhodozyma 2A2N strain. A central composite experimental design has been employed to derive a statistical model on the effect of hydrol and CSL on carotenoid production. An initial concentration of sugars as glucose equivalent 73?g/l in hydrol and 43?g/l CSL were found optimal for the maximization of final carotenoid production in shake flask cultures. The carotenoid production was increased by adding urea and phosphate sources. Laboratory scale fermentation was performed with the optimized medium and total carotenoid production of 52.4?mg/l was obtained using constant fed-batch culture.  相似文献   

14.
Poly(-glutamic acid) (PGA) production in Bacillus subtilis IFO3335 was studied. PGA was only slightly produced from medium (100 ml) containing 2 g citric acid and 0.5 g ammonium sulfate in B. subtilis IFO3335. When 0.01 g/100 ml l-glutamine was added to this medium, a large amount of PGA (0.45 g/100 ml), without any by-products such as polysaccharides, was produced. The changes in cell growth, and PGA, glutamic acid, citric acid and ammonium sulfate concentrations in this medium during cultivation were investigated. It was found that PGA was effectively produced for the short time of 20 h after an induction period and that glutamic acid was scarcely excreted during PGA production. PGA could be effectively produced using this medium containing l-glutamine, citric acid and ammonium sulfate. It is suggested that a small amount of l-glutamine added to the medium activated enzymes in the pathway of PGA synthesis in B. subtilis IFO3335. It can be presumed that the enzyme catalyzing the reaction from 2-oxoglutaric acid to l-glutamic acid was glutamate synthase in this bacterium.  相似文献   

15.
The production of penicillic acid by Aspergillus sclerotiorum CGF for the biocontrol of Phytophthora disease was investigated in submerged fermentation using media composed of different nutrients. Soluble starch was found to be the most effective substrate among the carbon sources used, and produced the highest penicillic acid concentration of 2.98 mg ml(-1). When organic nitrogen sources were used, pharmamedia, yeast extract, and polypeptone-S were found to be suitable organic nitrogen sources (2.46-2.71 mg ml(-1)). The production of penicillic acid was not detected in when inorganic nitrogen sources were used. Only Na2HPO4, among the metal ions and phosphate salts tested, increased the production of penicillic acid (approximately 20%). When A. sclerotiorum CGF was cultured in optimal medium [8.0% (w/v) soluble starch, 0.6% (w/v) yeast extract, and 0.3% (w/v) Na2HPO4], maximum penicillic acid concentration (approximately 9.40 mg ml(-1)) and cell mass (approximately 17.4 g l(-1)) were obtained after 12 days.  相似文献   

16.
We report the successful culture of oil palm (Elaeis guineensis Jacq.) suspension cells in a bioreactor. In vitro propagation of this perennial monocotyledonous tree is an important part of the oil palm industry's approach to clonal propagation of high-yielding accessions. During culture of oil palm cells in a batch bioreactor, nutrients and extracellular metabolites were monitored, and kinetic parameters and nutrient-to-biomass conversion yields were calculated. The biomass increased approximately 3.5-fold per month, consistent with values reported for shake flask cultures. Although the carbon source was completely depleted by the end of the run, nitrogen sources remained in large excess and the sugar-to-biomass conversion yield remained low. Linear growth indicated that the cells were limited. The results obtained from the bioreactor runs indicated that we should be able to improve biomass production by carrying out optimization studies. Therefore, we initiated multi-factorial analyses using response surface experimental designs to investigate the effects of different nitrogen sources, as well as inoculum size and conditioned medium, on biomass production in flask cultures. Whereas glutamine does not have a significant effect on biomass production, ammonia has a positive effect up to an optimum concentration. Both inoculum density and conditioned medium have positive, synergistic effects on biomass production.  相似文献   

