首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mammalian Sprouty (Spry) proteins are now established as receptor tyrosine kinase-induced modulators of the Ras/mitogen-activated protein kinase pathway. Specifically, hSpry2 inhibits the fibroblast growth factor receptor (FGFR)-induced mitogen-activated protein kinase pathway but conversely prolongs activity of the same pathway following epidermal growth factor (EGF) stimulation, where activated EGF receptors are retained on the cell surface. In this study it is demonstrated that hSpry2 is tyrosine-phosphorylated upon stimulation by either FGFR or EGF and subsequently binds endogenous c-Cbl with high affinity. A conserved motif on hSpry2, together with phosphorylation on tyrosine 55, is required for its enhanced interaction with the SH2-like domain of c-Cbl. A hSpry2 mutant (Y55F) that did not exhibit an enhanced binding with c-Cbl failed to retain EGF receptors on the cell surface. Furthermore, individually mutating hSpry2 residues 52-59 to alanine indicated a tight correlation between their affinity for c-Cbl binding and their inhibition of ERK2 activity in the FGFR pathway. We postulate that tyrosine phosphorylation "activates" hSpry2 by enhancing its interaction with c-Cbl and that this interaction is critical for its physiological function in a signal-specific context.  相似文献   

2.
Because the Sprouty (Spry) proteins were shown to be inhibitors of the mainstream Ras/ERK pathway, there has been considerable interest in ascertaining their mechanism of action especially since a possible role as tumor suppressors for these inhibitory proteins has been suggested. We compared the ability of the mammalian Spry isoforms to inhibit the Ras/ERK pathway in the context of fibroblast growth factor receptor (FGFR) signaling. Spry2 is considerably more inhibitory than Spry1 or Spry4, and this correlates with the binding to Grb2 via a C-terminal proline-rich sequence that is found exclusively on Spry2. This PXXPXR motif binds directly to the N-terminal Src homology domain 3 of Grb2, and when added onto the C terminus of Spry4 the resultant chimera inhibits the Ras/ERK pathway. The ability to inhibit neurite outgrowth in PC-12 cells correlates with the propensity of Spry isoforms and engineered constructs to inhibit the phosphorylation of ERK1/2. The PXXPXR motif is cryptic in unstimulated cells, and it is postulated that Spry2 undergoes a conformational change following FGFR stimulation, enabling the subsequent interaction with Grb2. We present evidence that Spry2 can compete with the RasGEF (guanine nucleotide exchange factor) SOS1 for binding to Grb2, resulting in the inhibition of phosphorylation of ERK1/2.  相似文献   

3.
The Sprouty (Spry) proteins function as inhibitors of the Ras-ERK pathway downstream of various receptor tyrosine kinases. In this study, we have identified Tesk1 (testicular protein kinase 1) as a novel regulator of Spry2 function. Endogenous Tesk1 and Spry2 exist in a complex in cell lines and mouse tissues. Tesk1 coexpression relocalizes Spry2 to vesicles including endosomes, inhibiting its translocation to membrane ruffles upon growth factor stimulation. Independent of its kinase activity, Tesk1 binding leads to a loss of Spry2 function as an inhibitor of ERK phosphorylation and reverses inhibition of basic fibroblast growth factor (bFGF)- and nerve growth factor-induced neurite outgrowth in PC12 cells by Spry2. Furthermore, depletion of endogenous Tesk1 in PC12 cells leads to a reduction in neurite outgrowth induced by bFGF. Tesk1 nullifies the inhibitory effect of Spry2 by abrogating its interaction with the adaptor protein Grb2 and interfering with its serine dephosphorylation upon bFGF and FGF receptor 1 stimulation by impeding its binding to the catalytic subunit of protein phosphatase 2A. A construct of Tesk1 that binds to Spry2 but does not localize to the vesicles does not interfere with its function, highlighting the importance of subcellular localization of Tesk1 in this context. Conversely, Tesk1 does not affect interaction of Spry2 with the E3 ubiquitin ligase, c-Cbl, and consequently, does not affect its inhibition of Cbl-mediated ubiquitination of the epidermal growth factor receptor. By selectively modulating the downstream effects of Spry2, Tesk1 may thus serve as a molecular determinant of the signaling outcome.  相似文献   

