首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
The Chk2 Ser/Thr kinase plays crucial, evolutionarily conserved roles in cellular responses to DNA damage. Identification of two pro-oncogenic mutations within the Chk2 FHA domain has highlighted its importance for Chk2 function in checkpoint activation. The X-ray structure of the Chk2 FHA domain in complex with an in vitro selected phosphopeptide motif reveals the determinants of binding specificity and shows that both mutations are remote from the peptide binding site. We show that the Chk2 FHA domain mediates ATM-dependent Chk2 phosphorylation and targeting of Chk2 to in vivo binding partners such as BRCA1 through either or both of two structurally distinct mechanisms. Although phospho-dependent binding is important for Chk2 activity, previously uncharacterized phospho-independent FHA domain interactions appear to be the primary target of oncogenic lesions.  相似文献   

2.
Mdc1 is a large modular phosphoprotein scaffold that maintains signaling and repair complexes at double-stranded DNA break sites. Mdc1 is anchored to damaged chromatin through interaction of its C-terminal BRCT-repeat domain with the tail of γH2AX following DNA damage, but the role of the N-terminal forkhead-associated (FHA) domain remains unclear. We show that a major binding target of the Mdc1 FHA domain is a previously unidentified DNA damage and ATM-dependent phosphorylation site near the N-terminus of Mdc1 itself. Binding to this motif stabilizes a weak self-association of the FHA domain to form a tight dimer. X-ray structures of free and complexed Mdc1 FHA domain reveal a 'head-to-tail' dimerization mechanism that is closely related to that seen in pre-activated forms of the Chk2 DNA damage kinase, and which both positively and negatively influences Mdc1 FHA domain-mediated interactions in human cells prior to and following DNA damage.  相似文献   

3.
Forkhead-associated (FHA) domains have been shown to recognize both pThr and pTyr-peptides. The solution structures of the FHA2 domain of Rad53 from Saccharomyces cerevisiae, and its complex with a pTyr peptide, have been reported recently. We now report the solution structure of the other FHA domain of Rad53, FHA1 (residues 14-164), and identification of binding sites of FHA1 and its target protein Rad9. The FHA1 structure consists of 11 beta-strands, which form two large twisted anti-parallel beta-sheets folding into a beta-sandwich. Three short alpha-helices were also identified. The beta-strands are linked by several loops and turns. These structural features of free FHA1 are similar to those of free FHA2, but there are significant differences in the loops. Screening of a peptide library [XXX(pT)XXX] against FHA1 revealed an absolute requirement for Asp at the +3 position and a preference for Ala at the +2 position. These two criteria are met by a pThr motif (192)TEAD(195) in Rad9. Surface plasmon resonance analysis showed that a pThr peptide containing this motif, (188)SLEV(pT)EADATFVQ(200) from Rad9, binds to FHA1 with a K(d) value of 0.36 microM. Other peptides containing pTXXD sequences also bound to FHA1, but less tightly (K(d)=4-70 microM). These results suggest that Thr192 of Rad9 is the likely phosphorylation site recognized by the FHA1 domain of Rad53. The tight-binding peptide was then used to identify residues of FHA1 involved in the interaction with the pThr peptide. The results are compared with the interactions between the FHA2 domain and a pTyr peptide derived from Rad9 reported previously.  相似文献   

4.
Forkhead-associated (FHA) domains are multifunctional phosphopeptide-binding modules and are the hallmark of the conserved family of Rad53-like checkpoint protein kinases. Rad53-like kinases, including the human tumor suppressor protein Chk2, play crucial roles in cell cycle arrest and activation of repair processes following DNA damage and replication blocks. Here we show that ectopic expression of the N-terminal FHA domain (FHA1) of the yeast Rad53 kinase causes a growth defect by arresting the cell cycle in G(1). This phenotype was highly specific for the Rad53-FHA1 domain and not observed with the similar Rad53-FHA2, Dun1-FHA, and Chk2-FHA domains, and it was abrogated by mutations that abolished binding to a phosphothreonine-containing peptide in vitro. Furthermore, replacement of the RAD53 gene with alleles containing amino acid substitutions in the FHA1 domain resulted in an increased DNA damage sensitivity in vivo. Taken together, these data demonstrate that the FHA1 domain contributes to the checkpoint function of Rad53, possibly by associating with a phosphorylated target protein in response to DNA damage in G(1).  相似文献   

