首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Mannan-binding lectin (MBL) and C1q activate the complement cascade via attached serine proteases. The proteases C1r and C1s were initially discovered in a complex with C1q, whereas the MBL-associated serine proteases 1 and 2 (MASP-1 and -2) were discovered in a complex with MBL. There is controversy as to whether MBL can utilize C1r and C1s or, inversely, whether C1q can utilize MASP-1 and 2. Serum deficient in C1r produced no complement activation in IgG-coated microwells, whereas activation was seen in mannan-coated microwells. In serum, C1r and C1s were found to be associated only with C1q, whereas MASP-1, MASP-2, and a third protein, MAp19 (19-kDa MBL-associated protein), were found to be associated only with MBL. The bulk of MASP-1 and MAp19 was found in association with each other and was not bound to MBL or MASP-2. The interactions of MASP-1, MASP-2, and MAp19 with MBL differ from those of C1r and C1s with C1q in that both high salt concentrations and calcium chelation (EDTA) are required to fully dissociate the MASPs or MAp19 from MBL. In the presence of calcium, most of the MASP-1, MASP-2, and MAp19 emerged on gel-permeation chromatography as large complexes that were not associated with MBL, whereas in the presence of EDTA most of these components formed smaller complexes. Over 95% of the total MASPs and MAp19 found in serum are not complexed with MBL.  相似文献   

2.
Mannan-binding lectin (MBL) plays a pivotal role in innate immunity by activating complement after binding carbohydrate moieties on pathogenic bacteria and viruses. Structural similarities shared by MBL and C1 complexes and by the MBL- and C1q-associated serine proteases, MBL-associated serine protease (MASP)-1 and MASP-2, and C1r and C1s, respectively, have led to the expectation that the pathways of complement activation by MBL and C1 complexes are likely to be very similar. We have expressed rMASP-2 and show that, whereas C1 complex autoactivation proceeds via a two-step mechanism requiring proteolytic activation of both C1r and C1s, reconstitution with MASP-2 alone is sufficient for complement activation by MBL. The results suggest that the catalytic activities of MASP-2 split between the two proteases of the C1 complex during the course of vertebrate complement evolution.  相似文献   

3.
CD91 plays an important role in the scavenging of apoptotic material, possibly through binding to soluble pattern-recognition molecules. In this study, we investigated the interaction of CD91 with mannan-binding lectin (MBL), ficolins and lung surfactant proteins. Both MBL and L-ficolin were found to bind CD91. The MBL-CD91 interaction was time- and concentration-dependent and could be inhibited by known ligands of CD91. MBL-associated serine protease 3 (MASP-3) also inhibited binding between MBL and CD91, suggesting that the site of interaction is located at or near the MASP-MBL interaction site. This was confirmed by using MBL mutants deficient for MASP binding that were unable to interact with CD91. These findings demonstrate that MBL and L-ficolin interact with CD91, strongly suggesting that they have the potential to function as soluble recognition molecules for scavenging microbial and apoptotic material by CD91.  相似文献   

4.
The chaperone calreticulin has been suggested to function as a C1q and collectin receptor. The interaction of calreticulin with mannan-binding lectin (MBL) was investigated by solid-phase binding assays. Calreticulin showed saturable and time-dependent binding to recombinant MBL, provided that MBL was immobilized on a solid surface or bound to mannan on a surface. The binding was non-covalent and biphasic with an initial salt-sensitive phase followed by a more stable salt-insensitive interaction. For plasma-derived MBL, known to be complexed with MBL-associated serine proteases (MASPs), no binding was observed. Interaction of calreticulin with recombinant MBL was fully inhibited by recombinant MASP-2, MASP-3 and MAp19, but not by the MASP-2 D105G and MAp19 Y59A variants characterized by defective MBL binding ability. Furthermore, MBL point mutants with impaired MASP binding showed no interaction with calreticulin. Comparative analysis of MBL with complement component C1q, its counterpart of the classical pathway, revealed that they display similar binding characteristics for calreticulin, providing further indication that calreticulin is a common co-receptor/chaperone for both proteins. In conclusion, the potential MBL co-receptor calreticulin binds to MBL at the MASP binding site and the interaction may involve a conformational change in MBL.  相似文献   