4.
The members of p90 ribosomal S6 kinase (RSK) family of Ser/Thr kinases are downstream effectors of MAPK/ERK pathway that regulate diverse cellular processes including cell growth, proliferation and survival. In carcinogenesis, RSKs are thought to modulate cell motility, invasion and metastasis. Herein, we have studied an involvement of RSKs in FGF2/FGFR2-driven behaviours of mammary epithelial and breast cancer cells. We found that both silencing and inhibiting of FGFR2 attenuated phosphorylation of RSKs, whereas FGFR2 overexpression and/or its stimulation with FGF2 enhanced RSKs activity. Moreover, treatment with ERK, Src and p38 inhibitors revealed that p38 kinase acts as an upstream RSK2 regulator. We demonstrate for the first time that in FGF2/FGFR2 signalling, p38 but not MEK/ERK, indirectly activated RSK2 at Tyr529, which facilitated phosphorylation of its other residues (Thr359/Ser363, Thr573 and Ser380). In contrast to FGF2-triggered signalling, inhibition of p38 in the EGF pathway affected only RSK2-Tyr529, without any impact on the remaining RSK phosphorylation sites. p38-mediated phosphorylation of RSK2-Tyr529 was crucial for the transactivation of residues located at kinase C-terminal domain and linker-region, specifically, in the FGF2/FGFR2 signalling pathway. Furthermore, we show that FGF2 promoted anchorage-independent cell proliferation, formation of focal adhesions and cell migration, which was effectively abolished by treatment with RSKs inhibitor (FMK). These indicate that RSK2 activity is indispensable for FGF2/FGFR2-mediated cellular effects. Our findings identified a new FGF2/FGFR2-p38-RSK2 pathway, which may play a significant role in the pathogenesis and progression of breast cancer and, hence, may present a novel therapeutic target in the treatment of FGFR2-expressing tumours.  相似文献   

5.
Wong ES  Fong CW  Lim J  Yusoff P  Low BC  Langdon WY  Guy GR 《The EMBO journal》2002,21(18):4796-4808
Drosophila Sprouty (dSpry) was genetically identified as a novel antagonist of fibroblast growth factor receptor (FGFR), epidermal growth factor receptor (EGFR) and Sevenless signalling, ostensibly by eliciting its response on the Ras/MAPK pathway. Four mammalian sprouty genes have been cloned, which appear to play an inhibitory role mainly in FGF- mediated lung and limb morphogenesis. Evidence is presented herein that describes the functional implications of the direct association between human Sprouty2 (hSpry2) and c-Cbl, and its impact on the cellular localization and signalling capacity of EGFR. Contrary to the consensus view that Spry2 is a general inhibitor of receptor tyrosine kinase signalling, hSpry2 was shown to abrogate EGFR ubiquitylation and endocytosis, and sustain EGF-induced ERK signalling that culminates in differentiation of PC12 cells. Correlative evidence showed the failure of hSpry2DeltaN11 and mSpry4, both deficient in c-Cbl binding, to instigate these effects. hSpry2 interacts specifically with the c-Cbl RING finger domain and displaces UbcH7 from its binding site on the E3 ligase. We conclude that hSpry2 potentiates EGFR signalling by specifically intercepting c-Cbl-mediated effects on receptor down-regulation.  相似文献   

6.
Sprouty (Spry) inhibits signalling by receptor tyrosine kinases; however, the molecular mechanism underlying this function has not been defined. Here we show that after stimulation by growth factors Spry1 and Spry2 translocate to the plasma membrane and become phosphorylated on a conserved tyrosine. Next, they bind to the adaptor protein Grb2 and inhibit the recruitment of the Grb2-Sos complex either to the fibroblast growth factor receptor (FGFR) docking adaptor protein FRS2 or to Shp2. Membrane translocation of Spry is necessary for its phosphorylation, which is essential for its inhibitor activity. A tyrosine-phosphorylated octapeptide derived from mouse Spry2 inhibits Grb2 from binding FRS2, Shp2 or mouse Spry2 in vitro and blocks activation of the extracellular-signal-regulated kinase (ERK) in cells stimulated by growth factor. A non-phosphorylated Spry mutant cannot bind Grb2 and acts as a dominant negative, inducing prolonged activation of ERK in response to FGF and promoting the FGF-induced outgrowth of neurites in PC12 cells. Our findings suggest that Spry functions in a negative feedback mechanism in which its inhibitor activity is controlled rapidly and reversibly by post-translational mechanisms.  相似文献   