5.
The protein kinase Chk2 (checkpoint kinase 2) is a major effector of the replication checkpoint. Chk2 activation is initiated by phosphorylation of Thr68, in the serine-glutamine/threonine-glutamine cluster domain (SCD), by ATM. The phosphorylated SCD-segment binds to the FHA domain of a second Chk2 molecule, promoting dimerisation of the protein and triggering phosphorylation of the activation segment/T-loop in the kinase domain. We have now determined the structure of the kinase domain of human Chk2 in complexes with ADP and a small-molecule inhibitor debromohymenialdisine. The structure reveals a remarkable dimeric arrangement in which T-loops are exchanged between protomers, to form an active kinase conformation in trans. Biochemical data suggest that this dimer is the biologically active state promoted by ATM-phosphorylation, and also suggests a mechanism for dimerisation-driven activation of Chk2 by trans-phosphorylation.  相似文献   

6.
The tumor suppressor gene CHK2 encodes a versatile effector serine/threonine kinase involved in responses to DNA damage. Chk2 has an amino-terminal SQ/TQ cluster domain (SCD), followed by a forkhead-associated (FHA) domain and a carboxyl-terminal kinase catalytic domain. Mutations in the SCD or FHA domain impair Chk2 checkpoint function. We show here that autophosphorylation of Chk2 produced in a cell-free system requires trans phosphorylation by a wortmannin-sensitive kinase, probably ATM or ATR. Both SQ/TQ sites and non-SQ/TQ sites within the Chk2 SCD can be phosphorylated by active Chk2. Amino acid substitutions in the SCD and the FHA domain impair auto- and trans-kinase activities of Chk2. Chk2 forms oligomers that minimally require the FHA domain of one Chk2 molecule and the SCD within another Chk2 molecule. Chk2 oligomerization in vivo increases after DNA damage, and when damage is induced by gamma irradiation, this increase requires ATM. Chk2 oligomerization is phosphorylation dependent and can occur in the absence of other eukaryotic proteins. Chk2 can cross-phosphorylate another Chk2 molecule in an oligomeric complex. Induced oligomerization of a Chk2 chimera in vivo concomitant with limited DNA damage augments Chk2 kinase activity. These results suggest that Chk2 oligomerization regulates Chk2 activation, signal amplification, and transduction in DNA damage checkpoint pathways.  相似文献   

7.
The forkhead-associated (FHA) domain is a 55-75 amino acid residue module found in >20 proteins from yeast to human. It has been suggested to participate in signal transduction pathways, perhaps via protein-protein interactions involving recognition of phosphopeptides. Neither the structure nor the ligand of FHA is known. Yeast Rad53, a checkpoint protein involved in DNA damage response, contains two FHA domains, FHA1 (residues 66-116) and FHA2 (residues 601-664), the second of which recognizes phosphorylated Rad9. We herein report the solution structure of an "FHA2-containing domain" of Rad53 (residues 573-730). The structure consists of a beta-sandwich containing two antiparallel beta-sheets and a short, C-terminal alpha-helix. Binding experiments suggested that the FHA2-containing domain specifically recognizes pTyr and a pTyr-containing peptide from Rad9, and that the binding site involves residues highly conserved across FHA domains. The results, along with other recent reports, suggest that FHA domains could have pTyr and pSer/Thr dual specificity.  相似文献   

8.
Phosphorylation of Thr-68 by the ataxia telangiectasia-mutated is necessary for efficient activation of Chk2 when cells are exposed to ionizing radiation. By an unknown mechanism, this initial event promotes additional autophosphorylation events including modifications of Thr-383 and Thr-387, two amino acid residues located within the activation loop segment within the Chk2 catalytic domain. Chk2 and related kinases possess one or more Forkhead-associated (FHA) domains that are phosphopeptide-binding modules believed to be crucial for their checkpoint control activities. We show that the Chk2 FHA domain is dispensable for Thr-68 phosphorylation but necessary for efficient autophosphorylation in response to ionizing radiation. Phosphorylation of Thr-68 promotes oligomerization of Chk2 by serving as a specific ligand for the FHA domain of another Chk2 molecule. In addition, Chk2 phosphorylates its own FHA domain, and this modification reduces its affinity for Thr-68-phosphorylated Chk2. Thus, activation of Chk2 in irradiated cells may occur through oligomerization of Chk2 via binding of the Thr-68-phosphorylated region of one Chk2 to the FHA domain of another. Oligomerization of Chk2 may therefore increase the efficiency of trans-autophosphorylation resulting in the release of active Chk2 monomers that proceed to enforce checkpoint control in irradiated cells.  相似文献   