5.
Mannan-binding lectin (MBL)-associated serine proteases-1 and 2 (MASP-1 and MASP-2) are homologous modular proteases that each interact with MBL, an oligomeric serum lectin involved in innate immunity. To precisely determine their substrate specificity, human MASP-1 and MASP-2, and fragments from their catalytic regions were expressed using a baculovirus/insect cells system. Recombinant MASP-2 displayed a rather wide, C1s-like esterolytic activity, and specifically cleaved complement proteins C2 and C4, with relative efficiencies 3- and 23-fold higher, respectively, than human C1s. MASP-2 also showed very weak C3 cleaving activity. Recombinant MASP-1 had a lower and more restricted esterolytic activity. It showed marginal activity toward C2 and C3, and no activity on C4. The enzymic activity of both MASP-1 and MASP-2 was specifically titrated by C1 inhibitor, and abolished at a 1:1 C1 inhibitor:protease ratio. Taken together with previous findings, these and other data strongly support the hypothesis that MASP-2 is the protease that, in association with MBL, triggers complement activation via the MBL pathway, through combined self-activation and proteolytic properties devoted to C1r and C1s in the C1 complex. In view of the very low activity of MASP-1 on C3 and C2, our data raise questions about the implication of this protease in complement activation.  相似文献   

6.
The complement system plays an important role in innate immunity. In the lectin complement pathway, mannose-binding lectin (MBL) and ficolins act as recognition molecules, and MBL-associated serine protease (MASP) is a key enzyme. It has been suggested that MASP-2 is responsible for the activation of C4. Other serine proteases (MASP-1 and MASP-3) are also associated with MBL or ficolins; however, their functions are still controversial. In this study, a MASP-1- and MASP-3-deficient mouse model (MASP1/3(-/-)) was generated by a gene targeting strategy to investigate the roles of MASP-1 and MASP-3 in the lectin pathway. Serum derived from MASP1/3(-/-) mice showed significantly lower activity of both C4 and C3 deposition on mannan-agarose, and this low activity was restored by the addition of recombinant MASP-1. MASP-1/3-deficient serum showed a significant delay for activation of MASP-2 compared with normal serum. Reconstitution of recombinant MASP-1 in MASP-1/3-deficient serum was able to promote the activation of MASP-2. From these results, we propose that MASP-1 contributes to the activation of the lectin pathway, probably through the activation of MASP-2.  相似文献   

7.
Mannan-binding lectin (MBL) is an oligomeric C-type lectin assembled from homotrimeric structural units that binds to neutral carbohydrates on microbial surfaces. It forms individual complexes with MBL-associated serine proteases (MASP)-1, -2, -3 and a truncated form of MASP-2 (MAp19) and triggers the lectin pathway of complement through MASP-2 activation. To characterize the oligomerization state of the two major MBL forms present in human serum, both proteins were analyzed by mass spectrometry. Mass values of 228,098 +/- 170 Da (MBL-I) and 304,899 +/- 229 Da (MBL-II) were determined for the native proteins, whereas reduction of both species yielded a single chain with an average mass of 25,340 +/- 18 Da. This demonstrates that MBL-I and -II contain 9 and 12 disulfide-linked chains, respectively, and therefore are trimers and tetramers of the structural unit. As shown by surface plasmon resonance spectroscopy, trimeric and tetrameric MBL bound to immobilized mannose-BSA and N-acetylglucosamine-BSA with comparable K(D) values (2.2 and 0.55 nM and 1.2 and 0.96 nM, respectively). However, tetrameric MBL exhibited significantly higher maximal binding capacity and lower dissociation rate constants for both carbohydrates. In contrast, no significant difference was detected for binding of the recombinant MASPs or MAp19 to immobilized trimeric or tetrameric MBL. As shown by gel filtration, both MBL species formed 1:2 complexes with MASP-3 or MAp19. These results provide the first precise analysis of the major human MBL oligomers. The oligomerization state of MBL has a direct effect on its carbohydrate-binding properties, but no influence on the interaction with the MASPs.  相似文献   