7.
Fibroblast growth factor receptors (FGFRs) are involved in proliferative and differentiation physiological responses. Deregulation of FGFR-mediated signaling involving the Ras/PI3K/Akt and the Ras/Raf/ERK MAPK pathways is causally involved in the development of several cancers. The caspase-3/p120 RasGAP module is a stress sensor switch. Under mild stress conditions, RasGAP is cleaved by caspase-3 at position 455. The resulting N-terminal fragment, called fragment N, stimulates anti-death signaling. When caspase-3 activity further increases, fragment N is cleaved at position 157. This generates a fragment, called N2, that no longer protects cells. Here, we investigated in Xenopus oocytes the impact of RasGAP and its fragments on FGF1-mediated signaling during G2/M cell cycle transition. RasGAP used its N-terminal Src homology 2 domain to bind FGFR once stimulated by FGF1, and this was necessary for the recruitment of Akt to the FGFR complex. Fragment N, which did not associate with the FGFR complex, favored FGF1-induced ERK stimulation, leading to accelerated G2/M transition. In contrast, fragment N2 bound the FGFR, and this inhibited mTORC2-dependent Akt Ser-473 phosphorylation and ERK2 phosphorylation but not phosphorylation of Akt on Thr-308. This also blocked cell cycle progression. Inhibition of Akt Ser-473 phosphorylation and entry into G2/M was relieved by PHLPP phosphatase inhibition. Hence, full-length RasGAP favors Akt activity by shielding it from deactivating phosphatases. This shielding was abrogated by fragment N2. These results highlight the role played by RasGAP in FGFR signaling and how graded stress intensities, by generating different RasGAP fragments, can positively or negatively impact this signaling.  相似文献   

8.
Regulation of Sprouty2 stability by mammalian Seven-in-Absentia homolog 2   总被引:2,自引:0,他引:2  
Mammalian Sprouty (Spry) gene expression is rapidly induced upon activation of the FGF receptor signaling pathway in multiple cell types including cells of mesenchymal and epithelial origin. Spry2 inhibits FGF-dependent ERK activation and thus Spry acts as a feedback inhibitor of FGF-mediated proliferation. In addition, Spry2 interacts with the ring-finger-containing E3 ubiquitin ligase, c-Cbl, in a manner that is dependent upon phosphorylation of Tyr55 of Spry2. This interaction results in the poly-ubiquitination and subsequent degradation of Spry2 by the proteasome. Here, we describe the identification of another E3 ubiquitin ligase, human Seven-in-Absentia homolog-2 (SIAH2), as a Spry2 interacting protein. We show by yeast two-hybrid analysis that the N-terminal domain of Spry2 and the ring finger domain of SIAH2 mediated this interaction. Co-expression of SIAH2 resulted in proteasomal degradation of Spry1, 2, and to a lesser extent Spry4. The related E3 ubiquitin-ligase, SIAH1, had little effect on Spry2 protein stability when co-expressed. Unlike c-Cbl-mediated degradation of Spry2, SIAH2-mediated degradation was independent of phosphorylation of Spry2 on Tyr55. Spry2 was also phosphorylated on Tyr227, and phosphorylation of this residue was also dispensable for SIAH2-mediated degradation of Spry2. Finally, co-expression of SIAH2 with Spry2 resulted in a rescue of FGF2-mediated ERK phosphorylation. These data suggest a novel mechanism whereby Spry2 stability is regulated in a manner that is independent of tyrosine phosphorylation, and provides an addition level of control of Spry2 protein levels.  相似文献   