9.
Genes for functional Ser/Thr protein kinases (STPKs) are ubiquitous in prokaryotic genomes, but little is known about their physiological substrates and their actual involvement in bacterial signal transduction pathways. We report here the identification of GarA (Rv1827), a Forkhead-associated (FHA) domain-containing protein, as a putative physiological substrate of PknB, an essential Ser/Thr protein kinase from Mycobacterium tuberculosis. Using a global proteomic approach, GarA was found to be the best detectable substrate of the PknB catalytic domain in non-denatured whole-cell protein extracts from M. tuberculosis and the saprophyte Mycobacterium smegmatis. Enzymological and binding studies of the recombinant proteins demonstrate that docking interactions between the activation loop of PknB and the C-terminal FHA domain of GarA are required to enable efficient phosphorylation at a single N-terminal threonine residue, Thr22, of the substrate. The predicted amino acid sequence of the garA gene, including both the N-terminal phosphorylation motif and the FHA domain, is strongly conserved in mycobacteria and other related actinomycetes, suggesting a functional role of GarA in putative STPK-mediated signal transduction pathways. The ensuing model of PknB-GarA interactions suggests a substrate recruitment mechanism that might apply to other mycobacterial kinases bearing multiple phosphorylation sites in their activation loops.  相似文献   

10.
The forkhead-associated (FHA) domain of human Ki67 interacts with the human nucleolar protein hNIFK, recognizing a 44-residue fragment, hNIFK226-269, phosphorylated at Thr234. Here we show that high-affinity binding requires sequential phosphorylation by two kinases, CDK1 and GSK3, yielding pThr238, pThr234 and pSer230. We have determined the solution structure of Ki67FHA in complex with the triply phosphorylated peptide hNIFK226-269(3P), revealing not only local recognition of pThr234 but also the extension of the beta-sheet of the FHA domain by the addition of a beta-strand of hNIFK. The structure of an FHA domain in complex with a biologically relevant binding partner provides insights into ligand specificity and potentially links the cancer marker protein Ki67 to a signaling pathway associated with cell fate specification.  相似文献   

11.
12.
Mammalian Chk2 is a Ser/Thr kinase required for cell-division arrest induced by DNA damage. We found six new kinase genes of Entamoeba histolytica by analysis in silico. One of the kinase genes was a homologue of human chk2 gene. The chk2 homologue gene (Eh chk2) was expected to encode 398 amino acids and showed nearly 50% homology to human Chk2 in amino acid sequence. Eh chk2 had a catalytic domain of Ser/Thr kinase and a fork head-associated (FHA) domain that is highly conserved among Chk2 homologues in vertebrates. To examine the biological functions of Eh chk2, we synthesized Eh chk2 mRNA in vitro and injected it into immature frog eggs (Xenopus laevis oocytes) as a model system of cell division. Eh chk2 markedly delayed the cell division of frog eggs by disrupting transition of G2 phase to M phase. Eh chk2 also inhibited the activation of p42 MAPK and Cdc2 kinase which are representative events induced by cell division. These results suggest that Eh chk2 gene should be a cell-division regulator in E. histolytica.  相似文献   

13.
FHA domains are phosphoThr recognition modules found in diverse signaling proteins, including kinase-associated protein phosphatase (KAPP) from Arabidopsis thaliana. The kinase-interacting FHA domain (KI-FHA) of KAPP targets it to function as a negative regulator of some receptor-like kinase (RLK) signaling pathways important in plant development and environmental responses. To aid in the identification of potential binding sites for the KI-FHA domain, we predicted (i) the structure of a representative KAPP-binding RLK, CLAVATA1, and (ii) the functional surfaces of RLK kinase domains using evolutionary trace analysis. We selected phosphopeptides from KAPP-binding Arabidopsis RLKs for in vitro studies of association with KI-FHA from KAPP. Three phosphoThr peptide fragments from the kinase domain of CLV1 or BAK1 were found to bind KI-FHA with KD values of 8-20 microM, by NMR or titration calorimetry. Their affinity is driven by favorable enthalpy and solvation entropy gain. Mutagenesis of these three threonine sites suggests Thr546 in the C-lobe of the BAK1 kinase domain to be a principal but not sole site of KI-FHA binding in vitro. The brassinosteroid receptor BRI1 and KAPP are shown to associate in vivo and in vitro. Further genetic studies indicate that KAPP may be a negative regulator of the BRI1 signaling transduction pathway. 15N-Labeled KI-FHA was titrated with the GST-BRI1 kinase domain and monitored by NMR. BRI1 interacts with the same 3/4, 4/5, 6/7, 8/9, and 10/11 recognition loops of KI-FHA, with similar affinity as the phosphoThr peptides.  相似文献   

