首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In the cyanobacterium Anabaena variabilis the dependence of photoinhibition on fluence rate, duration and wavelength of irradiation were studied by measurements of oxygen production and fluorescence emission spectra. The analysis of the photosynthetic activity revealed that photoinhibition affects exclusively photosystem II (PS II), whereas photosystem I (PS I) remained largely unimpaired. Furthermore, PS II fluorescence emission decreased much faster in bleached than in unbleached controls.Studying the wavelength dependence of photoinhibition it was found that only radiation between 520 and 680 nm causes photoinhibition. This is about the same range of wavelengths which causes photobleaching. Fluorescence emission spectra of samples exposed to high fluence rates of 582 and 662 nm, respectively, essentially agree with those samples exposed to high fluence rates of white light, whereas the fluorescence emission spectra of samples exposed to blue light resemble those exposed to dim white light.NaN3, a substance which prevents photobleaching, inhibits the photosynthetic O2 production of Anabaena and, hence, enhances the photoinhibitory effect.  相似文献   

2.
The phototactic behavior of individual cells of the cyanobacterium Synechocystis sp. strain PCC6803 was studied with a glass slide-based phototaxis assay. Data from fluence rate-response curves and action spectra suggested that there were at least two light input pathways regulating phototaxis. We observed that positive phototaxis in wild-type cells was a low fluence response, with peak spectral sensitivity at 645 and 704 nm. This red-light-induced phototaxis was inhibited or photoreversible by infrared light (760 nm). Previous work demonstrated that a taxD1 mutant (Cyanobase accession no. sll0041; also called pisJ1) lacked positive but maintained negative phototaxis. Therefore, the TaxD1 protein, which has domains that are similar to sequences found in both bacteriophytochrome and the methyl-accepting chemoreceptor protein, is likely to be the photoreceptor that mediates positive phototaxis. Wild-type cells exhibited negative phototaxis under high-intensity broad-spectrum light. This phenomenon is predominantly blue light responsive, with a maximum sensitivity at approximately 470 nm. A weakly negative phototactic response was also observed in the spectral region between 600 and 700 nm. A deltataxD1 mutant, which exhibits negative phototaxis even under low-fluence light, has a similar action maximum in the blue region of the spectrum, with minor peaks from green to infrared (500 to 740 nm). These results suggest that while positive phototaxis is controlled by the red light photoreceptor TaxD1, negative phototaxis in Synechocystis sp. strain PCC6803 is mediated by one or more (as yet) unidentified blue light photoreceptors.  相似文献   

3.
H. Yatsuhashi  A. Kadota  M. Wada 《Planta》1985,165(1):43-50
An action spectrum for the low-fluencerate response of chloroplast movement in protonemata of the fern Adiantum capillus-veneris L. was determined using polarized light vibrating perpendicularly to the protonema axis. The spectrum had several peaks in the blue region around 450 nm and one in the red region at 680 nm, the blue peaks being higher than the red one. The red-light action was suppressed by nonpolarized far-red light given simultaneously or alternately, whereas the bluelight action was not. Chloroplast movement was also induced by a local irradiation with a narrow beam of monochromatic light. A beam of blue light at low energy fluence rates (7.3·10-3-1.0 W m-2) caused movement of the chloroplasts to the beam area (positive response), while one at high fluence rates (10 W m-2 and higher) caused movement to outside of the beam area (negative response). A red beam caused a positive response at fluence rates up to 100 W m-2, but a negative response at very high fluence rates (230 and 470 W m-2). When a far-red beam was combined with total background irradiation with red light at fluence rates causing a low-fluence-rate response in whole cells, chloroplasts moved out of the beam area. When blue light was used as background irradiation, however, a narrow far-red beam had no effect on chloroplast distribution. These results indicate that the light-oriented movement of Adiantum chloroplasts is caused by red and blue light, mediated by phytochrome and another, unidentified photoreceptor(s), respectively. This movement depends on a local gradient of the far-red-absorbing form of phytochrome or of a photoexcited blue-light photoreceptor, and it includes positive and negative responses for both red and blue light.Abbreviations BL blue light - FR far-red light - Pfr far-red-absorbing form of phytochrome - Pr red-absorbing form of phytochrome - R red light - UV ultraviolet  相似文献   