17.
Poly(γ‐glutamic acid) (γ‐PGA) is a promising biopolymer with many potential industrial and pharmaceutical applications. To reduce the production costs, the effects of yeast extract and L ‐glutamate in the substrate for γ‐PGA production were investigated systematically at shake flask scale. The results showed that lower concentrations of yeast extract (40 g/L) and L ‐glutamate (30 g/L) were beneficial for the cost‐effective production of γ‐PGA in the formulated medium. By maintaining the glucose concentration in the range of 3–10 g/L via a fed‐batch strategy in a 10‐L fermentor, the production of γ‐PGA was greatly improved with the highest γ‐PGA concentration of 101.1 g/L, a productivity of 2.19 g/L·h and a yield of 0.57 g/g total substrate, which is about 1.4‐ to 3.2‐fold higher than those in the batch fermentation. Finally, this high‐density fermentation process was successfully scaled up in a 100‐L fermentor. The present work provides a powerful approach to produce this biopolymer as a bulk chemical in large scale.  相似文献   

18.
Medium optimization for the nuclease (RNase) production by Bacillus firmus VKPACU-1 was studied using the one-factor-at-a-time method and Response Surface Methodology (RSM). One-factor-at-a-time methodology was used to study the effects of carbon, nitrogen, phosphorus sources, and physical conditions such as pH and temperature, on nuclease (RNase) production. After optimizing the carbon (glucose) and nitrogen (tryptone) sources in the culture medium the physical conditions, pH (6.5) and temperature (35°C) were also optimized. Later these conditions were chosen as the main factors and used in the experimental design. The central composite design (CCD) of the RSM was employed to evaluate the interactive effects of these four variables. The optimized values obtained by the statistical analysis showed that glucose 5.95 g/L, tryptone 22.5 g/L, pH 6.5, and temperature 35°C affected maximum nuclease (RNase) production. When utilizing these proposed optimized conditions, the model predicted nuclease (RNase) production of 43.6 U/mL and in the validation experiments, the nuclease production obtained was 46.5 U/mL. The nuclease production in medium optimized by RSM was 26% higher, than in the non-optimized medium.  相似文献   

19.
The main objective of this work was the optimization of the production of the beta-ketolase, acetopyruvate hydrolase, from Pseudomonas putida O1. Orcinol was used as an inducer for enzyme production. The growth medium was optimized in two steps. In the first step, screening for optimal glucose concentration was performed. In the second step, a central composite design was used to optimize carbon and nitrogen sources in the medium. After this optimization procedure, a medium was obtained which produced seven times more biomass than the initial medium. Acetopyruvate hydrolase enzyme production was optimized by determining the optimal time of feed and amount of orcinol, using statistical methods. In a subsequent step, the maximal orcinol-degradation rate was determined. The results obtained were used to find an optimal feeding profile for enzyme production. By using the optimized fed-batch process, acetopyruvate hydrolase activity was enhanced from 10 units l(-1)to 400 units l(-1), in comparison with previously reported fermentation experiments. Productivity could even be increased by a factor of 75, to a value of 20 units l(-1 )h(-1).  相似文献   

20.
Extensive spreading of liquid manure onto agricultural fields causes eutrophication of ground and surface water and also pollution of the atmosphere due to the high ammonium nitrogen content. A poly(gamma-glutamic acid) (PGA)-producing strain of Bacillus licheniformis was isolated in this study and investigated for its ability to reduce the ammonium nitrogen by converting ammonium into biomass and PGA as depot forms of nitrogen. In batch cultivations swine manure and an optimized mineral salts medium were used for PGA production. For example the cultivation of B. licheniformis strain S2 in liquid manure, which was modified by adding of 18 g citrate and 80 g glycerol l(-1) and exhibited a carbon to nitrogen ratio of 15.5:1, led to severe reduction of the ammonium content from 2.83 to 0.1 g x l(-1) and to the production of 0.16 g PGA and 7.5 g cell dry mass l(-1) within 410 h. Approximately 28% (w/w) of the total nitrogen was converted into cellular biomass, whereas 0.1% (w/w) was used for the production of PGA. In addition, approximately 33% (w/v) of the original ammonium was lost by stripping.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号