首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Statistically significant differences were revealed in the spatial distribution of the asymmetry coefficients in the brain bioelectrical activity for different negative emotions. In case of the asthenic emotion (anger) the asymmetry coefficients in the beta-2 band were positive and greater in the frontal part of the brain as compared to the background. When the subjects experienced (imagined) the asthenic emotion (grief), the asymmetry coefficients were negative in the beta-1 band and a generalized growth of slow-wave activity was observed.  相似文献   

2.
随着社会竞争的日益加剧,人们在生活、学习、工作中都可能遇到各种与情绪有关的事件,如何根据情境的要求和个人的需要对情绪进行灵活性的反应,对每个人而言都至关重要.情绪灵活性的研究已成为情绪心理学、临床心理学、健康心理学等多个领域热衷讨论的课题.研究发现,左侧和右侧前额叶皮层半球不同程度地涉及加工和调节对情绪刺激的情绪反应,因此,额叶脑电图(EEG)偏侧化与情绪灵活性存在密切关系.但是,额叶EEG偏侧化是否是情绪灵活性的一个客观指标,以及额叶EEG偏侧化怎样预测情绪灵活性,至今仍不清楚.本研究测量了通过情绪电影范式诱发被试产生高兴、悲伤、愤怒、恐惧、厌恶等情绪过程中的额叶EEG活动.结果显示,情绪灵活性的激活模式反映的是情绪的动机维度,而不是情绪的效价维度.在静息状态下,对于与接近动机相关的情绪,额叶EEG左侧化的个体的左侧化程度增加;对于与回避动机相关的情绪,其左侧化程度降低.与之相对,静息状态额叶EEG右侧化的个体,无论对于与趋近动机相关的情绪还是与回避动机相关的情绪,额叶EEG偏侧化的程度没有发生改变.研究表明,额叶EEG偏侧化模式能够预测情绪灵活性,额叶EEG左侧化的个体有更灵活的情绪反应,额叶EEG右侧化的个体则有相对不灵活的情绪反应.  相似文献   

3.
The present study addressed EEG pattering during experimentally manipulated emotion. Film clips previously shown to induce happiness,joy, anger, disgust, fear/anxiety, sadness, as well as neutral control films, were presented to 30 university students while a 62-channel EEG was recorded, and a self-reported effect was described. Analyses revealed both emotion-specific and emotion-unspecific EEG pattering for the emotions under study. Induced positive and negative emotions were accompanied by hemispheric activation asymmetries in theta-2, alpha-2, and beta-1 EEG frequency bands. Emotions of joy and disgust induced lateralized a theta-2 power increase in anterior-temporal and frontal regions of the left hemisphere reflecting involvement of cognitive mechanisms in the emotional processing. Negative emotions of disgust and fear/anxiety were characterized by alpha-2 and beta-1 desynchronization of the right temporal-parietal cortex, suggesting its involvement in modulation of the emotion-related arousal.  相似文献   

4.
Recognition of joy, anger, and fear by face expression in humans   总被引:1,自引:0,他引:1  
Behavioral and neurophysiological characteristics of a visual recognition of emotions of joy, anger, and fear were studied in 9 young healthy men and 10 women. It was shown that these emotions were identified by subjects with different rate and accuracy; significant gender differences in recognition of anger and fear were found. Recording of visual evoked potentials (VEP) from the occipital (O1/2), medial temporal (T3/4), inferior temporal (T5/6), and frontal (F3/4) areas revealed differences (related with the type of emotion) in the latencies of P150, N180, P250, and N350 waves and in the amplitude of VEP components with the latencies longer than 250 ms. These differences were maximally expressed in T3/4 derivation. The subjects could be divided in two groups. The first group was characterized by increased VEP latencies and higher amplitudes of VEP components later than 250 ms in response to anger (in comparison with other types of emotions). These phenomena were observed in all the derivations but were most pronounced in T3/4. In the second group, only late P250 and N350 components had shorter latencies during recognition of fear. VEP amplitude variations related with the type of emotions were insignificant and were recorded in the occipital and frontal areas. The two groups of subjects also differed in psychoemotional personality characteristics. It is suggested that primary recognition of facial expression takes place in the temporal cortical areas. A possible correlation of electrophysiological indices of emotion recognition with personality traits is discussed.  相似文献   