4.
5.
The photophobic responses in the Cyanobacterium Anabaena variabilis which belongs to the Nostocaceae have been studied with aid of a population method as well as by single trichome observations. In white light experiments both step-up and step-down photophobic responses were observed. The wavelength dependence was examined at a constant fluence rate. The photophobically active light is absorbed by the photosynthetic pigments, mainly by the phycobiliproteins and chlorohyll a. Above 690 nm only negative reactions were observed, i.e. the trichomes left the light trap. In white light experiments DCMU strongly inhibited the photophobic responses, whereas photokinesis was not affected to the same extent indicating that the reaction is coupled with the non cyclic photosynthetic electron transport. DBMIB impaired the photophobic behaviour only slightly. It seems that the photophobic responses of A. variabilis are controlled by a similar mechanism as in Phormidium uncinatum (Oscillatoriaceae) although the two families and, hence, the two species differ in their movement mechanism as well as in their photoactic behaviour.  相似文献   

6.
Abstract The marine flagellate Cryptomonas maculata is bleached and eventually killed by exposure to even moderate white-light fluence rates. Bleaching affects all of its photosynthetic pigments and the kinetics depend on the fluence rate of the radiation the organisms are exposed to. Nitrogen-deficient cells which show a reduced pigment concentration and impaired photosynthetic efficiency tolerate bleaching white-light exposure far better than the normally colored cells. In their natural environment the organisms escape this situation by a pronounced negative phototaxis at fluence rates above 3.6 klx (= 15 W.m−2), while they show positive phototaxis at lower fluence rates. In nitrogen-deficient cells, however, though being less prone to photobleaching, negative phototaxis commences even at a fluence rate of about 830 lx (= 3.5 W.m−2). The ecological consequences of the remarkable light sensitivity and the phototactic orientation are being discussed.  相似文献   

7.
Galland P 《Planta》1998,205(2):269-276
Phototropism experiments were done with sporangiophores of the fungus Phycomyces blakesleeanus to characterize the interaction between far-UV, blue and red light. Far-UV light elicits negative phototropism (bending away from the light source) while blue light elicits positive phototropism (bending toward the light source). In contrast, red light above 600 nm is phototropically inert. Phototropism was analyzed with light regimens of bilateral or unilateral irradiation with far-UV and blue light. Under bilateral irradiation, in which the two light sources were facing each other, blue light partially inhibited the far-UV-elicited phototropism. A fluence-response curve for this inhibition showed that blue light was maximally effective at fluence rates which exceeded 3 to 57 times that of the far-UV. Tonic red light, which was given from above, abolished to a large extent the antagonistic action of blue light. With a regimen of unilateral irradiation, i.e. when far-UV and blue light were given from the same side, a phototropic balance could be achieved with approximately equal fluence rates of blue and UV light. Above or below this critical balance point the bending was either negative or positive. In this setup the effect of tonic red light was complex. First, it caused an enhancement of the positive or negative bending, and second, it caused at some fluence rates a sign reversal from positive to negative phototropism. The balance point itself was only marginally affected. The data cannot be explained on the basis of a single photoreceptor and support the previous notion of separate far-UV and blue-light receptors. The antagonism between these two receptors probably occurs on the level of a red-light-absorbing receptor intermediate. Received: 16 November 1997 / Accepted: 18 December 1997  相似文献   