14.
The DNA damage response depends on the concerted activity of protein serine/threonine kinases and modular phosphoserine/threonine-binding domains to relay the damage signal and recruit repair proteins. The PIKK family of protein kinases, which includes ATM/ATR/DNA-PK, preferentially phosphorylate Ser-Gln sites, while their basophilic downstream effecter kinases, Chk1/Chk2/MK2 preferentially phosphorylate hydrophobic-X-Arg-X-X-Ser/Thr-hydrophobic sites. A subset of tandem BRCT domains act as phosphopeptide binding modules that bind to ATM/ATR/DNA-PK substrates after DNA damage. Conversely, 14-3-3 proteins interact with substrates of Chk1/Chk2/MK2. FHA domains have been shown to interact with substrates of ATM/ATR/DNA-PK and CK2. In this review we consider how substrate phsophorylation together with BRCT domains, FHA domains and 14-3-3 proteins function to regulate ionizing radiation-induced nuclear foci and help to establish the G2/M checkpoint. We discuss the role of MDC1 a molecular scaffold that recruits early proteins to foci, such as NBS1 and RNF8, through distinct phosphodependent interactions. In addition, we consider the role of 14-3-3 proteins and the Chk2 FHA domain in initiating and maintaining cell cycle arrest.  相似文献   

15.
hCds1 (Chk2) is an evolutionarily conserved kinase that functions in DNA damage response and cell cycle checkpoint. The Cds1 family of kinases are activated by a family of large phosphatidylinositol 3-kinase-like kinases. In humans, ataxia telangiectasia-mutated (ATM) and ataxia-telangiectasia and Rad3-related kinases activate hCds1 by phosphorylating Thr(68) . hCds1 and Cds1-related kinases contain the FHA (forkhead-associated) domain, which appears to be important for integrating the DNA damage signal. It is not known how ATM phosphorylation activates hCds1 function and whether the phosphorylation is linked to the FHA. Here, we demonstrate that the hCds1-FHA domain is essential for Thr(68) phosphorylation. Thr(68) phosphorylation, in turn, is required for ionizing radiation-induced autophosphorylation of two amino acid residues in hCds1, Thr(383) and Thr(387). These two amino acid residues, located in the activation loop of hCds1, are conserved in hCds1-related kinases and are essential for hCds1 activity. Thus, the hCds1-FHA domain mediates a chain of phosphorylation events on hCds1, which includes phosphorylation by ATM and hCds1 autophosphorylation, in response to DNA damage.  相似文献   

16.
Characterization of tumor-associated Chk2 mutations   总被引:11,自引:0,他引:11  
The integrity of the DNA damage response pathway is essential for prevention of neoplastic transformation. Several proteins involved in this pathway including p53, BRCA1, and ATM are frequently mutated in human cancer. Checkpoint kinase 2 (Chk2) is a DNA damage-activated protein kinase that lies downstream of ATM in this pathway. Recently, heterozygous germline mutations in Chk2 have been identified in a subset of patients with Li-Fraumeni syndrome, a highly penetrant familial cancer phenotype, suggesting that Chk2 is a tumor suppressor gene. In this study, we have reported the biochemical characterization of the four tumor-associated Chk2 mutants. Two of the reported Chk2 mutations identified in Li-Fraumeni syndrome result in loss of Chk2 kinase activity. Whereas one mutation within the Chk2 forkhead homology-associated (FHA) domain, R145W, retains some basal kinase activity, this mutant cannot be phosphorylated at an ATM-dependent phosphorylation site (Thr-68) and cannot be activated following gamma radiation. Wild-type Chk2 exists mainly in a protein complex of M(r) approximately 200,000 whereas the R145W mutant forms a larger, presumably inactive complex in the cell. The other FHA domain mutant, I157T, behaves as wild-type Chk2 in all the assays used here. Because the FHA domain is involved in protein-protein interactions, this mutation may affect associations of Chk2 with other proteins. Additionally, we have shown that Chk2 can also be inactivated by down-regulation of its expression in cancer cells. Thus, Chk2 may be inactivated by multiple mechanisms in the cell.  相似文献   