5.
Sleeping brain activity reflects brain anatomy and physiology. The aim of this study was to use high density (256 channel) electroencephalography (EEG) during sleep to characterize topographic changes in sleep EEG power across normal aging, with high spatial resolution. Sleep was evaluated in 92 healthy adults aged 18–65 years old using full polysomnography and high density EEG. After artifact removal, spectral power density was calculated for standard frequency bands for all channels, averaged across the NREM periods of the first 3 sleep cycles. To quantify topographic changes with age, maps were generated of the Pearson’s coefficient of the correlation between power and age at each electrode. Significant correlations were determined by statistical non-parametric mapping. Absolute slow wave power declined significantly with increasing age across the entire scalp, whereas declines in theta and sigma power were significant only in frontal regions. Power in fast spindle frequencies declined significantly with increasing age frontally, whereas absolute power of slow spindle frequencies showed no significant change with age. When EEG power was normalized across the scalp, a left centro-parietal region showed significantly less age-related decline in power than the rest of the scalp. This partial preservation was particularly significant in the slow wave and sigma bands. The effect of age on sleep EEG varies substantially by region and frequency band. This non-uniformity should inform the design of future investigations of aging and sleep. This study provides normative data on the effect of age on sleep EEG topography, and provides a basis from which to explore the mechanisms of normal aging as well as neurodegenerative disorders for which age is a risk factor.  相似文献   

6.
People with Huntington''s disease and people suffering from obsessive compulsive disorder show severe deficits in recognizing facial expressions of disgust, whereas people with lesions restricted to the amygdala are especially impaired in recognizing facial expressions of fear. This double dissociation implies that recognition of certain basic emotions may be associated with distinct and non-overlapping neural substrates. Some authors, however, emphasize the general importance of the ventral parts of the frontal cortex in emotion recognition, regardless of the emotion being recognized. In this study, we used functional magnetic resonance imaging to locate neural structures that are critical for recognition of facial expressions of basic emotions by investigating cerebral activation of six healthy adults performing a gender discrimination task on images of faces expressing disgust, fear and anger. Activation in response to these faces was compared with that for faces showing neutral expressions. Disgusted facial expressions activated the right putamen and the left insula cortex, whereas enhanced activity in the posterior part of the right gyrus cinguli and the medial temporal gyrus of the left hemisphere was observed during processing of angry faces. Fearful expressions activated the right fusiform gyrus and the left dorsolateral frontal cortex. For all three emotions investigated, we also found activation of the inferior part of the left frontal cortex (Brodmann area 47). These results support the hypotheses derived from neuropsychological findings, that (i) recognition of disgust, fear and anger is based on separate neural systems, and that (ii) the output of these systems converges on frontal regions for further information processing.  相似文献   

7.
Chaotic component of human EEG oscillations in the high-frequency band (14.7-100 Hz) was investigated. EEG was recorded from four points in symmetrical frontal and occipital scalp areas. The results of the non-linear analysis of the high-frequency EEG indicate the existence of the deterministic chaotic component with a high attractor correlation dimension. It was significantly different from the respective values of the Gaussian noise filtered in the same frequency band. In the state of quiet wakefulness (eyes closed), the dimensions of chaotic components of the EEG in all derivations did not differ from each other. Analysis of correlation pairs between the ensembles of correlation dimensions of the high-frequency EEG revealed reliable patterns of significant connections between the neocortical areas with individual features in different subjects. When the functional state of the brain was changed by hyperventilation, both the values of the correlation dimensions and the structure of inter-area connection patterns changed. We believe that the nonlinear component of high-frequency EEG is a sensitive and local characteristic of the functional state of the human brain.  相似文献   