8.
Phototaxis of the blue-green alga Anabaena variabilis was studied using both population method and observation of single trichomes by microscope. The trichomes react positively at low and negatively at high illuminance. The inversion point lies at about 1000 1x. The action spectrum of positive phototaxis indicates that the photosynthetic pigments chlorophyll a, C-phycocyanin and allo-phycocyanin are involved in the absorption of the active light. The same range of wavelengths is active in negative phototaxis, but in addition, wavelengths between 500 and 560 nm and between 700 and 750 nm are also effective. Obviously pigments of unknown chemical nature are sharing in light absorption. Two alternatives are discussed. Since inhibitors of photosynthesis such as DCMU and DBMIB do not affect phototactic orientation, a direct coupling of phototaxis with photosynthesis can be excluded.Abbreviations DCMU 3-(3,4-dichlorophenyl)-1,1-dimethylurea - DBMIB Dibromothymoquinone (2,5-dibromo-3-methyl-6-isopropyl-p-benzoquinone) Presented in part at the International Symposium on Photosynthetic Prokaryotes: August 22–28, 1976, Dundee, Scotland  相似文献   

9.
The interactions of green or red light with blue light on the dark closing of Albizzia julibrissin Durazz. pinnules have been investigated. Irradiations at 430, 450 and 470 nm progressively delay dark closing with increasing photon fluence rates. Red or green light alone has no effect. However, when the blue fluence rate is low, both red and green light interact with it and increase the delaying effect of the blue light. When the blue fluence rate is high, green light interacts with it to negate some of the effectiveness of the blue light, while red light has no effect. This is similar to results obtained previously with far-red light. It is suggested that the same unidentified photoreceptor is operating in both the far-red and blue regions. The results also indicate the presence of a blue-only absorbing photoreceptor whose action is increased by phytochrome.  相似文献   

10.
11.
López-Juez E  Bowyer JR  Sakai T 《Planta》2007,227(1):113-123
Leaf palisade cell development and the composition of chloroplasts respond to the fluence rate of light to maximise photosynthetic light capture while minimising photodamage. The underlying light sensory mechanisms are probably multiple and remain only partially understood. Phototropins (PHOT1 and PHOT2) are blue light receptors regulating responses which are light quantity-dependent and which include the control of leaf expansion. Here we show that genes for proteins in the reaction centres show long-term responses in wild type plants, and single blue photoreceptor mutants, to light fluence rate consistent with regulation by photosynthetic redox signals. Using contrasting intensities of white or broad-band red or blue light, we observe that increased fluence rate results in thicker leaves and greater number of palisade cells, but the anticlinal elongation of those cells is specifically responsive to the fluence rate of blue light. This palisade cell elongation response is still quantitatively normal in fully light-exposed regions of phot1 phot2 double mutants under increased fluence rate of white light. Plants grown at high light display elevated expression of RBCS (for the Rubisco small subunit) which, together with expected down-regulation of LHCB1 (for the photosynthetic antenna primarily of photosystem II), is also observed in phot double mutants. We conclude that an unknown blue light photoreceptor, or combination thereof, controls the development of a typical palisade cell morphology, but phototropins are not essential for either this response or acclimation-related gene expression changes. Together with previous evidence, our data further demonstrate that photosynthetic (chloroplast-derived) signals play a central role in the majority of acclimation responses.  相似文献   

12.
In field studies conducted at the Kongsfjord (Spitsbergen) changes of the irradiance in the atmosphere and the sublittoral zone were monitored from the beginning of June until the end of August 1997, to register the minimum and maximum fluxes of ultraviolet and photosynthetically active radiation and to characterise the underwater light climate. Measurements of photosynthesis in three abundant brown algal species (Alaria esculenta, Laminaria saccharina, Saccorhiza dermatodea) were conducted to test whether their photosynthetic performance reflects changing light climate in accordance with depth. Plants sampled at various depths were exposed to controlled fluence rates of photosynthetically active radiation (400–700 nm), UV-A (320–400 nm) and UV-B (280–320 nm). Changes in photosynthetic performance during the treatments were monitored by measuring variable chlorophyll fluorescence of photosystem II. In each species, the degree of inhibition of photosynthesis was related to the original collection depth, i.e. shallow-water isolates were more resistant than plants from deeper waters. The results show that macroalgae acclimate effectively to increasing irradiance levels for both photosynthetically active and ultraviolet radiation. However, the kinetics of acclimation are different within the different species. It is shown that one important strategy to cope with higher irradiance levels in shallow waters is the capability for a faster recovery from high light stress compared to isolates from deeper waters. Received: 13 March 1998 / Accepted: 16 May 1998  相似文献   