17.
Chk2/CHEK2/hCds1 is a modular serine-threonine kinase involved in transducing DNA damage signals. Phosphorylation by ataxia telangiectasia-mutated kinase (ATM) promotes Chk2 self-association, autophosphorylation, and activation. Here we use expressed protein ligation to generate a Chk2 N-terminal regulatory region encompassing a fork-head-associated (FHA) domain, a stoichiometrically phosphorylated Thr-68 motif and intervening linker. Hydrodynamic analysis reveals that Thr-68 phosphorylation stabilizes weak FHA-FHA interactions that occur in the unphosphorylated species to form a high affinity dimer. Although clearly a prerequisite for Chk2 activation in vivo, we show that dimerization modulates potential phosphodependent interactions with effector proteins and substrates through either the pThr-68 site, or the canonical FHA phosphobinding surface with which it is tightly associated. We further show that the dimer-occluded pThr-68 motif is released by intra-dimer autophosphorylation of the FHA domain at the highly conserved Ser-140 position, a major pThr contact in all FHA-phosphopeptide complex structures, revealing a mechanism of Chk2 dimer dissociation following kinase domain activation.  相似文献   

18.
FHA domains are well established as phospho-dependent binding modules mediating signal transduction in Ser/Thr kinase signaling networks in both eukaryotic and prokaryotic species. Although they are unique in binding exclusively to phosphothreonine, the basis for this discrimination over phosphoserine has remained elusive. Here, we attempt to dissect overall binding specificity at the molecular level. We first determined the optimal peptide sequence for Rv0020c FHA domain binding by oriented peptide library screening. This served as a basis for systematic mutagenic and binding analyses, allowing us to derive relative thermodynamic contributions of conserved protein and peptide residues to binding and specificity. Structures of phosphopeptide-bound and uncomplexed Rv0020c FHA domain then directed molecular dynamics simulations which show how the extraordinary discrimination in favor of phosphothreonine occurs through formation of additional hydrogen-bonding networks that are ultimately stabilized by van der Waals interactions of the phosphothreonine γ-methyl group with a conserved pocket on the FHA domain surface.  相似文献   

19.
The forkhead-associated (FHA) domain recognizes phosphothreonine (pT) with high specificity and functional diversity. TIFA (TRAF-interacting protein with an FHA domain) is the smallest FHA-containing human protein. Its overexpression was previously suggested to provoke NF-κB activation, yet its exact roles in this signaling pathway and the underlying molecular mechanism remain unclear. Here we identify a novel threonine phosphorylation site on TIFA and show that this phosphorylated threonine (pT) binds with the FHA domain of TIFA, leading to TIFA oligomerization and TIFA-mediated NF-κB activation. Detailed analysis indicated that unphosphorylated TIFA exists as an intrinsic dimer and that the FHA-pT9 binding occurs between different dimers of TIFA. In addition, silencing of endogenous TIFA resulted in attenuation of tumor necrosis factor alpha (TNF-α)-mediated downstream signaling. We therefore propose that the TIFA FHA-pT9 binding provides a previously unidentified link between TNF-α stimulation and NF-κB activation. The intermolecular FHA-pT9 binding between dimers also represents a new mechanism for the FHA domain.  相似文献   

20.
The forkhead-associated (FHA) domain is a protein module found in many proteins involved in cell signaling in response to DNA damage. It has been suggested to bind to pThr sites of its target protein. Recently we have determined the first structure of an FHA domain, FHA2 from the yeast protein Rad53, and demonstrated that FHA2 binds to a pTyr-containing peptide (826)EDI(pY)YLD(832) from Rad9, with a moderate affinity (K(d) ca. 100 microM). We now report the solution structure of the complex of FHA2 bound with this pTyr peptide. The structure shows that the phosphate group of pTyr interacts directly with three arginine residues (605, 617, and 620), and that the leucine residue at the +2 position from the pTyr interacts with a hydrophobic surface on FHA2. The sequence specificity of FHA2 was determined by screening a combinatorial pTyr library. The results clearly show that FHA2 recognizes specific sequences C-terminal to pTyr with the following consensus: XX(pY)N(1)N(2)N(3), where N(1)=Leu, Met, Phe, or Ile, N(2)=Tyr, Phe, Leu, or Met, and N(3)=Phe, Leu, or Met. Two of the selected peptides, GF(pY)LYFIR and DV(pY)FYMIR, bind FHA2 with K(d) values of 1.1 and 5.0 microM, respectively. The results, along with other recent reports, demonstrate that the FHA domain is a new class of phosphoprotein-binding domain, capable of binding both pTyr and pThr sequences.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号