9.
SHP2 is a tyrosine phosphatase involved in the activation of the Ras/ERK signaling pathway downstream of a number of receptor tyrosine kinases. One of the proposed mechanisms involving SHP2 in this context is to dephosphorylate and inactivate inhibitors of the Ras/ERK pathway. Two protein families bearing a unique, common domain, Sprouty and SPRED proteins, are possible candidates because they have been reported to inhibit the Ras/ERK pathway upon FGF activation. We tested whether any of these proteins are likely substrates of SHP2. Our findings indicate that Sprouty2 binds to the C-terminal tail of SHP2, which is an unlikely substrate binding site, whereas SPRED proteins bind to the tyrosine phosphatase domain that is known to be the binding site for its substrates. Overexpressed SHP2 was able to dephosphorylate SPREDs but not Sprouty2. Finally, we found two tyrosine residues on SPRED1 that are required, when phosphorylated, to inhibit Ras/ERK activation and identified Tyr-420 as a specific dephosphorylation target of SHP2. The evidence obtained indicates that SPRED1 is a likely substrate of SHP2, whose tyrosine dephosphorylation is required to attenuate the inhibitory action of SPRED1 in the Ras/ERK pathway.  相似文献   

10.
Signaling through fibroblast growth factor receptors (FGFRs) is essential for many cellular processes including proliferation and migration as well as differentiation events such as angiogenesis, osteogenesis, and chondrogenesis. Recently, genetic screens in Drosophila and gene expression screens in zebrafish have resulted in the identification of several feedback inhibitors of FGF signaling. One of these, Sef (similar expression to fgf genes), encodes a transmembrane protein that belongs to the FGF synexpression group. Here we show that like zebrafish Sef (zSef), mouse Sef (mSef) interacts with FGFR1 and that the cytoplasmic domain of mSef mediates this interaction. Overexpression of mSef in NIH3T3 cells results in a decrease in FGF-induced cell proliferation associated with a decrease in Tyr phosphorylation of FGFR1 and FRS2. As a consequence, there is a reduction in the phosphorylation of Raf-1 at Ser(338), MEK1/2 at Ser(217) and Ser(221), and ERK1/2 at Thr(202) and Tyr(204). Furthermore, mSef inhibits ERK activation mediated by a constitutively activated FGFR1 but not by a constitutively active Ras and decreases FGF but not PDGF-mediated activation of Akt. These results indicate that Sef exerts its inhibitory effects at the level of FGFR and upstream of Ras providing an additional level of negative regulation of FGF signaling.  相似文献   

11.
The mitogen-activated protein kinase (MAP kinase) signalling cascade activated by fibroblast growth factors (FGF1 and FGF2) was analysed in a model system, Xenopus oocytes, expressing fibroblast growth factor receptors (FGFR1 and FGFR4). Stimulation of FGFR1 by FGF1 or FGF2 and FGFR4 by FGF1 induced a sustained phosphorylation of extracellular signal-regulated protein kinase 2 (ERK2) and meiosis reinitiation. In contrast, FGFR4 stimulation by FGF2 induced an early transient activation of ERK2 and no meiosis reinitiation. FGFR4 transduction cascades were differently activated by FGF1 and FGF2. Early phosphorylation of ERK2 was blocked by the dominant negative form of growth factor-bound protein 2 (Grb2) and Ras, for FGF1-FGFR4 and FGF2-FGFR4. The phosphatidylinositol 3-kinase (PI3 kinase) inhibitors wortmannin and LY294002 only prevented the early ERK2 phosphorylation triggered by FGF2-FGFR4 but not by FGF1-FGFR4. ERK2 phosphorylation triggered by FGFR4 depended on the Grb2/Ras pathway and also involved PI3 kinase in a time-dependent manner.  相似文献   