13.
Fluence-response relationships were examined for positive and negative phototropism induced by blue (450 nm) and ultraviolet-B (UV-B, 280 nm) light, respectively, in the Pilobolus crystallinus sporangiophore. Fluence-response curves for both blue and UV-B light obtained by changing the fluence by varying exposure time only showed the classical first and second positive bending. However, fluence-response curves obtained by varying the fluence rate were bell-shaped irrespective of the length of the exposure time. With increasing exposure time the peak became higher along the ascendant arm and the descendant arm was shifted toward the higher fluence. The Bunsen-Roscoe reciprocity law was valid only when the fluence was less than approx. 400 pmol·m-2 for both blue and UV-B light. Because the shapes of the fluence-response curves for blue and UV-B light were nearly the same, the photoreceptor systems for both blue and UV-B light are considered to be the same.Abbreviation UV-B ultraviolet-B  相似文献   

14.
The findings presented in this paper support the suggestion that in the cyanobacterium Anabaena variabilis photobleaching is the result of an increased intracellular level of singlet molecular oxygen, whereas photoinhibition is controlled by a different molecular mechanism. Photobleaching of Anabaena trichomes can be prevented effectively by gassing with argon, nitrogen and carbon dioxide as well as by treatment with the 1O2 quenchers sodium azide and crocetin, and finally, with 3-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU). On the other hand, photodynamically active compounds, capable of 1O2 generation, increase photobleaching drastically. Thus, photobleaching is probably caused by singlet molecular oxygen. Photoinhibition studied with the aid of the fluorescence induction was not prevented by most of the treatments which prevent photobleaching. Therefore, different control mechanisms have to be assumed for this process.Abbreviations DABCO 1,4-diazabicyclo(2,2,2)octane - DBMIB dibromothymoquinone = (2,5-dibromo-3-methyl-6-isopropyl-p-benzoquinone) - DCMU 3-(3,4-dichlorophenyl)-1,1-dimethylurea - C-PC C-phycocyanin - Chl a chlorophyll a - LFE low fluence rate exposure - HFE high fluence rate exposure  相似文献   

15.
In Arabidopsis leaves, chloroplast movement is fluence rate dependent. At optimal, lower light fluences, chloroplasts accumulate at the cell surface to maximize photosynthetic potential. Under high fluence rates, chloroplasts avoid incident light to escape photodamage. In this paper, we examine the phenomenon of chloroplast avoidance movement in greater detail and demonstrate a proportional relationship between fluence rate and the velocity of chloroplast avoidance. In addition we show that the amount of light-activated phototropin2, the photoreceptor for the avoidance response, likely plays a role in this phenomenon, as heterozygous mutant plants show a reduced avoidance velocity compared to that of homozygous wild type plants.  相似文献   

16.
Alteration of 'normal' levels of ultraviolet-B light (UV-B, 280–320 nm) can affect plant chemical composition as well as growth; however, little is known about how plants perceive UV-B light. We have carried out fluence response curves, and demonstrated that the growth inhibition of etiolated Arabidopsis thaliana seedlings by low fluence UV light is specific to UV-B and not UV-A (320–390 nm). The response shows reciprocity between duration and intensity, at least over a limited range, and thus depends only on photon fluence and not on photon flux. The action spectrum for this response indicates a peak of maximum effectiveness at 290 nm, and response spectra at different fluences indicate that the most effective wavelength at 30 000  µ mol m–2 is 290 nm, whereas 300 nm light was the most effective at 100 000  µ mol m–2. This response occurs in mutant seedlings deficient in cryptochrome, phytochrome or phototropin, suggesting that none of the known photoreceptors is the major UV-B photoreceptor. Some null mutants in DNA repair enzymes show hypersensitivity to UV-B, suggesting that even at low fluence rates, direct damage to DNA may be one component of the response to UV-B.  相似文献   