8.
We used a new methodological approach to the evaluation of EEG synchronization based on correlation between amplitude modulation processes (EEG envelopes). We revealed: left-hemispheric dominance and dominance of frontal over occipital regions characteristic of all sleep stages; differences in synchronization in frequency bands and their patterns characteristic of a specific sleep stage; stage-dependent differences in inter-hemispheric synchrony and patterns of their changes from the frontal to occipital regions; and stage-dependent topographical distributions of high synchronization foci with respect to frequency domains. Analysis of amplitude topography also revealed left-hemispheric dominance and many significant differences in activity distribution patterns over parasagittal chains of electrodes (meridians) depending on sleep stages and frequency domains. The combination of EEG synchrony estimates with the amplitude spectral estimates made it possible to perform a reliable discriminant recognition of five sleep stages with errors in the range of 3-20%.  相似文献   

9.
The model of mathematical logic tasks was developed at which decision there was a value coherence in delta-range raised. In low-frequency ranges (delta, theta, and alpha) a coherence of potentials of frontal cortex were increased. In high-frequency ranges (beta1, beta2, gamma) in frontal cortex coherence was decreased, and its increasing in central, parietal, temporal, and occipital areas with prevalence in the left hemisphere. Most changes of quantity of positive connections observed in value diagonal coherence. Analysis of spectral power EEG has shown, that at the decision of tasks there is a generalised raising on a cortex in delta-range. Theta-activity increased in a frontal cortex, and gamma band was raised in occipital areas. A spectral power in an alpha range mainly decreased.  相似文献   

10.
The character of interhemispheric distribution of frequency-amplitude parameters of EEG as a function of the strength of emotional experience, the intensity of drive, and the expected probability of its satisfaction were determined in human test subjects. The emotional state was aroused by an imaginary reproduction of emotionally colored events. The modified test by D. Price and co-authors was used where the subjects estimated the intensity of drive (the degree of undesirability of imaginary event) and the expected probability of its occurrence by the length of line segment. In this study, the simulation of anger was used. The highest correlation coefficients were observed between the expectation and power in the α-EEG-range in the left frontal region. The strength of emotional experience negatively correlated with the α-, θ-, and Δ-ranges. Statistically significant correlation was revealed between the intensity of drive and power of Δ- and θ-waves. The power of β-rhythm correlated with the strength of emotion as well as with the expectation and drive indices.  相似文献   

11.
New method of mapping intracortical interactions was used to study the participation of cortical brain areas in the processes of perception and of mental reproduction of emotional states in humans. When an emotion was identified, the activity focus was observed in the left temporal cortex. If emotion was not identified, the temporal focus did not appear, but activity foci were seen in frontal regions of both hemispheres. When emotional states were mentally reproduced, activity foci were encountered mostly in the frontal cortical areas.  相似文献   

12.
Knowing no fear   总被引:2,自引:0,他引:2  
People with brain injuries involving the amygdala are often poor at recognizing facial expressions of fear, but the extent to which this impairment compromises other signals of the emotion of fear has not been clearly established. We investigated N.M., a person with bilateral amygdala damage and a left thalamic lesion, who was impaired at recognizing fear from facial expressions. N.M. showed an equivalent deficit affecting fear recognition from body postures and emotional sounds. His deficit of fear recognition was not linked to evidence of any problem in recognizing anger (a common feature in other reports), but for his everyday experience of emotion N.M. reported reduced anger and fear compared with neurologically normal controls. These findings show a specific deficit compromising the recognition of the emotion of fear from a wide range of social signals, and suggest a possible relationship of this type of impairment with alterations of emotional experience.  相似文献   

13.
Cortical connectivity was studied in tasks of generating the use of words in comparison with reading aloud the same words. These tasks were used earlier in PET and high-density ERP recording studies, which described both the functional anatomy and time course of involvement of cortical areas in word processing. We developed a new method for studying the synchrony of EEG spectral components within the short time intervals compatible with the duration of particular cognitive operations. The wavelet transform of the ERP records and calculation of correlations between the wavelet curves were used to reveal connections between cortical areas. Three stages of intracortical communications developing over the course of task performance were discovered: between the right and left frontal areas (0-200 ms after the stimulus presentation), between the left frontal and left posterior temporo-parietal areas (250-500 ms), and, finally, between the left temporal and right fronto-centro-temporal areas. These findings are in good agreement with the results of the previous PET and ERP studies and supplement them with the circuitry of cortical information transfer. Also, they suggest some differences in information processing during automated reading and performance of more complicated use-generation task.  相似文献   

