首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Background

Our previous in vitro studies have demonstrated dose-dependent effects of CXCR2 ligands on hepatocyte cell death and proliferation. In the current study, we sought to determine if CXCR2 ligand concentration is responsible for the divergent effects of these mediators on liver regeneration after ischemia/reperfusion injury and partial hepatectomy.

Methods

Murine models of partial ischemia/reperfusion injury and hepatectomy were used to study the effect of CXCR2 ligands on liver regeneration.

Results

We found that hepatic expression of the CXCR2 ligands, macrophage inflammatory protein-2 (MIP-2) and keratinocyte-derived chemokine (KC), was significantly increased after both I/R injury and partial hepatectomy. However, expression of these ligands after I/R injury was 30-100-fold greater than after hepatectomy. Interestingly, the same pattern of expression was found in ischemic versus non-ischemic liver lobes following I/R injury with expression significantly greater in the ischemic liver lobes. In both systems, lower ligand expression was associated with increased hepatocyte proliferation and liver regeneration in a CXCR2-dependent fashion. To confirm that these effects were related to ligand concentration, we administered exogenous MIP-2 and KC to mice undergoing partial hepatectomy. Mice received a “high” dose that replicated serum levels found after I/R injury and a “low” dose that was similar to that found after hepatectomy. Mice receiving the “high” dose had reduced levels of hepatocyte proliferation and regeneration whereas the “low” dose promoted hepatocyte proliferation and regeneration.

Conclusions

Together, these data demonstrate that concentrations of CXC chemokines regulate the hepatic proliferative response and subsequent liver regeneration.  相似文献   

2.
Objective and backgroundActivation of sterile inflammation after hepatic ischemia/reperfusion (I/R) culminates in liver injury. The route to liver damage starts with mitochondrial oxidative stress and cell death during early reperfusion. The link between mitochondrial oxidative stress, damage-associate molecular pattern (DAMP) release, and sterile immune signaling is incompletely understood and lacks clinical validation. The aim of the study was to validate this relation in a clinical liver I/R cohort and to limit DAMP release using a mitochondria-targeted antioxidant in I/R-subjected mice.MethodsPlasma levels of the DAMPs high-mobility group box 1 (HMGB1), mitochondrial DNA, and nucleosomes were measured in 39 patients enrolled in an observational study who underwent a major liver resection with (N = 29) or without (N = 13) intraoperative liver ischemia. Circulating cytokine and neutrophil activation markers were also determined. In mice, the mitochondria-targeted antioxidant MitoQ was intravenously infused in an attempt to limit DAMP release, reduce sterile inflammation, and suppress I/R injury.ResultsIn patients, HMGB1 was elevated following liver resection with I/R compared to liver resection without I/R. HMGB1 levels correlated positively with ischemia duration and peak post-operative transaminase (ALT) levels. There were no differences in mitochondrial DNA, nucleosome, or cytokine levels between the two groups. In mice, MitoQ neutralized hepatic oxidative stress and decreased HMGB1 release by ±50%. MitoQ suppressed transaminase release, hepatocellular necrosis, and cytokine production. Reconstituting disulfide HMGB1 during reperfusion reversed these protective effects.ConclusionHMGB1 seems the most pertinent DAMP in clinical hepatic I/R injury. Neutralizing mitochondrial oxidative stress may limit DAMP release after hepatic I/R and reduce liver damage.  相似文献   

3.
4.
Retinal ischemia/reperfusion (I/R) results in neuronal death and generation of reactive oxygen species. The aim of this study was to investigate the neuroprotective effect of manganese superoxide dismutase (SOD2) on retinal ganglion cells (RGCs) in an I/R-induced retinal injury model. One eye of each Wistar rat was pretreated with recombinant adeno-associated virus containing the SOD2 gene (AAV-SOD2) or recombinant AAV containing the GFP gene (AAV-GFP) by intravitreal injection 21 days before initiation of I/R injury. Retinal I/R injury was induced by elevating intraocular pressure for 1h, and reperfusion was established immediately afterward. The number of RGCs and the inner plexiform layer (IPL) thickness were measured by Fluorogold retrograde labeling and hematoxylin and eosin staining at 6 h, 24 h, 72 h, and 5 days after injury. Superoxide anion, the number of RGCs, IPL thickness, malondialdehyde (MDA) level, 8-hydroxy-2-deoxyguanosine (8-OHdG) level, MnSOD (manganese superoxide dismutase) activity, and nitrotyrosine level were measured by fluorescence staining, immunohistochemistry, and enzyme-linked immunosorbent analysis at 5 days after I/R injury. Severe RGC loss, reduced IPL thickness, reduced MnSOD activity, and increased superoxide ion, MDA, 8-OHdG, and nitrotyrosine production were observed after I/R injury. Administration of AAV-SOD2 significantly reduced the levels of superoxide ion, MDA, 8-OHdG, and nitrotyrosine and prevented the damage to RGCs and IPL. Delivery of the antioxidant gene inhibited I/R-induced RGC and IPL damage by reducing oxidative stress and nitrative stress, suggesting that MnSOD may be relevant for the neuroprotection of the inner retina from I/R-related diseases.  相似文献   