17.
Reversal of blue light-stimulated stomatal opening by green light   总被引:3,自引:0,他引:3  
Blue light-stimulated stomatal opening in detached epidermis of Vicia faba is reversed by green light. A 30 s green light pulse eliminated the transient opening stimulated by an immediately preceding blue light pulse. Opening was restored by a subsequent blue light pulse. An initial green light pulse did not alter the response to a subsequent blue light pulse. Reversal also occurred under continuous illumination, with or without a saturating red light background. The magnitude of the green light reversal depended on fluence rate, with full reversal observed at a green light fluence rate twice that of the blue light. Continuous green light given alone stimulated a slight stomatal opening, and had no effect on red light-stimulated opening. An action spectrum for the green light effect showed a maximum at 540 nm and minor peaks at 490 and 580 nm. This spectrum is similar to the action spectrum for blue light-stimulated stomatal opening, red-shifted by about 90 nm. The carotenoid zeaxanthin has been implicated as a photoreceptor for the stomatal blue light response. Blue/green reversibility might be explained by a pair of interconvertible zeaxanthin isomers, one absorbing in the blue and the other in the green, with the green absorbing form being the physiologically active one.  相似文献   

18.
《Experimental mycology》1987,11(2):150-153
The effect of visible light on alternariol content in the moldAlternaria alternata was investigated. When the mold was irradiated with white light at moderate fluence rates the mycelia contained little or no alternariol in comparison with dark controls. This reduction of alternariol content in mycelia was due primarily to blue light, although red light also resulted in a slight decrease. The results show that red light above 700 nm also inhibits alternariol synthesis. The suppressive effect of blue light was fluence rate dependent; however, very low fluence rates also caused inhibition. Growth and conidiation were not affected by the light treatments.  相似文献   

19.
Many motile microorganisms including flagellates such as the green Euglena gracilis move up and down within the water column and use a number of external clues for their orientation, the most important of which may be light and gravity. The cells use positive phototaxis and negative gravitaxis to move closer to the surface of the water column which for energetic reasons is vital for their survival. However, most phytoplankton organisms cannot tolerate the bright irradiance of unfiltered solar radiation at the surface which also bleaches the photosynthetic pigments, disables the photosynthetic apparatus and impairs phototaxis, gravitaxis and motility in Euglena. Thus, it is not surprising that at higher irradiances negative phototaxis operates antagonistically to the responses described above to guide the cells into deeper water where they are protected from excessive radiation. Phototaxis and gravitaxis are not independent from one another: in a vertically positioned cuvette negative gravitaxis can be "titrated" by light impinging from above and is compensated at about 30 W m-2. While the photoreceptor for phototaxis has been identified in Euglena gracilis biochemically and spectroscopically, the gravireceptor is not yet known. Young cultures of Euglena gracilis show a positive gravitaxis, the ecological signficance of which is not yet understood while older cultures show negative gravitaxis. One hypothesis concerning the nature of graviperception is based on a passive physical process such as an asymmetric distribution of the mass within the cell. However, the observation that short term UV irradiation decreases the precision of negative gravitaxis rather indicates the involvement of an active physiological gravireceptor. Furthermore, some heavy metal ions have been found to change the direction of movement from positive to negative gravitaxis in young cells.  相似文献   

20.
In the absence of other external stimuli the motile, unicellular freshwater flagellate Euglena gracilis normally swims upward in the water column (negative gravitaxis). This behavior is most likely triggered by active physiological orientation mechanisms. Recently it was found that negative gravitaxis often inverts to a positive one upon high light exposure. This response is not mediated by the photoreceptor (the paraxonemal body - PAB), because PAB-free mutants do also show this response after high radiation. It is very likely that the phenomenon is triggered by reactive oxygen species, because in the absence of oxygen no gravitaxis sign change was observed. Also increased salinity inverses the sign of gravitaxis, leading to the assumption that environmental stressors induce the formation of reactive oxygen species, serving as signal molecules.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号