首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The amino acid sequence of bovine lung cGMP-dependent protein kinase has been determined by degradation and alignment of two primary overlapping sets of peptides generated by cleavage at methionyl or arginyl residues. The protein contains 670 residues in a single N alpha-acetylated chain corresponding to a molecular weight of 76 331. The function of the molecule is considered in six segments of sequence which may correspond to four folding domains. From the amino terminus, the first segment is related to the dimerizing property of the protein. The second and third segments appear to have evolved from an ancestral tandem internal gene duplication, generating twin cGMP-binding domains which are homologous to twin domains in the regulatory subunits of cAMP-dependent protein kinase and to the cAMP-binding domain of the catabolite gene activator of Escherichia coli. The fourth and fifth segments may comprise one domain which is homologous to the catalytic subunits of cAMP-dependent protein kinase, of calcium-dependent phosphorylase b kinase, and of certain oncogenic viral protein tyrosine kinases. The regulatory, amino-terminal half of cGMP-dependent protein kinase appears to be related to a family of smaller proteins that bind cAMP for diverse purposes, whereas the catalytic, carboxyl-terminal half is related to a family of protein kinases of varying specificity and varying sensitivity to regulators. These data suggest that ancestral gene splicing events may have been involved in the fusion of two families of proteins to generate the allosteric character of this chimeric enzyme.  相似文献   

2.
The nucleotide sequence of an Escherichia coli gene which presumably encodes the H-protein of the glycine cleavage (GCV) enzyme complex is presented. The gene, designated gcvH, encodes a polypeptide of 128 amino acids with a calculated molecular weight of 13,665 daltons. The translation start site was determined by N-terminal amino acid sequence analysis of a gcvH-lacZ encoded fusion protein. The E. coli H-protein shows extensive homology with the H-proteins from the pea (Pisum sativum) and the chicken liver GCV enzyme complexes. 85 of 128 amino acid residues are identical or chemically similar between the E. coli and the pea H-proteins, and 74 of 128 amino acid residues are identical or chemically similar between the E. coli and the chicken liver H-proteins. All three proteins have identical amino acid sequences from residues 61-65. This sequence contains the lysyl residue involved in lipoic acid attachment in the chicken liver H-protein.  相似文献   

3.
4.
The phosphopantetheine thiol of rabbit mammary fatty acid synthase was specifically alkylated using chloro[14C]acetyl-CoA and a radioactive fragment generated by limited elastase digestion of the modified protein was purified by gel filtration. We have previously mapped this fragment to an internal location in the 250 000-Mr polypeptide adjacent to the thioesterase domain [Eur. J. Biochem. 130, 185-193 (1983)]. The purified fragment had apparent molecular weights of 23 000 by gel filtration and 10 000 by polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulphate, while amino acid analysis indicated a minimal molecular weight of 10 400. We have determined the amino acid sequence of the first 64 residues of the fragment. The phosphopantetheine moiety is esterified to a serine at residue 38 in the sequence. When the sequences of the rabbit acyl carrier fragment and the 8847-Mr acyl carrier protein of Escherichia coli are aligned, 17 out of 64 residues are identical. These results suggest that the limited proteolysis delineates an internal acyl carrier domain within the rabbit protein and provide the first clear evidence that multifunctional fatty acid synthases have arisen by fusion of ancestral monofunctional proteins.  相似文献   

5.
Ch21, a developmentally regulated low molecular weight protein observed in chick embryo skeletal tissues, is expressed "in vitro" by differentiating chondrocytes at a late stage of development. Here we report the complete amino acid sequence of the protein. 86% of the total amino acid sequence was deduced by sequences of 17 high performance liquid chromatography-separated proteolytic fragments and 33 amino acid residues at the amino-terminal end of protein purified from spent culture medium of hypertrophic chondrocytes. Furthermore we isolated by molecular cloning the corresponding cDNA and determined its nucleotide sequence. By combining protein and nucleotide sequence data we determined the primary structure of the entire Ch21. It consists of 158 amino acids and has a molecular mass of 18.065 kDa. Computer-assisted analysis showed that the Ch21 belongs to the superfamily of low molecular weight proteins sharing a basic framework for binding and transport of small hydrophobic molecules.  相似文献   