8.
Ficolins are oligomeric lectins comprising a collagen-like and a fibrinogen-like domain, with a binding specificity for N-acetylglucosamine. It has been reported recently that L-ficolin/P35 associates with mannan-binding lectin (MBL)-associated serine proteases (MASP-1 and -2) and MBL-associated protein 19 (MAp19) in serum and forms complexes able to activate complement. Using surface plasmon resonance spectroscopy we have shown that recombinant MASP-1 and -2, their N-terminal CUB1 (module originally found in complement proteins C1r/C1s, Uegf, and bone morphogenetic protein-1)-epidermal growth factor (EGF)-CUB2 and CUB1-EGF segments, and MAp19 bind to immobilized L-ficolin/P35 in the presence of Ca(2+) ions. Comparable K(d) values were obtained for the full-length proteases and their CUB1-EGF-CUB2 segments (9.2 and 10 nM for MASP-1 and 4.6 and 5.4 nM for MASP-2, respectively), whereas higher values were obtained for the CUB1-EGF segments (26.7, 15.6, and 14.3 nM for MASP-1, MASP-2, and MAp19). These values are in the same range as those determined for the interaction of these proteins with MBL. Binding was Ca(2+) dependent and was only partly sensitive to EDTA for MASP-1, MASP-2, and MASP-2 CUB1-EGF-CUB2. Half-maximal binding was obtained at comparable Ca(2+) concentrations for MASP-1 and MASP-2 (0.45 and 0.47 micro M, respectively), their CUB1-EGF-CUB2 segments (0.37 and 0.72 micro M), and their CUB1-EGF segments (0.31 and 0.79 micro M). These values are lower than those determined in the case of MBL, indicating a difference between MBL and L-ficolin/P35 with respect to the Ca(2+) dependence of their interaction with the MASPs. Preincubation of the MASPs with soluble MBL inhibited subsequent binding to immobilized L-ficolin/P35 and, conversely, suggesting that these lectins compete with each other for binding to the MASPs in vivo.  相似文献   

9.
MAp19 is an alternative splicing product of the MASP-2 gene comprising the N-terminal CUB1-epidermal growth factor (EGF) segment of MASP-2, plus four additional residues at its C-terminal end. Like full-length MASP-2, it forms Ca(2+)-dependent complexes with mannan-binding lectin (MBL) and L-ficolin. The x-ray structure of human MAp19 was solved to a resolution of 2.5 A. It shows a head to tail homodimer held together by interactions between the CUB1 module of one monomer and the EGF module of its counterpart. A Ca(2+) ion bound to each EGF module stabilizes the dimer interfaces. A second Ca(2+) ion is bound to the distal end of each CUB1 module, through six ligands contributed by Glu(52), Asp(60), Asp(105), Ser(107), Asn(108), and a water molecule. Compared with its counterpart in human C1s, the N-terminal end of the MAp19 CUB1 module contains a 7-residue extension that forms additional inter-monomer contacts. To identify the residues involved in the interaction of MAp19 with MBL and L-ficolin, point mutants were generated and their binding ability was determined using surface plasmon resonance spectroscopy. Six mutations at Tyr(59), Asp(60), Glu(83), Asp(105), Tyr(106), and Glu(109) either strongly decreased or abolished interaction with both MBL and L-ficolin. These mutations map a common binding site for these proteins located at the distal end of each CUB1 module and stabilized by the Ca(2+) ion.  相似文献   