5.
Hydrogen sulfide (H(2)S) is an endogenously produced gaseous signaling molecule with diverse physiological activity. The potential protective effects of H(2)S have not been evaluated in the liver. The purpose of the current study was to investigate if H(2)S could afford hepatoprotection in a murine model of hepatic ischemia-reperfusion (I/R) injury. Hepatic injury was achieved by subjecting mice to 60 min of ischemia followed by 5 h of reperfusion. H(2)S donor (IK1001) or vehicle were administered 5 min before reperfusion. H(2)S attenuated the elevation in serum alanine aminotransferase (ALT) by 68.6% and aspartate aminotransferase (AST) by 70.8% compared with vehicle group. H(2)S-mediated cytoprotection was associated with an improved balance between reduced glutathione (GSH) vs. oxidized glutathione (GSSG), an attenuated formation of lipid hydroperoxides, and an increased expression of thioredoxin-1 (Trx-1). Furthermore, H(2)S inhibited the progression of apoptosis after I/R injury by increasing the protein expression of heat shock protein (HSP-90) and Bcl-2. These results indicate that H(2)S protects the murine liver against I/R injury through an upregulation of intracellular antioxidant and antiapoptotic signaling pathways.  相似文献   

6.

Background

It is of importance to minimize ischemia reperfusion (I/R) injury during liver operations. Reducing the inflammatory reaction is an effective way to achieve this goal. Notably, adiponectin (APN) was found to have anti-inflammatory activity in heart and renal I/R injury. Herein, we investigated the role of APN in liver I/R injury.

Methods

Wistar rats were randomized to four groups: (1) sham group; (2) I/R control group; (3) I/R+APN group; and (4) I/R+APN+AMPK inhibitor group. Liver and blood samples were collected 6h and 24h after reperfusion. Liver function and histopathologic changes were assessed. Macrophage and neutrophil infiltration was detected by immunohistochemistry staining, while pro-inflammatory cytokines and chemokines released in the liver were measured using ELISA and RT-PCR, respectively. Apoptosis was analyzed by TUNEL staining and caspase-3 expression in the liver. Downstream molecules of APN were investigated by Western blotting.

Results

Circulatory APN was down-regulated during liver I/R. When exogenous APN treatment was administered during liver I/R, alanine transaminase (ALT) and aspartate aminotransferase (AST) were decreased, and less hepatocyte necrosis was observed. Less inflammatory cell infiltration and pro-inflammatory cytokines/chemokines release were also observed in the I/R+APN group when compared with the I/R control group. APN treatment also reduced hepatocyte apoptosis, evidenced by reduced TUNEL positive cells and less caspase-3 expression in the reperfused liver. Finally, the AMPK/eNOS pathway was found to be activated by APN, and administration of an AMPK inhibitor reversed the beneficial effects of APN.

Conclusion

APN can protect the liver from I/R injury by reducing the inflammatory response and hepatocyte apoptosis, a process that likely involves the AMPK/eNOS pathway. The current study provides a potential pharmacologic target for liver I/R injury.  相似文献   

