首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The activity-guided fractionation of sun ginseng (SG, heat processed Panax ginseng C. A. Meyer at 120 degrees C) was carried out to identify its main active hydroxyl radical (*OH) scavenging components. As a result, the n-BuOH fraction mainly consisting of ginsenosides showed the strongest activity. Of several ginsenosides of SG, the *OH scavenging activities of relatively high contents of 20(S)-Rg(3), 20(R)-Rg(3), Rk(1), and Rg(5) were compared. Rg(5) and 20(S)-Rg(3) showed strong *OH scavenging IC(50) values of 0.15 and 0.44 mM, respectively, and these activities were prominently higher than each of their respective isomers. Therefore, stereospecificity exists in the *OH scavenging activities of ginsenosides produced by heat processing. Especially, the double bond at carbon-20(22) or the OH group at carbon-20 geometrically close to OH at carbon-12 is thought to increase the *OH scavenging activity of ginsenosides.  相似文献   

2.
Ginsenosides are the active ingredients of Panax ginseng. Ginsenoside Rg(3) exists as two stereoisomers of carbon-20: 20-S-protopanaxatriol-3-[O-beta-d-glucopyranosyl (1-->2)-beta-glucopyranoside] (20(S)-Rg(3)) and 20-R-protopanaxatriol-3-[O-beta-d-glucopyranosyl (1-->2)-beta-glucopyranoside] (20(R)-Rg(3)). Recently, we reported that 20(S)-Rg(3) regulates voltage-dependent Ca(2+) channel activity and several types of ligand-gated ion channels, whereas 20(R)-Rg(3) does not have this activity. In this study, we investigated the structure-activity relationship of these two stereoisomers by NMR spectroscopy and by measurement of the current in Xenopus oocytes expressing the mouse cardiac voltage-dependent Na(+) channel (Na(v)1.5). We found that 20(S)-Rg(3) but not 20(R)-Rg(3) inhibited Na(+) channel current in a dose- and voltage-dependent manner. The difference between Rg(3) epimers in voltage-dependent ion channel regulation indicates that the structure of 20(S)-Rg(3) may be geometrically better aligned than that of 20(R)-Rg(3) for interaction with receptor regions in Na(+) channels. The (1)H and (13)C NMR chemical shifts, including all hydroxyl protons of 20(S)-Rg(3) and 20(R)-Rg(3), were completely assigned, and their tertiary structures were determined. 20(S)-Rg(3) has more tight hydrophobic packing near the chiral center than 20(R)-Rg(3). Tertiary structures and activities of 20(S)-Rg(3) and 20(R)-Rg(3) indicate that 20(S)-Rg(3) may have stronger interactions with the receptor region in ion channels than 20(R)-Rg(3). This may result in different stereoselectivity of Rg(3) stereoisomers in the regulation of voltage-dependent Na(+) channel activity. This is the first structural approach to ginsenoside action on ion channel.  相似文献   

3.
Ginsenoside Rb2 was transformed by recombinant glycosidase (Bgp2) into ginsenosides Rd and 20(S)-Rg3. The bgp2 gene consists of 2,430 bp that encode 809 amino acids, and this gene has homology to the glycosyl hydrolase family 2 protein domain. SDS-PAGE was used to determine that the molecular mass of purified Bgp2 was 87 kDa. Using 0.1 mg ml?1 of enzyme in 20 mM sodium phosphate buffer at 40 °C and pH 7.0, 1.0 mg ml?1 ginsenoside Rb2 was transformed into 0.47 mg ml?1 ginsenoside 20(S)-Rg3 within 120 min, with a corresponding molar conversion yield of 65 %. Bgp2 hydrolyzed the ginsenoside Rb2 along the following pathway: Rb2 → Rd → 20(S)-Rg3. This is the first report of the biotransformation of ginsenoside Rb2 to ginsenoside 20(S)-Rg3 using the recombinant glycosidase.  相似文献   