14.
Recent EEG studies have shown that implicit learning involving specific cortical circuits results in an enduring local trace manifested as local changes in spectral power. Here we used a well characterized visual sequence learning task and high density-(hd-)EEG recording to determine whether also declarative learning leaves a post-task, local change in the resting state oscillatory activity in the areas involved in the learning process. Thus, we recorded hd-EEG in normal subjects before, during and after the acquisition of the order of a fixed spatial target sequence (VSEQ) and during the presentation of targets in random order (VRAN). We first determined the temporal evolution of spectral changes during VSEQ and compared it to VRAN. We found significant differences in the alpha and theta bands in three main scalp regions, a right occipito-parietal (ROP), an anterior-frontal (AFr), and a right frontal (RFr) area. The changes in frontal theta power during VSEQ were positively correlated with the learning rate. Further, post-learning EEG recordings during resting state revealed a significant increase in alpha power in ROP relative to a pre-learning baseline. We conclude that declarative learning is associated with alpha and theta changes in frontal and posterior regions that occur during the task, and with an increase of alpha power in the occipito-parietal region after the task. These post-task changes may represent a trace of learning and a hallmark of use-dependent plasticity.  相似文献   

15.

Background

fMRI Resting State Networks (RSNs) have gained importance in the present fMRI literature. Although their functional role is unquestioned and their physiological origin is nowadays widely accepted, little is known about their relationship to neuronal activity. The combined recording of EEG and fMRI allows the temporal correlation between fluctuations of the RSNs and the dynamics of EEG spectral amplitudes. So far, only relationships between several EEG frequency bands and some RSNs could be demonstrated, but no study accounted for the spatial distribution of frequency domain EEG.

Methodology/Principal Findings

In the present study we report on the topographic association of EEG spectral fluctuations and RSN dynamics using EEG covariance mapping. All RSNs displayed significant covariance maps across a broad EEG frequency range. Cluster analysis of the found covariance maps revealed the common standard EEG frequency bands. We found significant differences between covariance maps of the different RSNs and these differences depended on the frequency band.

Conclusions/Significance

Our data supports the physiological and neuronal origin of the RSNs and substantiates the assumption that the standard EEG frequency bands and their topographies can be seen as electrophysiological signatures of underlying distributed neuronal networks.  相似文献   

16.
目的: 探讨急性高原低氧环境对不同情绪状态脑电功率的影响。方法:本研究为双因素多水平试验设计(氧气环境2个水平×情绪类型4个水平)。通过编写情绪图片诱导12名年龄在20~25岁之间的男性被试产生四类不同情绪:低效价低唤醒(LVLA)、高效价低唤醒(HVLA)、低效价高唤醒(LVHA)、高效价高唤醒(HVHA) ,分别近似于沮丧、轻松、恐惧、快乐四类情绪,并使用Brain Products 32导脑电采集设备采集不同情绪状态下的脑电信号;次日,采用常压低氧舱模拟4 300 m的高原低氧环境,同一批被试在低氧10 h 后使用相同试验范式采集脑电信号。对采集来的脑电信号进行功率谱分析(FFT),同时对额叶(F3\Fz\F4)脑电的五个频段(delta、theta、alpha、beta、gamma)进行两因素重复测量方差分析。结果:功率谱分析发现:急性低氧前后,四类情绪状态下alpha波的全脑分布差异主要集中在额叶、顶叶及部分颞叶;HVLA情绪状态下alpha波全脑分布差异最小。两因素重复测量方差分析结果发现:①delta、beta频段功率受氧气环境影响显著(P<0.05),低氧环境下功率增强。②theta、alpha频段功率指标上,氧气环境和情绪类型交互作用显著(P<0.05),低氧环境下除HVLA情绪状态外,theta、alpha频段功率皆出现了显著增强。③两因素对gamma频段影响都不显著(P>0.05)。结论:在四类情绪状态下,氧气环境的变化对大脑活动的影响差异区域主要集中在额叶、顶叶及部分颞叶;低氧环境对沮丧、恐惧、快乐情绪状态有明显影响,低氧与情绪类型对于theta及alpha频段功率的改变具有协同作用。  相似文献   