7.
Manganese superoxide dismutase (MnSOD) is one of the main antioxidant enzymes that protects the heart against ischemia-reperfusion (I/R) injury. Ischemic preconditioning (IPC) is a short period of ischemia-reperfusion that reduces subsequent prolonged I/R injury. Although MnSOD localizes in mitochondria, the immediate subcellular distribution of MnSOD in heart after IPC and I/R has not been studied. In a Langendorff mouse heart model, IPC significantly improved cardiac function and reduced the infarction size induced by I/R. Immunoblotting and double immunostaining in fresh preparations revealed that I/R resulted in an increase in cytosolic MnSOD content accompanied by the release of cytochrome c. In contrast, IPC increased mitochondrial MnSOD and reduced cytosolic MnSOD and cytochrome c release induced by I/R. We found that compared with freshly prepared fractions, the freeze-thaw approach results in mitochondrial integrity disruption and release of large amounts of MnSOD into the cytosol along with mitochondrial markers even in the absence of I/R. In contrast, fresh preparations exhibit early MnSOD release into the cytosol after I/R that is prevented by IPC and cyclosporin A administration.  相似文献   

8.
Males are much more susceptible to ischemia/reperfusion (I/R)-induced kidney injury when compared with females. Recently we reported that the presence of testosterone, rather than the absence of estrogen, plays a critical role in gender differences in kidney susceptibility to I/R injury in mice. Although reactive oxygen species and antioxidant defenses have been implicated in I/R injury, their roles remain to be defined. Here we report that the orchiectomized animal had significantly less lipid peroxidation and lower hydrogen peroxide levels in the kidney 4 and 24 h after 30 min of bilateral renal ischemia when compared with intact or dihydrotestosterone-treated orchiectomized males. The post-ischemic kidney expression and activity of manganese superoxide dismutase (MnSOD) in orchiectomized mice was much greater than in intact or dihydrotestosterone-administered orchiectomized mice. Four hours after 30 min of bilateral ischemia, superoxide formation was significantly lower in orchiectomized mice than in intact mice. In Madin-Darby canine kidney cells, a kidney epithelial cell line, 1 mm H(2)O(2) decreased MnSOD activity, an effect that was potentiated by pretreatment with dihydrotestosterone. Orchiectomy prevented the post-ischemic decrease of catalase activity. Treatment of male mice with manganese(III) tetrakis(1-methyl-4-pyridyl)porphyrin (MnTMPyP), a SOD mimetic, reduced the post-ischemic increase of plasma creatinine, lipid peroxidation, and tissue hydrogen peroxide. These results suggest that orchiectomy accelerates the post-ischemic activation of MnSOD and reduces reactive oxygen species and lipid peroxidation, resulting in reduced kidney susceptibility to I/R injury.  相似文献   

9.
To investigate the involvement of flotillin-1 in acute experimental testicular torsion, we examined the expression and cellular localization of flotillin-1 and cathepsin D in the rat testis with ischemia/reperfusion (I/R) injury. Western blot analysis showed that the expression of flotillin-1 increased significantly 6h after I/R and that the level remained elevated for 48 h. Immunohistochemically, flotillin-1 was constitutively localized in some Sertoli cells, peritubular myoid cells, and interstitial cells in the normal testis. After I/R injury, Sertoli cells in the damaged tubules were intensely immunostained for flotillin-1 at 24 and 48 h after I/R. Flotillin-1 was also detected in some inflammatory cells in the interstitial space around damaged tubules. Furthermore, flotillin-1 was colocalized with cathepsin D, a lysosomal marker, in normal testis (mainly in Sertoli cells), and the colocalization was greater in Sertoli cells and macrophages in I/R injured testes. Therefore, we postulate that flotillin-1 immunoreactivity is increased in some Sertoli and inflammatory cells (especially in ED1-positive activated macrophages) in testicular torsion and that flotillin-1 in the injured testis associates with lysosomes in Sertoli cells and macrophages, activating subsequent signals in inflammatory macrophages and Sertoli cells after I/R.  相似文献   

10.
Recent evidence suggests that IL-17A regulates neutrophil-dependent organ injury. Accordingly, the purpose of this study was to determine the role of IL-17A in neutrophil recruitment after ischemia-reperfusion (I/R) and in subsequent liver injury. Two mouse models including wild-type and IL-17A knockout mice were evaluated for I/R injury. The medial largest lobe of the liver was clamped for 90 min. In another set of experiments, recombinant mouse (rm)IL-17A homodimer or rmIL-17A/F heterodimer were administered to knockout mice before I/R, and liver injury was investigated. Isolated Kupffer cells were incubated with rmIL-17A or rmIL-17F, and production of TNF-α was measured. Studies evaluating the extent of liver injury as measured by serum transaminase levels demonstrated similar levels in the acute phase (6 h) in these two models. In contrast, in the subacute phase (20 h) after I/R, both serum transaminase levels and percent of hepatic necrosis were significantly reduced in the knockout mice compared with the wild-type mice. This reduction in liver injury seen in the knockout mice was associated with suppression of chemokine and adhesion molecule expression and reduction in infiltration of neutrophils into the liver. Administration of rmIL-17A homodimer, but not IL-17A/F heterodimer, increased liver injury in the subacute phase of I/R in KO mice. TNF-α production by isolated Kupffer cells increased significantly in the cells incubated with rmIL-17A compared with rmIL-17F. These results indicate that IL-17A is a key regulator in initiating neutrophil-induced inflammatory responses and hepatic injury in the subacute phase after reperfusion.  相似文献   