4.
Microbacterium esteraromaticum was isolated from ginseng field. The β-glucosidase gene (bgp1) from M. esteraromaticum was cloned and expressed in Escherichia coli BL21 (DE3). The bgp1 gene consists of 2,496 bp encoding 831 amino acids which have homology to the glycosyl hydrolase family 3 protein domain. The recombinant β-glucosidase enzyme (Bgp1) was purified and characterized. The molecular mass of purified Bgp1 was 87.5 kDa, as determined by SDS-PAGE. Using 0.1 mg ml−1 enzyme in 20 mM sodium phosphate buffer at 37°C and pH 7.0, 1.0 mg ml−1 ginsenoside Rb1 was transformed into 0.444 mg ml−1 ginsenoside Rg3 within 6 h. The Bgp1 sequentially hydrolyzed the outer and inner glucose attached to the C-20 position of ginsenosides Rb1. Bgp1 hydrolyzed the ginsenoside Rb1 along the following pathway: Rb1 → Rd → 20(S)-Rg3. This is the first report of the biotransformation of ginsenoside Rb1 to ginsenoside 20(S)-Rg3 using the recombinant β-glucosidase.  相似文献   

5.
Nonenzymatic glycation between ovalbumin (OVA) and seven D-aldohexoses was carried out to study the chemical and antioxidant characteristics of sugar-protein complexes formed in the dry state at 55 degrees C and 65% relative humidity for 2 d through the Maillard reaction (MR). The effects of Maillard reaction products (MRPs) modified with different aldohexoses on radical scavenging, lipid oxidation, and tetrazolium salt (XTT) reducibility were investigated. The results showed that the degree of browning and aggregation and the tryptophan-related fluorescent intensity of glycated proteins displayed a noticeable difference that depended on the sugars used for modification. All the glycated proteins exhibited higher antioxidant activity as compared to a heated control and native OVA, and the antioxidant activity was well correlated with browning development. Furthermore, the order of antioxidant activities for the seven complexes was as follows: altrose/allose-OVAs > talose/galactose-OVAs > glucose-OVA > mannose/glucose-OVAs. This implies that sugar-protein complexes with two sugars known as epimers about C-2 showed a similar antioxidant capacity. From these results, the configuration of a hydroxyl (OH) group about position C-2 did not influence the advanced cross-linking reaction, but the configuration of OH groups about C-3 and C-4 might be very important for formation of MRPs and their antioxidant behaviors.  相似文献   

6.
In this study, di(2,6-dimethylphenol) (Di-DMP), di(2,6-diisopropylphenol) (Di-DIP, dipropofol) and di(2,6-di-t-butylphenol) (Di-DTP) were synthesized by the reaction of monomeric phenol derivatives with catalytic CuCl(OH). TMEDA and Na2S2O4. Their antioxidant capacity and radical scavenging activity were examined using different in vitro methodologies such as 1,1-diphenyl-2-picryl-hydrazyl (DPPH*) free radical scavenging, 2,2'-azino-bis(3-ethylbenzthiazoline-6-sulfonic acid) (ABTS) radical scavenging activity, total antioxidant activity by ferric thiocyanate, total reducing power by potassium ferricyanide reduction method, superoxide anion radical scavenging, hydrogen peroxide scavenging and ferrous ions chelating activities.  相似文献   

7.
Ginsenosides (20S)-Rg3 and (20R)-Rg3 are famous rare ginsenosides from red ginseng, and their configurations in C-20 are different. This study aimed to investigate the protective mechanism of ginsenosides (20S)-Rg3 and (20R)-Rg3 on H2O2-induced H9C2 cells and compare their activity. The results showed that the ginsenosides (20S)-Rg3 and (20R)-Rg3 could increase the cell activity and the levels of GSH-Px, SOD and CAT, and decrease activities of LDH, MDA and ROS. Further studies showed that ginsenosides (20S)-Rg3 and (20R)-Rg3 could prevent oxidative stress injury of H9C2 cells by H2O2 through the Keap-1/Nrf2/HO-1 pathway. But the ML385 counteracts these effects. Interestingly, among these results, ginsenoside (20R)-Rg3 was superior to (20S)-Rg3, indicating that ginsenoside (20R)-Rg3 have a stronger effect of antioxidative stress. This study reflected that ginsenoside (20R)-Rg3 could be used as a potential Nrf2 activator and a safe effective Chinese herbal monomer in the treatment of cardiovascular disease.  相似文献   