17.
Age-related specific features of the regulation of the CNS functional state (relaxation) were studied in adolescents between the ages of 14 and 15 years using 6-Hz rhythmic stimulation. The dynamics of the EEG findings (spectral power density, coherence functions) in the quiet wakefulness–relaxation–initial-state cycle was analyzed. The dynamics of the functional state was controlled by changes in the electrodermal resistance (EDR). The data showed that the studied group of adolescents was heterogeneous by the effectiveness of self-regulation: the majority was characterized by marked shifts whose distribution character was close to normal; the others, by mild EDR changes. It was shown that, with the use of rhythmic stimulation, relaxation shifts were more marked than those induced by common psychotherapeutic techniques. The basic relaxation changes in the EEG parameters are related to changes in the coherence function values, i.e., increases in its values, especially those of distant relations (with the focus) of significant connections in the frontal regions. The rate of the occurrence of relaxation changes in the coherence values is substantially higher in the low-frequency band (5 to 7 Hz) than in the EEG -band, constituting 20 to 50% in terms of different relations. The revealed specific features of the relaxation dynamics of the EEG parameters are analyzed in the age-related aspect. The influence of higher structures of the CNS and puberty-related rearrangements in the system of neuroendocrine regulation on the effectiveness of the regulatory function is discussed.  相似文献   

18.
Gender differences in electroencephalographic activity (EEG) changes during navigation task performance after training were assessed in young adults. Female and male subjects were matched on initial navigation performance. EEG recordings were obtained while subjects navigated in an immersive virtual environment without visual cues, before and after a navigational skills training (9 sessions). In spite of task performance was similar in both groups, females showed higher theta band coherent activity between frontal and parietal and frontal and central regions than males before training. Correlation in theta band between fronto-central, fronto-parietal, and centro-parietal regions was enhanced in the left hemisphere for females but in the right hemisphere for males after training. Females also demonstrated a decreased in correlation in theta band over the right hemisphere between centro-parietal regions, whereas males demonstrated a similar effect over the left hemisphere. Navigation training seems to promote fronto-central-parietal synchronization in both genders but in different hemisphere. These results are interpreted as reflecting verbal-analytical working memory functions in females and global-spatial working memory mode in males.  相似文献   

19.
An investigation was made into the statistical interconnection between the latency of human conditioned motor reaction to a flash and the spatial distribution of EEG correlation coefficients of eight cerebral areas in 10-second epoch preceding the stimuli. The greatest similarity of latency variations was observed with changes in the correlation relationships between EEG of the occipital, frontal and central areas of the hemisphere, contralateral to the reacting hand. Analysis of the structure of the brain biopotential field has shown that the probability of a more rapid reaction is greater if in the pre-stimulatory period there is a spatially coherent alpha-rhythm with nearly contraphasic correlations of oscillations in the frontal and occipital brain areas.  相似文献   

20.
To study the role of cholinergic transmitter system in the maintenance of sychronizing limbic influences, the dynamics of the spatial distribution of the changes of cross-correlation coefficients of rabbits EEG led by 24 electrodes, was estimated at application of acetylcholine solution to the visual cortical area in combination with anode polarization of mammillary bodies. Acetylcholine, which separate effect was connected with a restricted increase of the spatial synchronization of potentials, completely eliminated the effects of isolated polarization expressed in a significant decrease of a half of calculated correlation coefficients between EEGs of the visual and motor cortical areas. Nonspecific cholinergic synchronizing system is supposed to exist which is active under the conditions of the mammillo-thalamo-cortical connections being intact.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号