12.
Xenopus oocytes expressing fibroblast growth factor receptor 1 (FGFR1) were used as a biological model system to analyse the signal transduction pathways that are triggered by fibroblast growth factor 1 (FGF1). Germinal vesicle breakdown (GVBD) and phosphorylation of extracellular signal-regulated protein kinase 2 (ERK2) occured 15 h after FGF1 addition. These events were Ras-dependent as they were blocked by a Ras dominant negative form. The Ras activity was promoted by three upstream effectors, growth factor-bound protein 2 (Grb2), phosphatidylinositol 3-kinase (PI3K) and Src cytoplasmic kinase. Ras activation was inhibited by a Grb2 dominant negative form (P49L), by PI3K inhibitors, including wortmannin, LY294002, the N-SH2 domain of p85alpha PI3K and by the SH2 domain of Src. Src activation induced by FGF1 was blocked by the SH2 domain of Src and PP2, a specific inhibitor of Src. The Grb2 adaptor was recruited by the upstream Src homology 2/alpha-collagen-related (Shc) effector, as the SH2-Shc domain prevented the GVBD and the ERK2 phosphorylation induced by FGF1. The importance of another signalling pathway involving phospholipase Cgamma (PLCgamma) was also investigated. The use of the PLCgamma inhibitory peptide, neomycin and the calcium chelator BAPTA-AM on oocytes expressing FGFR1 or the stimulation by PDGF-BB of oocytes expressing PDGFR-FGFR1 mutated on the PLCgamma binding site, prevented GVBD and ERK2 phosphorylation. This study shows that the transduction cascade induced by the FGFR1-FGF1 interaction in Xenopus oocytes represents the sum of Ras-dependent and PLCgamma-dependent pathways. It emphasizes the role played by PI3K and Src and their connections with the Ras cascade in the FGFR1 signal transduction.  相似文献   

13.
Fibroblast growth factors (FGFs) play an important regulatory role in skeletal development and bone formation. However, the FGF signaling mechanisms controlling osteoblast function are poorly understood. Here, we identified a role for the Src family members Lyn and Fyn in osteoblast differentiation promoted by constitutive activation of FGF receptor-2 (FGFR2). We show that the overactive FGFR2 S252W mutation induced decreased Src family kinase tyrosine phosphorylation and activity associated with decreased Lyn and Fyn protein expression in human osteoblasts. Pharmacological stimulation of Src family kinases or transfection with Lyn or Fyn vectors repressed alkaline phosphatase (ALP) up-regulation induced by overactive FGFR2. Inhibition of proteasome activity restored normal Lyn and Fyn expression and ALP activity in FGFR2 mutant osteoblasts. Immunoprecipitation studies showed that Lyn, Fyn, and FGFR2 interacted with the ubiquitin ligase c-Cbl and ubiquitin. Transfection with c-Cbl in which the RING finger was disrupted or with c-Cbl with a point mutation that abolishes the binding ability of the Cbl phosphotyrosine-binding domain restored Src kinase activity and Lyn, Fyn, and FGFR2 levels and reduced ALP up-regulation in mutant osteoblasts. Thus, constitutive FGFR2 activation induces c-Cbl-dependent Lyn and Fyn proteasome degradation, resulting in reduced Lyn and Fyn kinase activity, increased ALP expression, and FGFR2 down-regulation. This reveals a common Cbl-mediated negative feedback mechanism controlling Lyn, Fyn, and FGFR2 degradation in response to overactive FGFR2 and indicates a role for Cbl-dependent down-regulation of Lyn and Fyn in osteoblast differentiation induced by constitutive FGFR2 activation.  相似文献   