8.
The OH(*) free radical scavenging properties of ascorbyl palmitate (AP), water-solubilized in the presence of a surfactant (Brij 35), were tested in various systems: (1) The inhibition of polymerization of bovine serum albumin by OH(*) free radicals generated by the Fenton reaction indicated AP exerts a considerable protective effect against polymerization by scavenging the OH(*) free radicals. (2) ESR spin trapping comparisons of DMPO with AP were conducted. Using the Fenton reaction as a source of OH(*) free radicals, AP was 1 order of magnitude faster in scavenging these radicals than DMPO. (3) Oxidative modification of BSA by (60)Co-gamma irradiation of 80 krad, results in a strong increase in protein carbonyl content. AP inhibits carbonyl formation very efficiently, indicating that AP may be utilized as a biological OH(*) free radical scavenger in human therapy.  相似文献   

9.
A new method using ESR spin trapping was proposed for measuring the scavenging activity of antioxidants for the hydroxyl (OH) radical. (-)-Epigallocatechin gallate (EGCg) and 5,5-dimethyl-1-pyrrolline N-oxide (DMPO) were used as the antioxidant and spin trapping agent, respectively. The conventional method using a Fenton reaction had problems associated with the estimation of activity, because the antioxidant disturbs the system for generating OH radical by coordinating on Fe2+ and by consuming H2O2, besides scavenging the spin adduct (DMPO-OH). Intense γ-irradiation was therefore used to generate OH radicals, and the intensity decrease in DMPO-OH after irradiation was followed to obtain the rate constant for the scavenging of DMPO-OH by EGCg. The intensities were extrapolated to zero time to estimate the quantity of DMPO-OH formed during γ-irradiation. By using these values, the reaction rate constant between OH radical and EGCg was calculated as a ratio to that of DMPO. It was shown that this method is useful for comparing the OH radical-scavenging activity of various antioxidants.  相似文献   

10.
Amyloid β-peptide (Aβ) pathology is an invariant feature of Alzheimer disease, preceding any detectable clinical symptoms by more than a decade. To this end, we seek to identify agents that can reduce Aβ levels in the brain via novel mechanisms. We found that (20S)-Rg3, a triterpene natural compound known as ginsenoside, reduced Aβ levels in cultured primary neurons and in the brains of a mouse model of Alzheimer disease. The (20S)-Rg3 treatment induced a decrease in the association of presenilin 1 (PS1) fragments with lipid rafts where catalytic components of the γ-secretase complex are enriched. The Aβ-lowering activity of (20S)-Rg3 directly correlated with increased activity of phosphatidylinositol 4-kinase IIα (PI4KIIα), a lipid kinase that mediates the rate-limiting step in phosphatidylinositol 4,5-bisphosphate synthesis. PI4KIIα overexpression recapitulated the effects of (20S)-Rg3, whereas reduced expression of PI4KIIα abolished the Aβ-reducing activity of (20S)-Rg3 in neurons. Our results substantiate an important role for PI4KIIα and phosphoinositide modulation in γ-secretase activity and Aβ biogenesis.  相似文献   

11.
12.
13.
A thermostable β-xylosidase gene Tpexyl3 from Thermotoga petrophila DSM 13,995 was cloned and overexpressed by Escherichia coli. Recombinant Tpexyl3 was purified, and its molecular weight was approximately 86.7 kDa. Its optimal activity was exhibited at pH 6.0 and 90 °C. It had broad specificity to xylopyranosyl, arabinopyranosyl, arabinofuranosyl and glucopyranosyl moieties. The β-xylosidase activity of the recombinant Tpexyl3 was 6.81 U/mL in the LB medium and 151.4 U/mL in a 7.5 L bio-reactor. It was applied to transform ginsenoside extract into the pharmacologically active minor ginsenoside 20(S)-Rg3, which was combined with thermostable β-glucosidase Tpebgl3. After transforming under optimal condition, the 20 g/L of ginsenoside extract was transformed into 6.28 g/L of Rg3 within 90 min, with a corresponding molar conversion of 95.0% and Rg3 productivity of 1793.49 mg/L/h, respectively. This study is the highest report of a GH3 family glycosidase with arabinopyranosidase activity and also the first report on the high substrate concentration bioconversion of ginsenoside extract to ginsenoside 20(S)-Rg3 by using two thermostable glycosidases.  相似文献   