11.
Stem cell factor (SCF) and its receptor c-kit are important in hematopoiesis and cellular proliferation. c-kit has also been identified as a cell surface marker for progenitor cells. We have previously shown that there is a large reservoir of hepatic SCF, and this molecule plays a significant role in liver regeneration after 70% hepatectomy. In the current study, we further examined the expression of SCF and c-kit in acetaminophen (APAP)-induced liver injury in C57BL/6J mice or SCF-deficient sl-sld mice and their appropriate wild-type controls. Following APAP-induced liver injury, c-kit mRNA expression increased, with peak levels detected 48 h postinjury. Hepatic SCF mRNA levels after APAP injury were also increased, with peak levels seen 16 h post-APAP. The mortality rate in SCF-deficient mice treated with APAP was significantly higher than that of wild-type mice; furthermore, administration of exogenous SCF significantly reduced the mortality of APAP-treated wild-type mice. Bromodeoxyuridine incorporation experiments showed that SCF significantly increased hepatocyte proliferation at 48 and 72 h in APAP-treated mice. SCF inhibited APAP-induced hepatocyte apoptosis and increased Bcl-2 and Bcl-xL expression, suggesting that this decrease in hepatocyte apoptosis is mediated through Bcl-2 and Bcl-xL. In summary, SCF and c-kit expression was increased after APAP-induced liver injury. Administration of exogenous SCF reduces mortality in APAP-treated mice, increases hepatocyte proliferation, and prevents hepatocyte apoptosis induced by APAP, suggesting that these molecules are important in the liver's recovery from these injuries.  相似文献   

12.
Liu A  Fang H  Dirsch O  Jin H  Dahmen U 《Cytokine》2012,57(1):150-157
Macrophage migration inhibitory factor (MIF) is an important mediator of ischemia/reperfusion (I/R) injury in heart, brain and intestine. We previously demonstrated that MIF was released during warm/cold ischemia in vitro. However, the role of MIF in liver I/R injury remains unclear. We aimed to test the hypothesis that MIF acts as an early proinflammatory cytokine and could mediate the inflammatory injury in liver I/R. Rats (n = 6 per group) were subjected to 90 min warm ischemia followed by 0.5 h, 6 h and 24 h reperfusion, respectively to liver transplantation (LTx) after 6 h of cold ischemia followed by 24 h of reperfusion. The expression of MIF, its receptor (cluster of differentiation 74 (CD74)) and the downstream inflammatory cytokines (tumor necrosis factor-alpha (TNF-α) and interleukin-1 beta (IL-1β)) were analyzed. Peritoneal macrophages were cultured for 6 h alone or in the presence of effluent from cold-preserved livers or effluent depleted of MIF. Warm I/R increased hepatic MIF-mRNA and protein expression. MIF-protein was released into peripheral circulation in vivo with a maximum at 0.5 h after reperfusion. Induction of MIF-expression was associated with the expression of proinflammatory cytokines and its receptor in both models. MIF released by isolated cold preserved livers, induced TNF-α and IL-1β production by cultured peritoneal macrophages. Intrahepatic upregulation of MIF, release into systemic circulation and the associated upregulation of the proinflammatory mediators suggest a role of MIF in mediating the inflammatory response to I/R injury. Blocking experiments will help to elucidate its role as potential molecular target for preventing hepatic I/R injury.  相似文献   