14.
The FGF signaling pathway plays essential roles in endochondral ossification by regulating osteoblast proliferation and differentiation, chondrocyte proliferation, hypertrophy, and apoptosis. FGF signaling is controlled by the complementary action of both positive and negative regulators of the signal transduction pathway. The Spry proteins are crucial regulators of receptor tyrosine kinase-mediated MAPK signaling activity. Sprys are expressed in close proximity to FGF signaling centers and regulate FGFR-ERK-mediated organogenesis. During endochondral ossification, Spry genes are expressed in prehypertrophic and hypertrophic chondrocytes. Using a conditional transgenic approach in chondrocytes in vivo, the forced expression of Spry1 resulted in neonatal lethality with accompanying skeletal abnormalities resembling thanatophoric dysplasia II, including increased apoptosis and decreased chondrocyte proliferation in the presumptive reserve and proliferating zones. In vitro chondrocyte cultures recapitulated the inhibitory effect of Spry1 on chondrocyte proliferation. In addition, overexpression of Spry1 resulted in sustained ERK activation and increased expression of p21 and STAT1. Immunoprecipitation experiments revealed that Spry1 expression in chondrocyte cultures resulted in decreased FGFR2 ubiquitination and increased FGFR2 stability. These results suggest that constitutive expression of Spry1 in chondrocytes results in attenuated FGFR2 degradation, sustained ERK activation, and up-regulation of p21Cip and STAT1 causing dysregulated chondrocyte proliferation and terminal differentiation.  相似文献   

15.
Deoxycytidine kinase (dCK) is a critical enzyme for activation of anticancer nucleoside analogs. Its activity is controlled via Ser-74 phosphorylation. Here, we investigated which Ser/Thr phosphatase dephosphorylates Ser-74. In cells, the PP1/PP2A inhibitor okadaic acid increased both dCK activity and Ser-74 phosphorylation at concentrations reported to specifically target PP2A. In line with this, purified PP2A, but not PP1, dephosphorylated recombinant pSer-74-dCK. In cell lysates, the Ser-74-dCK phosphatase activity was found to be latent, Mn2+-activated, responsive to PP2A inhibitors, and diminished after PP2A-immunodepletion. Use of siRNAs allowed concluding definitively that PP2A constitutively dephosphorylates dCK in cells and negatively regulates its activity.  相似文献   

16.
The protein phosphatase 2C (PP2C) family represents one of the four major protein Ser/Thr phosphatase activities in mammalian cells and contains at least 13 distinct gene products. Although PP2C family members regulate a variety of cellular functions, mechanisms of regulation of their activities are largely unknown. Here, we show that PP2Czeta, a PP2C family member that is enriched in testicular germ cells, is phosphorylated by c-Jun NH 2-terminal kinase (JNK) but not by p38 in vitro. Mass spectrometry and mutational analyses demonstrated that phosphorylation occurs at Ser (92), Thr (202), and Thr (205) of PP2Czeta. Phosphorylation of these Ser and Thr residues of PP2Czeta ectopically expressed in 293 cells was enhanced by osmotic stress and was attenuated by a JNK inhibitor but not by p38 or MEK inhibitors. Phosphorylation of PP2Czeta by TAK1-activated JNK repressed its phosphatase activity in cells, and alanine mutation at Ser (92) but not at Thr (202) or Thr (205) suppressed this inhibition. Taken together, these results suggest that specific phosphorylation of PP2Czeta at Ser (92) by stress-activated JNK attenuates its phosphatase activity in cells.  相似文献   

17.
Protein phosphatase 2C (PP2C) is a Mn2+- or Mg2+-dependent protein Ser/Thr phosphatase that is essential for regulating cellular stress responses in eukaryotes. The crystal structure of human PP2C reveals a novel protein fold with a catalytic domain composed of a central beta-sandwich that binds two manganese ions, which is surrounded by alpha-helices. Mn2+-bound water molecules at the binuclear metal centre coordinate the phosphate group of the substrate and provide a nucleophile and general acid in the dephosphorylation reaction. Our model presents a framework for understanding not only the classical Mn2+/Mg2+-dependent protein phosphatases but also the sequence-related domains of mitochondrial pyruvate dehydrogenase phosphatase, the Bacillus subtilus phosphatase SpoIIE and a 300-residue domain within yeast adenyl cyclase. The protein architecture and deduced catalytic mechanism are strikingly similar to the PP1, PP2A, PP2B family of protein Ser/Thr phosphatases, with which PP2C shares no sequence similarity, suggestive of convergent evolution of protein Ser/Thr phosphatases.  相似文献   