6.
The complete amino acid sequence and disulfide bridge location of HR2a, one of the hemorrhagic proteins isolated from the snake venom of Trimeresurus flavoviridis, have been determined by analysis of peptides derived from digests with cyanogen bromide, lysyl endopeptidase, trypsin, and Staphylococcus aureus V8 protease. Peptides were purified by gel filtration followed by reversed-phase HPLC. HR2a has the amino-terminal sequence of less than Glu-Gln-Arg- and consists of a total of 202 residues with a calculated molecular weight of 23,015. Sequence analysis indicates the presence of another isoform which lacks the amino-terminal residue, making 201 amino acid residues with a molecular weight of 22,887. Three disulfide bridges of HR2a link Cys-118 to Cys-197, Cys-159 to Cys-181, and Cys-161 to Cys-164. HR2a contains a segment which is similar to the zinc-chelating sequences found in thermolysin and several mammalian metalloproteinases, suggesting that HR2a is a metalloproteinase with limited substrate specificity. However, there is no other significant sequence homology with thermolysin except for the zinc-ligand region.  相似文献   

7.
An alpha 2-macroglobulin-like protease inhibitor was isolated from the cell-free hemolymph of the american lobster (Homarus americanus) by ion-exchange chromatography and gel filtration. Whereas the undissociated molecule has a molecular weight of 342,000 as determined by ultracentrifugation studies, under reducing sodium dodecyl sulfate-polyacrylamide gel electrophoresis, the protein has a subunit molecular weight of 180,000. On the basis of this and other evidence, we conclude that the lobster protein is a dimer consisting of two disulfide-bonded monomers. The purified protein inhibits proteolytic enzymes but protects the esterolytic activity of trypsin toward low molecular weight substrates from inactivation by soybean trypsin inhibitor. The methylamine sensitivity of this activity suggests the presence of an internal thioester bond. This was confirmed by the covalent incorporation of [14C]methylamine, by the formation of Mr 55,000 and 125,000 autolytic cleavage fragments in sodium dodecyl sulfate-polyacrylamide gel electrophoresis, and, more directly, by the amino acid sequence of a tryptic peptide containing the putative thioester region. Whereas the N-terminal amino acid sequence (22 residues) of the protein revealed an overall identity of only 18% when compared with the human protein, the sequence of the thioester-containing peptide was highly conserved, both with respect to human alpha 2-macroglobulin and to other proteins having a thioester bond. The protein showed the "slow to fast" conformational change typical in alpha 2-macroglobulins in nondenaturing gel electrophoresis after treatment with trypsin, but not after incubation with methylamine.  相似文献   

8.
A cDNA for branched-chain alpha-ketoacid dehydrogenase kinase was cloned from a rat heart cDNA library. The cDNA had an open reading frame encoding a protein of 382 amino acid residues with a calculated molecular weight of 43,280. The clone codes for the branched-chain alpha-ketoacid dehydrogenase kinase based on the following: 1) the deduced amino acid sequence contained the partial sequence of the kinase determined by direct sequencing; 2) expression of the cDNA in Escherichia coli resulted in synthesis of a 43,000-Da protein that was recognized specifically by kinase antibodies; and 3) enzyme activity that phosphorylated and inactivated the branched-chain alpha-ketoacid dehydrogenase complex was found in extracts of E. coli expressing the protein. Northern blot analysis indicated the mRNA for the branched-chain alpha-ketoacid dehydrogenase kinase was more abundant in rat heart than in rat liver, as expected from the relative amounts of kinase activity expressed in these tissues. The deduced sequence of the kinase aligned with a high degree of similarity within subdomains characteristic of procaryotic histidine protein kinases. This first mitochondrial protein kinase to be cloned appears more closely related in sequence to procaryotic histidine protein kinases than to eucaryotic serine/threonine protein kinases.  相似文献   

9.
Bacteriophage P22 Cro protein: sequence, purification, and properties   总被引:8,自引:0,他引:8  
The DNA sequence of part of the bacteriophage P22 early regulatory region, including genes cro and c1, was determined. The protein product of the cro gene consists of 61 amino acid residues, and that of c1, 92 amino acid residues. Both genes were placed separately in plasmids from which they are expressed from a controllable promoter in vivo. Induced cells bearing the cro-expressing plasmid were used as a source for purifying and characterizing the Cro protein. The amino-terminal sequence of this protein was found to be as predicted by the DNA sequence; close agreement was also observed between its predicted and experimentally determined amino acid composition and molar extinction coefficient at 280 nm. In gel filtration experiments, Cro protein at concentrations around 10(-5) M appears to have a molecular weight of 8600, which is more consistent with monomers (6800) than with dimers (13 600). Cro protein binds specifically to the three repressor binding sites in the P22 right operator; in order of decreasing affinity, these are OR3, OR1, and OR2.  相似文献   