13.
Hepatic ischaemia-reperfusion (I/R) injury constitutes a tough difficulty in liver surgery. Dexmedetomidine (Dex) plays a protective role in I/R injury. This study investigated protective mechanism of Dex in hepatic I/R injury. The human hepatocyte line L02 received hypoxia/reoxygenation (H/R) treatment to stimulate cell model of hepatic I/R. The levels of pyroptosis proteins and inflammatory factors were detected. Functional rescue experiments were performed to confirm the effects of miR-494 and JUND on hepatic I/R injury. The levels of JUND, PI3K/p-PI3K, AKT/p-AKT, Nrf2, and NLRP3 activation were detected. The rat model of hepatic I/R injury was established to confirm the effect of Dex in vivo. Dex reduced pyroptosis and inflammation in H/R cells. Dex increased miR-494 expression, and miR-494 targeted JUND. miR-494 inhibition or JUND upregulation reversed the protective effect of Dex. Dex repressed NLRP3 inflammasome by activating the PI3K/AKT/Nrf2 pathway. In vivo experiments confirmed the protective effect of Dex on hepatic I/R injury. Overall, Dex repressed NLRP3 inflammasome and alleviated hepatic I/R injury via the miR-494/JUND/PI3K/AKT/Nrf2 axis.  相似文献   

14.
AimsWe investigated the effect of globin digest (GD) on the liver injury and hepatic gene expression profile in galactosamine (GalN)-induced liver injury.Main methodsThe effect of GD on the liver injury was examined by measuring the activities of serum transferases and hepatic antioxidant enzymes, histopathological analysis, gene expression profile, and proteins of the peroxisome proliferator-activated receptor alpha (PPARα) and met proto-oncogene (c-Met) in SD rats at 24 h after GalN administration. The effect of GD on the expression of PPARα and its target gene in AML-12 mouse hepatocytes was also examined.Key findingsGD suppressed the elevated activities of serum transferases in GalN-induced liver injury in SD rats. The thiobarbituric acid reactive substance content in GalN-injured liver was a decreasing tendency by GD. GD suppressed the increased oxidized glutathione content, and increased the decreased protein, reduced glutathione contents, and catalase activity in GalN-injured liver. GD may improve the antioxidant defense system and protein synthesis in GalN-injured liver. GD suppressed the elevated expression of the genes related to the inflammation, and decreased the histopathological grade value of inflammatory cell infiltration in GalN-injured liver. GD increased the expression of PPARα protein in GalN-injured liver, and also increased the expression of PPARα and its target gene in AML-12 hepatocytes. The total and phosphorylated c-Met proteins in GalN-injured liver were the increasing tendencies by GD.SignificanceThese findings indicate that GD has the hepatoprotective effect on GalN-induced liver injury in SD rats.  相似文献   

15.
《Free radical research》2013,47(12):1225-1239
Abstract

This study investigates the mechanism by which MnSOD exerts its protective effect in hypoxia-reoxygenation (H/R) injury in hepatocytes. Following induction of H/R, MnSOD expression and activity levels increased and remained high for over 24 h. Hepatocytes silenced for MnSOD (siMnSOD) demonstrated increased susceptibility to H/R-induced apoptotic cell death and a lower capacity to generate mitochondrial reactive oxygen species. Microarray and real time PCR analysis of gene expression from siMnSOD cells revealed a number of down-regulated protective genes, including hemeoxygenase-1, glutamate-cysteine ligase and Nrf2, a master regulator of cellular adaptation to stress. Decreased Nrf2 protein expression and nuclear translocation were also confirmed in siMnSOD cells. siMnSOD cells showed low glutathione (GSH) content with no oxidation to GSSG, lower lipid peroxidation levels than their controls and lower mitochondrial membrane potential, which all were even more salient after H/R. Therefore, MnSOD appears to act as a signalling mediator for the activation of survival genes following H/R injury in hepatocytes.  相似文献   

16.

Objective

To evaluate the impact of mesenchymal stem cells (MSCs) against hepatic I/R injury and explore the role of N-acetyltransferase 8 (NAT8) in the process.

Methods

We investigated the potential of injected MSCs systemically via the tail vein in healing injuried liver of the SD rat model of 70% hepatic I/R injury by measuring the biochemical and pathologic alterations. Subsequently, we evaluated the expression levels of NAT8 by western blotting in vivo. Concurrently, hydrogen peroxide (H2O2)-induced apoptosis in the human normal liver cell line L02 was performed in vitro to evaluate the protective effects of MSC conditioned medium (MSC-CM) on L02 cells. In addition, we downregulated and upregulated NAT8 expression in L02 cells and induced apoptosis by using H2O2 to study the protective role of NAT8.