10.
Kang I  Kim JI  Chang SG  Lee SJ  Choi SL  Ha J  Kim SS 《FEBS letters》1999,462(1-2):89-93
Mannan-binding lectin (MBL)-associated plasma protein (MAp19) is an alternatively spliced form of MBL-associated serine protease-2, a component of a complement activation cascade. We observed that MAp19 is excreted in human urine. Interestingly, the amount of MAp19 was higher in urine of renal cell carcinoma patients than healthy people. Pretreatment of urine dialysate with 50 mM EDTA increased the recovery of MAp19, suggesting that MAp19 is a calcium-binding protein. The recombinant MAp19 showed a strong inhibition of calcium oxalate crystal growth in vitro in a concentration-dependent manner. Thus, we conclude that MAp19 plays a role in the inhibition of calcium oxalate renal stone formation.  相似文献   

11.
Mannose-Binding Lectin (MBL) is a serum pattern recognition molecule, able to activate complement in association with MASP proteases. Serum levels of MBL and MASP-2, activities of MBL–MASP complexes, single nucleotide polymorphisms of the MBL2 and MASP2 genes and/or their specific mRNA expression in ovarian sections were investigated in 128 patients suffering from primary ovarian cancer (OC) and compared with 197 controls (C), encompassing both patients with benign ovarian tumours (n = 123) and others with no ovarian pathology (n = 74). MBL deficiency-associated genotypes were more common among OC patients than among controls. The O/O group of genotypes was associated with ovarian cancer (OR 3.5, p = 0.02). In A/A homozygotes, MBL concentrations and activities were elevated in the OC group and correlated with C-reactive protein. Moreover, high MBL serum levels were associated with more advanced disease stage. No differences in distribution of the MASP2 +359 A>G (D120G) SNP or MASP-2 serum levels were found between cancer patients and their controls. However, the highest frequency of the A/G (MASP2) and LXA/O or O/O (MBL2) genotypes was found among OC patients with tumours of G1–2 grade (well/moderately differentiated). Furthermore, MBL deficiency-associated genotypes predicted prolonged survival. None of the parameters investigated correlated with CA125 antigen or patients’ age. The local expression of MBL2 and MASP2 genes was higher in women with ovarian cancer compared with controls. It is concluded that the expression of MBL and MASP-2 is altered in ovarian cancer, possibly indicating involvement of the lectin pathway of complement activation in the disease.  相似文献   

12.
The complement system is a first-line innate host immune defence against invading pathogens. It is activated via three pathways, termed Classical, Lectin and Alternative, which are mediated by antibodies, carbohydrate arrays or microbial liposaccharides, respectively. The three complement pathways converge in the formation of C3-convertase followed by the assembly of a lethal pore-like structure, the membrane attack complex (MAC), on the pathogen surface. We found that the infectious stage of the helminth parasite Fasciola hepatica, the newly excysted juvenile (NEJ), is resistant to the damaging effects of complement. Despite being coated with mannosylated proteins, the main initiator of the Lectin pathway, the mannose binding lectin (MBL), does not bind to the surface of live NEJ. In addition, we found that recombinantly expressed serine protease inhibitors secreted by NEJ (rFhSrp1 and rFhSrp2) selectively prevent activation of the complement via the Lectin pathway. Our experiments demonstrate that rFhSrp1 and rFhSrp2 inhibit native and recombinant MBL-associated serine proteases (MASPs), impairing the primary step that mediates C3b and C4b deposition on the NEJ surface. Indeed, immunofluorescence studies show that MBL, C3b, C4b or MAC are not deposited on the surface of NEJ incubated in normal human serum. Taken together, our findings uncover new means by which a helminth parasite prevents the activation of the Lectin complement pathway to become refractory to killing via this host response, in spite of presenting an assortment of glycans on their surface.  相似文献   