10.
Mammalian tissues contain protein carboxyl methyltransferases that catalyze the transfer of methyl groups from S-adenosylmethionine to the free carboxyl groups of D-aspartyl or L-isoaspartyl residues (EC 2.1.1.77). These enzymes have been postulated to play a role in the repair and/or degradation of spontaneously damaged proteins. We have now characterized a similar activity from Escherichia coli that recognizes L-isoaspartyl-containing peptides as well as protein substrates such as ovalbumin. The enzyme was purified by DEAE-cellulose, hydroxylapatite, Sephadex G-100, polyaspartate, and reversed-phase chromatography and was shown to consist of a single 24-kDa polypeptide chain. The sequence determined for the N-terminal 39 residues was used to design an oligonucleotide probe that allowed the precise localization of its structural gene (pcm) on the physical map of the E. coli chromosome at 59 min. Transformation of E. coli cells with a plasmid containing DNA from this region results in a 3-4-fold overproduction of enzyme activity. The nucleotide sequence determined for the pcm gene and its flanking regions was used to deduce a mature amino acid sequence of 207 residues with a calculated molecular weight of 23,128. This sequence shows 30.8% sequence identity with the human L-isoaspartyl/D-aspartyl methyltransferase and suggests that this enzyme catalyzes a fundamental reaction in both procaryotic and eucaryotic cells.  相似文献   

11.
The complete amino acid sequence of a high mobility group (HMG) nonhistone chromosomal protein of the ciliated protozoan Tetrahymena pyriformis (GL strain) was determined. This protein was extracted with 0.5 M HClO4 together with histone H1 (molar ratio 1:1) from the whole histone extract, then purified by gel filtration and reverse-phase HPLC. The HMG protein showed a single electrophoretic band on SDS gel electrophoresis. The amino acid sequence was determined by Edman degradation of intact protein, BrCN fragments, and their staphylococcal protease and tryptic peptides. Thus the total sequence, consisting of 99 amino acid residues and having a molecular weight of 11,626, was completely determined. Phosphorus analysis of the tryptic peptides, containing serine or threonine, showed that this HMG protein was phosphorylated at two positions, each 6-7%, and contained 0.15 mol phosphate/mol protein. This Tetrahymena HMG is rather similar to the central part of vertebrate HMG 1 in terms of the amino acid sequence and the hydropathy profile.  相似文献   

12.
Electron microscopic examination of ultrathin sections and freeze-etched and shadow cast preparations of a bovine prepuce isolate of Campylobacter fetus VC119 showed an S layer with subunits in an apparent linear arrangement. Surface radioiodination, enzyme digestion, low-pH extraction, and Western immunoblotting showed that the layer was composed mainly of one protein which is the predominant protein antigen of C. fetus. This protein was purified to homogeneity by gel filtration, ion-exchange chromatography, and high-performance liquid chromatography. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis showed an apparent molecular weight of 131,000 for this protein with a pI of 6.35, and no carbohydrate could be detected by a variety of techniques. Amino acid composition analysis showed that the protein contained approximately 1,304 residues per molecule, 41.2% of which were hydrophobic and approximately 22% of which were acidic. Cysteine and histidine were absent. Circular dichroism spectra showed that the prominent structure of the S layer protein was a beta-pleated sheet (36%) with aperiodic foldings (31%); a moderate amount of alpha-helix (28%) and a low amount of beta-turn (5%) were also present. The N-terminal amino acid sequence was determined for the first 18 residues. No sequence homology with other S layer proteins was found.  相似文献   

13.
14.
The complete amino acid sequence of glutamate dehydrogenase from the thermoacidophilic archaebacterium Sulfolobus solfataricus has been determined. The sequence was reconstructed by automated sequence analysis of peptides obtained after cleavage by trypsin, cyanogen bromide, Staphylococcus aureus V8 protease and pepsin. The enzyme subunit is composed of 421 amino acid residues yielding a molecular mass of 46.078 kDa. The presence of N-epsilon-methyllysine in six positions of the sequence was observed. Comparison of the sequence of glutamate dehydrogenase from S. solfataricus with the other known primary structures of the corresponding enzyme from different sources, gives an overall identity of 9.2% and shows a symmetrical evolutionary distance of this archaebacterial protein from the two groups of vertebrate on one side and eubacterial and low eucaryote enzymes on the other side. The occurrence of specific substitutions and a possible role for N-epsilon-methylation of lysine residues are discussed in view of current hypotheses on the molecular basis of thermal adaptation of proteins.  相似文献   