Results

MSCs implantation led to a significant reduced liver enzyme levels, an advanced protection in the histopathological findings of the acutely injured liver and a significantly lower percentage of TUNEL-positive cells, which were increased after I/R injury. In vitro assays, MSC-CM inhibited hepatocyte apoptosis induced by H2O2. Moreover, overexpression or downregulation of NAT8 prevented or aggravated hepatocyte apoptosis induced by H2O2, respectively.

Conclusions

MSC transplantation provides support to the I/R-injured liver by inhibiting hepatocellular apoptosis and stimulating NAT8 regeneration.  相似文献   

17.
The enzyme, poly(ADP-ribose) polymerase (PARP), effects repair of DNA after ischemia-reperfusion (I/R) injury to cells in nerve and muscle tissue. However, its activation in severely damaged cells can lead to ATP depletion and death. We show that PARP expression is enhanced in damaged renal proximal tubules beginning at 6-12 h after I/R injury. Intraperitoneal administration of PARP inhibitors, benzamide or 3-amino benzamide, after I/R injury accelerates the recovery of normal renal function, as assessed by monitoring the levels of plasma creatinine and blood urea nitrogen during 6 days postischemia. PARP inhibition leads to increased cell proliferation at 1 day postinjury as assessed by proliferating cell nuclear antigen and improves the histopathological appearance of kidneys examined at 7 days postinjury. Furthermore, inhibition of PARP increases levels of ATP measured at 24 h postischemia compared with those in vehicle-treated animals. Our data indicate that PARP activation is a part of the cascade of molecular events that occurs after I/R injury in the kidney. Although caution is advised, transient inhibition of PARP postischemia may constitute a novel therapy for acute renal failure.  相似文献   

18.
It has been known that many immediately early genes are expressed during ischemia/reperfusion (I/R) injury. Here, employing a model of hepatic I/R, we show that inducible nitric oxide synthase (iNOS) is induced via the activation of nuclear factor kappaB (NF-kappaB) after I/R in rat liver. When liver was subjected to ischemia followed by reperfusion, but not ischemia alone, an NF-kappaB complex composed of p50/p65 heterodimer and p50 homodimer was rapidly activated within 1 h and remained elevated for up to 3 h, and then tended to decline after 5 h of reperfusion. Also, the expression of iNOS mRNA was initiated after 1 h and continued to increase after 5 h of reperfusion during the time course studied. This upregulated iNOS mRNA expression coincides with increased iNOS enzyme activity and NF-kappaB binding activity after hepatic I/R. Administration of N-acetylcysteine (NAC, 20 mg/kg i.v. 10 min before reperfusion), an antioxidant, not only significantly inhibited the expression of iNOS mRNA but also blocked upregulated NF-kappaB binding activity after reperfused liver. These results suggest that NF-kappaB is activated by oxidative stress during hepatic I/R and may play a significant role in the induction of the iNOS gene.  相似文献   

19.
20.
Renal ischemia/reperfusion (I/R) injury often occurs as a result of vascular surgery, organ procurement, or transplantation. We previously showed that renal I/R results in ATP depletion, oxidant production, and manganese superoxide dismutase (MnSOD) inactivation. There have been several reports that overexpression of MnSOD protects tissues/organs from I/R-related damage, thus a loss of MnSOD activity during I/R likely contributes to tissue injury. The present study examined the therapeutic benefit of a catalytic antioxidant, Mn(III) meso-tetrakis(N-n-hexylpyridinium-2-yl)porphyrin (MnTnHex-2-PyP(5+)), using the rat renal I/R model. This was the first study to examine the effects of MnTnHex-2-PyP(5+) in an animal model of oxidative stress injury. Our results showed that porphyrin pretreatment of rats for 24 h protected against ATP depletion, MnSOD inactivation, nitrotyrosine formation, and renal dysfunction. The dose (50 microg/kg) used in this study is lower than doses of various types of antioxidants commonly used in animal models of oxidative stress injuries. In addition, using novel proteomic techniques, we identified the ATP synthase-beta subunit as a key protein induced by MnTnHex-2-PyP(5+) treatment alone and complex V (ATP synthase) as a target of injury during renal I/R. These results showed that MnTnHex-2-PyP(5+) protected against renal I/R injury via induction of key mitochondrial proteins that may be capable of blunting oxidative injury.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号