18.
Evans DR  Simon JA 《FEBS letters》2001,498(1):110-115
The potential anticancer agent fostriecin (FOS) is a potent inhibitor of the protein Ser/Thr phosphatases PP2A and PP4 and a weaker inhibitor of PP1. Random mutagenesis and automated screening in yeast identified residues in human PP2Acalpha important for inhibitory FOS binding. A C269S substitution in the predicted beta12-beta13 loop decreased the FOS sensitivity of intact cells and increased the IC(50) of PP2Acalpha by 10-fold in vitro. Changing PP2Acalpha Cys-269 to phenylalanine, the equivalent residue in PP1, and the Y267G and G270D substitutions caused a similar effect. The results provide information relevant to the design of novel protein Ser/Thr phosphatase inhibitory drugs.  相似文献   

19.
Fibroblast growth factor (FGF) receptor 1 (FGFR1) protein was expressed as the long and short as well as some truncated forms in ovine fetoplacental artery ex vivo and in vitro. Upon FGF2 stimulation, both the long and short FGFR1s were tyrosine phosphorylated and the PI3K/AKT1 and ERK1/2 pathways were activated in a concentration- and time- dependent manner in ovine fetoplacental artery endothelial (oFPAE) cells. Blockade of the PI3K/AKT1 pathway attenuated FGF2-stimulated cell proliferation and migration as well as tube formation; blockade of the ERK1/2 pathway abolished FGF2-stimulated tube formation and partially inhibited cell proliferation and did not alter cell migration. Both AKT1 and ERK1/2 were co-fractionated with caveolin-1 and activated by FGF2 in the caveolae. Disruption of caveolae by methyl-β-cyclodextrin inhibited FGF2 activation of AKT1 and ERK1/2. FGFR1 was found in the caveolae where it physically binds to caveolin-1. FGF2 stimulated dissociation of FGFR1 from caveolin-1. Downregulation of caveolin-1 significantly attenuated the FGF2-induced activation of AKT1 and ERK1/2 and inhibited FGF2-induced cell proliferation, migration and tube formation in oFPAE cells. Pretreatment with a caveolin-1 scaffolding domain peptide to mimic caveolin-1 overexpression also inhibited these FGF2-induced angiogenic responses. These data demonstrate that caveolae function as a platform for regulating FGF2-induced angiogenesis through spatiotemporally compartmentalizing FGFR1 and the AKT1 and ERK1/2 signaling modules; the major caveolar structural protein caveolin-1 interacts with FGFR1 and paradoxically regulates FGF2-induced activation of PI3K/AKT1 and ERK1/2 pathways that coordinately regulate placental angiogenesis.  相似文献   

20.
The class Ia phosphoinositide (PI) 3-kinase consisting of p110 catalytic and p85 regulatory subunits is activated by Tyr kinase-linked membrane receptors such as FcgammaRII through the association of p85 with the phosphorylated receptors or adaptors. The heterodimeric PI 3-kinase is also activated by G protein-coupled chemotactic fMLP receptors, and activation of the lipid kinase plays an important role in various immune responses, including superoxide formation in neutrophils. Although fMLP-induced superoxide formation is markedly enhanced in FcgammaRII-primed neutrophils, the molecular mechanisms remain poorly characterized. In this study, we identified two Tyr-phosphorylated proteins, c-Cbl (Casitas B-lineage lymphoma) and Grb2-associated binder 2 (Gab2), as PI 3-kinase adaptors that are Tyr phosphorylated upon the stimulation of FcgammaRII in differentiated neutrophil-like THP-1 cells. Interestingly, Gab2 was, but c-Cbl was not, further Ser/Thr phosphorylated by fMLP. Thus, the adaptor Gab2 appeared to be dually phosphorylated at the Ser/Thr and Tyr residues through the two different types of membrane receptors. The Ser/Thr phosphorylation of Gab2 required the activation of extracellular signal-regulated kinase, and fMLP receptor stimulation indeed activated extracellular signal-regulated kinase in the cells. Enhanced superoxide formation in response to Fcgamma and fMLP was markedly attenuated when the Gab2 Ser/Thr phosphorylation was inhibited. These results show the importance of the dual phosphorylation of PI 3-kinase adaptor Gab2 for the enhanced superoxide formation in neutrophil-type cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号