15.
R plasmid dihydrofolate reductase with a dimeric subunit structure   总被引:5,自引:0,他引:5  
Dihydrofolate reductase specified by plasmid R483 from a trimethoprim-resistant strain of Escherichia coli has been purified 2,000-fold to homogeneity using dye-ligand chromatography, gel filtration, and polyacrylamide gel electrophoresis. The protein migrated as a single band on nondenaturing polyacrylamide gel electrophoresis and had a specific activity of 250 mumol/mg min(-1). The molecular weight was estimated to be 32,000 by gel filtration and 39,000 by Ferguson analysis of polyacrylamide gel electrophoresis. When subjected to electrophoresis in the presence of sodium dodecyl sulfate, the protein migrated as a single 19,000-molecular weight species, a fact that suggests that the native enzyme is a dimer of similar or identical subunits. Antibody specific for R483-encoded dihydrofolate reductase did not cross-react with dihydrofolate reductase encoded by plasmid R67, T4 phage, E. coli RT500, or mouse L1210 leukemia cells. The amino acid sequence of the first 34 NH2-terminal residues suggests that the R483 plasmid dihydrofolate reductase is more closely related to the chromosomal dihydrofolate reductase than is the enzyme coded by plasmid R67.  相似文献   

16.
A soluble immunoactive peptide with a molecular weight of 16 000 was isolated and purified from the cyanogen bromide digest of the insoluble 50 000 dalton glial fibrillary acidic protein by Sephacryl S-200 gel filtration followed by DEAE-Bio-gel A chromatography. The homogeneity of the peptide was established by SDS-polyacrylamide gel electrohporesis and isoelectric focusing. The peptide from several species showed immunocrossreaction with rabbit antibody to intact glial fibrillary acidic protein. The peptide has a pI value of 5.32. The amino acid sequence of 28 residues from the amino terminus of the calf peptide has been determined.  相似文献   

17.
mop is the structural gene for the molybdenum-pterin binding protein, which is the major molybdenum binding protein in Clostridium pastuerianum. The mop gene was detected by immunoscreening genomic libraries of C. pastuerianum and identified by determining the nucleotide sequence of the cloned insert of clostridial DNA. The deduced amino acid sequence of an open reading frame proved to be identical to the first twelve residues of purified Mop. The DNA sequence flanking the mop gene contains promoter-like consensus sequences which are probably responsible for the expression of Mop in Escherichia coli. The deduced amino acid composition shows that the protein is hydrophobic, lacks aromatic and cysteine residues and has a calculated molecular weight of 7,038. The N-terminal amino acid sequence of Mop has sequence homology with DNA binding proteins. The pattern and type of residues in the N-terminal region suggest it forms the helix-turn-helix structure observed in DNA binding proteins. We propose that Mop may be a regulatory protein binding the anabolic source of molybdenum.  相似文献   

18.
SDS-PAGE法测定His-tag融合蛋白分子量产生偏差的原因   总被引:10,自引:0,他引:10  
Histag/NiNTA系统是新发展起来的一个亲和纯化重组蛋白的有用工具,现常用于基因编码产物的特性研究中。SDSPAGE是实验室测定蛋白质分子量通常采用的方法,而许多实验室用此方法检测Histag融合蛋白时却常发现测得的分子量偏大,产生偏差的原因尚未阐明。为弄清这一问题,本实验室在研究一个Histag融合蛋白P73His时,首先用SDSPAGE法测得其分子量确实比理论计算值大,然后对其进行C末端氨基酸顺序测定、电喷雾质谱分析,结果证实其实际分子量与理论值一致。酶切去除包括Histag在内的部分肽段使SDSPAGE法测量蛋白分子量的偏差大大降低,证实Histag确实是造成偏差的原因之一。推测由于Histag中的碱性氨基酸的作用造成蛋白在SDSPAGE中迁移变慢,而导致偏差。这一现象值得引起有关研究者的注意。  相似文献   

19.
The gene for p9Ka, a protein of molecular weight 9000 that is expressed in cultured rat mammary myoepithelial cells, has been isolated from a normal rat genomic library in bacteriophage lambda, by its ability to hybridize to a cloned complementary DNA corresponding to p9Ka mRNA. The cloned rat genomic DNA fragment hybridized to translatable p9Ka mRNA. A nucleotide sequence of 2340 base-pairs of genomic DNA surrounding the p9Ka cDNA sequence has been obtained; the gene contains one intervening sequence of 675 nucleotides. The 3' end of the p9Ka mRNA has been identified on the gene sequence to be 13 nucleotides downstream from a poly(A) addition signal AATAAA. The gene contains an open reading frame of 101 amino acid residues, which is the only open reading frame in the entire gene long enough to encode a protein of molecular weight at least 9000. This hypothetical protein sequence shows greater than 40% homology to rat or bovine S-100 protein and over 30% homology to bovine intestinal calcium-binding protein. The results suggest that p9Ka may be related to a family of low molecular weight calcium-binding proteins.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号