13.
The lectin pathway is an antibody-independent activation route of the complement system. It provides immediate defense against pathogens and altered self-cells, but it also causes severe tissue damage after stroke, heart attack, and other ischemia reperfusion injuries. The pathway is triggered by target binding of pattern recognition molecules leading to the activation of zymogen mannan-binding lectin-associated serine proteases (MASPs). MASP-2 is considered as the autonomous pathway-activator, while MASP-1 is considered as an auxiliary component. We evolved a pair of monospecific MASP inhibitors. In accordance with the key role of MASP-2, the MASP-2 inhibitor completely blocks the lectin pathway activation. Importantly, the MASP-1 inhibitor does the same, demonstrating that MASP-1 is not an auxiliary but an essential pathway component. We report the first Michaelis-like complex structures of MASP-1 and MASP-2 formed with substrate-like inhibitors. The 1.28 Å resolution MASP-2 structure reveals significant plasticity of the protease, suggesting that either an induced fit or a conformational selection mechanism should contribute to the extreme specificity of the enzyme.  相似文献   

14.
The complement system is an important recognition and effector mechanism of the innate immune system that upon activation leads to the elimination of foreign bodies. It can be activated through three pathways of which the lectin pathway is one. The lectin pathway relies on the binding of mannan-binding lectin (MBL) or the ficolins and the subsequent activation of the MBL-associated serine proteases (MASPs), namely, MASP1, 2 and 3 which all form complexes with both MBL and the ficolins. Major substrates have only been identified for MASP2 i.e. C4 and C2. For MASP1 only a few protein substrates which are cleaved at a low rate have been identified while none are known for MASP3. Since chromogenic substrate screenings have shown that MASP1 has thrombin-like activity, we wanted to investigate the catalytic potential of MASP1 towards two major proteins involved in the clotting process, fibrinogen and factor XIII, and compare the activity directly with that of thrombin. We found that rMASP1 and thrombin cleave factor XIII A-chain and the fibrinogen beta-chain at identical sites, but differ in cleavage of the fibrinogen alpha-chain. The thrombin turnover rate of factor XIII is approximately 650 times faster than that of rMASP1 at 37 degrees C, pH 7.4. rMASP1 cleavage of fibrinogen leads to the release of the proinflammatory peptide fibrinopeptide B. Thus rMASP1 has similar, but not identical specificity to thrombin and its catalytic activity for factor XIII and fibrinogen cleavage is much lower than that of thrombin. Nevertheless, rMASP1 can drive the formation of cross-linked fibrinogen. Since MASP1 is activated on contact of MBL or the ficolins with microorganisms, fibrinogen and factor XIII may be involved in the elimination of invading pathogens.  相似文献   

15.
Southern hybridization analysis of the MASP1 gene using an intron-specific probe detected a single band. An exon-specific probe detected several bands. PCR of genomic DNA using several exon-specific primer sets of MASP1 produced short and long products. Sequence of the shorter products corresponded to the processed pseudogene of MASP1. By fluorescence in situ hybridization, this pseudogene (MASP1P1) was mapped to 1p34.  相似文献   

16.
Ulcerative colitis and Crohn's disease are the two major forms of inflammatory bowel disease (IBD). A series of reports have hypothesized interplay of genetic and environmental factors in the pathogenesis of IBD. Polymorphism in the mannan-binding lectin-2 (MBL-2) gene is known to affect the structural assembly and function thereby predisposing subjects to various diseases. The present study was designed to evaluate effect of MBL-2 gene polymorphism on MBL levels and function in IBD patients. Genomic DNA was isolated from blood samples collected from 157 ulcerative colitis, 42 Crohn's disease and 204 control subjects. Genotyping for different polymorphic sites at exon1 of MBL-2 gene was performed by refractory mutation system-PCR and amplification followed by restriction digestion (PCR-RFLP). Serum MBL concentration and C4 deposition levels were estimated using ELISA. Mannan-binding lectin-2 genotypic variants were calculated in IBD and healthy controls. The frequency of single nucleotide polymorphisms at codon 54 was significantly higher in ulcerative colitis patients than controls (P?相似文献   