14.
In this paper, the kinetics of a cloned special glucosidase, named ginsenosidase type III hydrolyzing 3-O-glucoside of multi-protopanaxadiol (PPD)-type ginsenosides, were investigated. The gene (bgpA) encoding this enzyme was cloned from a Terrabacter ginsenosidimutans strain and then expressed in E. coli cells. Ginsenosidase type III was able to hydrolyze 3-O-glucoside of multi-PPD-type ginsenosides. For instance, it was able to hydrolyze the 3-O-β-D-(1-->2)-glucopyranosyl of Rb1 to gypenoside XVII, and then to further hydrolyze the 3-O-β-D-glucopyranosyl of gypenoside XVII to gypenoside LXXV. Similarly, the enzyme could hydrolyze the glucopyranosyls linked to the 3-O- position of Rb2, Rc, Rd, Rb3, and Rg3. With a larger enzyme reaction Km value, there was a slower enzyme reaction speed; and the larger the enzyme reaction Vmax value, the faster the enzyme reaction speed was. The Km values from small to large were 3.85 mM for Rc, 4.08 mM for Rb1, 8.85 mM for Rb3, 9.09 mM for Rb2, 9.70 mM for Rg3(S), 11.4 mM for Rd and 12.9 mM for F2; and Vmax value from large to small was 23.2 mM/h for Rc, 16.6 mM/h for Rb1, 14.6 mM/h for Rb3, 14.3 mM/h for Rb2, 1.81mM/h for Rg3(S), 1.40 mM/h for Rd, and 0.41 mM/h for F2. According to the Vmax and Km values of the ginsenosidase type III, the hydrolysis speed of these substrates by the enzyme was Rc>Rb1>Rb3>Rb2>Rg3(S)>Rd>F2 in order.  相似文献   

15.
In this study, di(2,6-dimethylphenol) (Di-DMP), di(2,6-diisopropylphenol) (Di-DIP, dipropofol) and di(2,6-di-t-butylphenol) (Di-DTP) were synthesized by the reaction of monomeric phenol derivatives with catalytic CuCl(OH). TMEDA and Na2S2O4. Their antioxidant capacity and radical scavenging activity were examined using different in vitro methodologies such as 1,1-diphenyl-2-picryl-hydrazyl (DPPH·) free radical scavenging, 2,2′-azino-bis(3-ethylbenzthiazoline-6-sulfonic acid) (ABTS) radical scavenging activity, total antioxidant activity by ferric thiocyanate, total reducing power by potassium ferricyanide reduction method, superoxide anion radical scavenging, hydrogen peroxide scavenging and ferrous ions chelating activities.  相似文献   

16.
Surfactant protein D (SP-D), a C-type lectin, is an important pulmonary host defense molecule. Carbohydrate binding is critical to its host defense properties, but the precise polysaccharide structures recognized by the protein are unknown. SP-D binding to Aspergillus fumigatus is strongly inhibited by a soluble beta-(1-->6)-linked but not by a soluble beta-(1-->3)-linked glucosyl homopolysaccharide (pustulan and laminarin, respectively), suggesting that SP-D recognizes only certain polysaccharide configurations, likely through differential binding to nonterminal glucosyl residues. In this study we have computationally docked alpha/beta-D-glucopyranose and alpha/beta-(1-->2)-, alpha/beta-(1-->3)-, alpha/beta-(1-->4)-, and alpha/beta-(1-->6)-linked glucosyl trisaccharides into the SP-D carbohydrate recognition domain. As with the mannose-binding proteins, we found significant hydrogen bonding between the protein and the vicinal, equatorial OH groups at the 3 and 4 positions on the sugar ring. Our docking studies predict that alpha/beta-(1-->2)-, alpha-(1-->4)-, and alpha/beta-(1-->6)-linked but not alpha/beta-(1-->3)-linked glucosyl trisaccharides can be bound by their internal glucosyl residues and that binding also occurs through interactions of the protein with the 2- and 3-equatorial OH groups on the glucosyl ring. By using various soluble glucosyl homopolysaccharides as inhibitors of SP-D carbohydrate binding, we confirmed the interactions predicted by our modeling studies. Given the sequence and structural similarity between SP-D and other C-type lectins, many of the predicted interactions should be applicable to this protein family.  相似文献   