17.
Mannan-binding lectin (MBL) was first discovered as a collectin in animal blood, and was shown to have such unique characteristics as a collage-like domain and a carbohydrate recognition domain. We recently identified human collectin kidney 1 (CL-K1, COLEC11) from a human kidney cDNA library. To quantitate the CL-K1 concentration in blood, we developed several polyclonal and monoclonal antibodies using recombinant human CL-K1 in CHO cells and the CL-K1 fragment in Escherichia coli. Using these antibodies, we established a sandwich enzyme-linked immunosorbent assay (ELISA) system. The concentration of CL-K1 in human plasma was 0.34 ± 0.13 μg/ml and that in MBL was 1.72 ± 1.51 μg/ml. Concentrations of MBL are often low due to its single nucleotide polymorphisms (SNPs) which seem to be related to an opsonic defect. However, no low concentrations of CL-K1 were observed on testing over two hundred blood samples. We also found that the blood concentration of CL-K1 was not dependent on gender or age and did not correlate completely with that of MBL. The ELISA system developed in this study will be useful for elucidating the physiological and pathophysiological role of CL-K1 in humans.  相似文献   

18.
19.
Mannan-binding lectin (MBL)-associated serine proteases (MASP-1, -2, and -3) are homologous modular proteases that each associate with MBL and L- and H-ficolins, which are oligomeric serum lectins involved in innate immunity. To investigate its physicochemical, interaction, and enzymatic properties, human MASP-3 was expressed in insect cells. Ultracentrifugation analysis indicated that rMASP-3 sedimented as a homodimer (s(20,w) = 6.2 +/- 0.1 S) in the presence of Ca(2+), and as a monomer (s(20,w) = 4.6 +/- 0.1 S) in EDTA. As shown by surface plasmon resonance spectroscopy, it associated with both MBL (K(D) = 2.6 nM) and L-ficolin (K(D) = 7.2 nM). The protease was produced in a single-chain, proenzyme form, but underwent slow activation upon prolonged storage at 4 degrees C, resulting from cleavage at the Arg(430)-Ile(431) activation site. Activation was prevented in the presence of protease inhibitors iodoacetamide and 1,10-phenanthroline but was not abolished upon substitution of Ala for the active site Ser(645) of MASP-3, indicating extrinsic proteolysis. In contrast, the corresponding mutations Ser(627)-->Ala in MASP-1 and Ser(618)-->Ala in MASP-2 stabilized the latter in their proenzyme form. Likewise, the MASP-1 and MASP-2 mutants were each activated by their active counterparts, but MASP-3 S645A was not. Activated MASP-3 did not react with C1 inhibitor; had no activity on complement proteins C2, C4, and C3; and only cleaved the N-carboxybenzyloxyglycine-L-arginine thiobenzyl ester substrate to a significant extent. Based on these observations, it is postulated that MASP-3 activation and control involve mechanisms that are different from those of MASP-1 and -2.  相似文献   

20.
The assessment of allelic variants in the human mannose-binding lectin 2 (MBL2) gene is of great clinical importance in newborns or immune-suppressed patients at high risk for a variety of infections. Here, we present a study on the genotyping accuracy of a DNA microarray-based on-chip PCR method suited for the detection of five different polymorphisms in the MBL2 gene. We tested 153 genomic DNA samples, prepared from archival blood spots on Guthrie cards, for the presence of allelic variants in the human MBL2 gene by the on-chip PCR method and compared the obtained results of three variants to standard DNA capillary sequencing. The genotyping power of the described assay was readily comparable to DNA sequencing (453/459 correct genotype calls in 153 DNA samples; 98.7% accuracy), mainly due to intrinsic technical benefits of microarrays such as high number of test replicates and automated data analysis. This study demonstrates, for the first time, the accuracy and reliability of a microarray-based on-chip PCR genotyping assay for measuring allelic variants in a routine clinical setting.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号