17.
探讨酶法制备具有抗氧化活性的鲟鱼鱼肠抗氧化肽的方法,并进行体外抗氧化活性的测定。结果表明,比较4种蛋白酶酶解产物的抗氧化能力,确定胃蛋白酶为制备鲟鱼鱼肠抗氧化肽的最佳水解用酶;通过单因素试验和正交实验分析得出最适酶解工艺是:胃蛋白酶加酶量3 200 U/g,酶解时间1.5 h,料液比1∶20,温度35℃。其体外抗氧化能力随肽质量浓度增大而增大,在浓度为1.5 mg/mL时,鲟鱼鱼肠抗氧化肽清除DPPH·能力达到Vc的83.64%,对·OH清除率为78.06%,还原力大小约为Vc溶液的1/3。胃蛋白酶酶解鲟鱼鱼肠制备的抗氧化肽具有较好的抗氧化活性,其作为一种潜在的商业抗氧化剂具有良好的应用前景。  相似文献   

18.
The aim of the present study was to verify the important role of Maillard reaction in the protective effect of heat-processed ginsenoside Re-serine mixture against oxidative stress-induced nephrotoxicity. The free radical-scavenging activity of ginsenoside Re-serine mixture was increased by heat-processing. Ginsenoside Re was transformed into less-polar ginsenosides such as Rg(2), Rg(6) and F(4) by heat-processing, and the glucose molecule at carbon-20 was separated. The improved-free radical-scavenging activity by heat-processing was mediated by the generation of antioxidant Maillard reaction products (MRPs) from the reaction of glucose with serine. Moreover, MRPs from ginsenoside Re-serine mixture showed protective effect against cisplatin-induced renal epithelial cell damage.  相似文献   

19.
20.
《Process Biochemistry》2014,49(5):813-820
Ginsenosidase type I from Aspergillus niger g.48 can hydrolyze the 3-O- and 20-O-multi-glycosides of PPD-type ginsenosides. The enzyme molecular weight is approximately 74 kDa. When hydrolyzing the glycosides of Rb1, Rb3, Rb2 and Rc, the structures of which only differ in their terminal 20-O-glycosides, ginsenosidase type I hydrolyzes both the 3-O- and 20-O-glycosides of Rb1 and Rb3 using two pathways, but the enzyme first hydrolyzes the 3-O-glucosides of Rb2 and Rc using one pathway. One pathway of Rb1 hydrolyzes the 20-O-Glc of Rb1 to Rd→F2→C-K; another pathway hydrolyzes the 3-O-Glc of Rb1 to Gyp17→Gyp75→C-K. Two hydrolysis pathways are used to hydrolyze the 20-O-Xyl and the 3-O-Glc of Rb3. According to the enzyme reaction parameters Km, Vmax and V0 at a 10 mM substrate concentration, the enzyme hydrolysis velocity values decrease in the following order: the 20-O-Xyl of Rb3→Rd> the 20-O-Glc of Rb1→Rd> the 3-O-Glc of Rc> the 3-O-Glc of Rb2> the 3-O-Glc of Rd> the 3-O-Glc of Rb3→C-Mx1> the 3-O-Glc of Rb1→Gyp17> the 3-O-Glc of F2> the 3-O-Glc of 20(S)-Rg3.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号