首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
One-bead one-compound (OBOC) combinatorial peptide libraries have been used to identify ligands and modulators for a wide variety of biological targets. While being very efficient with linear peptides, OBOC libraries with N-terminally blocked peptides or with unsequenceable building blocks require encoding. To fully exploit OBOC combinatorial methods with cyclic peptides and peptidomimetics, topologically segregated bilayer beads have been developed. This strategy offers the opportunity to synthesize two compounds per bead, i.e. with one compound exposed on the bead surface for screening, and the other one found within the inner layer as a tag for sequencing and compound identification. Bead segregation often involves the use of unstable derivatives or requires a series of protection–deprotection steps. In order to expedite and optimize bead segregation, the performance of various reagents has been studied. The results obtained herein show that bead segregation can be efficiently performed with commercially available reagents. Finally, in order to control outer/inner layer ratios in segregated beads, the effects of different parameters have been evaluated. We report a straightforward and efficient procedure to prepare topologically segregated bilayer beads in a wide range of controllable, predictable, and reproducible outer versus inner ratios.  相似文献   

2.
Biological screening of one-bead, one-compound (OBOC) combinatorial peptide libraries is routinely carried out with the peptide remaining bound to the resin bead during screening. After a hit is identified, the bead is isolated, the peptide is cleaved from the bead, and its sequence is determined. We have developed a new technique for cleavage of peptides from resin beads whereby exposure of a 4-hydroxymethyl benzoic acid (HMBA)-linked peptide to high-pressure ammonia gas led to efficient cleavage in as little as 5 min. Here we also report a new method of extracting peptide from individual library beads for its introduction into a mass spectrometer that uses nanomanipulation combined with nanoelectrospray ionization mass spectrometry (NSI MS). Single beads analyzed by nanomanipulation/NSI MS were found to give identical MS results to those of bulk samples. Detection of 18 unique cleaved peptides 1 to 8 amino acids in length, and sequencing of 14 different peptide sequences 4 to 8 amino acids in length, was demonstrated on a combination of bulk samples and ones from individual beads of an OBOC library. The method was highly reproducible, with 100% of attempts to extract peptide resulting in high-quality MS data. This new collection of techniques allows rapid, reliable, environmentally responsible sequencing of hit beads from combinatorial peptide libraries.  相似文献   

3.
The Selectide process is a random synthetic chemical library method based on the one-bead one-peptide (structure) concept. A "split-synthesis" method is used to generate huge random libraries (106-108). At the end of the synthesis, each bead expresses only one chemical entity (e.g., peptide). The whole library is then tested simultaneously for binding to a specific acceptor molecule of biologic interest. The ligand bead that interacts specifically with the acceptor molecule is then isolated for structure determination. Once a binding motif is identified, a secondary library (based on the motif of the primary screen) is generated and screened under a more stringent condition to identify leads of higher affinity. This process can be applied to both peptide and nonpeptide (small organic) libraries. In the case of nonsequencable structure libraries, the coding principle has to be applied for structure elucidation of positively reacting beads. Coding peptide is synthesized in parallel to the screening structure, and classical Edman degradation (one or multiple-step) is used for structural analysis. To exclude the possibility of interaction of the macromolecular target (e.g., receptor, enzyme, antibody) with the coding structure, a synthetic technique for segregation of the surface (screening structure) and the interior (coding structure) of the beads was developed. The one-bead one-structure process is invaluable in drug discovery for lead identification as well as further optimization of the initial leads. It also serves as an important research tool for molecular recognition.  相似文献   

4.
A fast and inexpensive strategy for the identification of peptide ligands by direct matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF-MS) analysis of peptide beads screened from one bead-one peptide combinatorial libraries is herein described. Streptavidin was used as the model protein. A combinatorial library of 6561 peptides was synthesized on ChemMatrix resin by the divide-couple-recombine method. 4-Hydroxymethylbenzoic acid was used as the linker and five residues of Gly were incorporated at the C termini to increase the final peptide molecular weight. Positive control peptides with the HPQ motif and negative control peptides without the HPQ motif evidenced that the linker and the five residues of Gly have neither impaired the specific binding nor facilitated unspecific binding. After screening the library, positive beads were isolated and washed with 8M guanidine hydrochloride. The beads were sliced into two or four pieces, deposited onto the stainless steel MALDI sample plate, and treated with ammonia vapor to release the peptides. In addition, 26 beads picked at random from the library were subjected to the same treatment. All samples were analyzed by MALDI-TOF-MS and the peptides were unambiguously identified with very good reproducibility between the bead pieces, thus evidencing the good homogeneity of the bead. All sequences obtained from the screening contained HPQ.  相似文献   

5.
One bead one compound (OBOC) libraries can be screened against serum samples to identify ligands to antibodies in this mixture. In this protocol, hit beads are identified by staining with a fluorescent labeled secondary antibody. When screens are conducted against two different sets of serum, antibodies, and ligands to them, can be discovered that distinguish the two populations. The application of DNA-encoding technology to OBOC libraries has allowed the use of 10?µm beads for library preparation and screening, which pass through a standard flow cytometer, allowing the fluorescent hit beads to be separated from beads displaying non-ligands easily. An important issue in using this approach for the discovery of antibody biomarkers is its analytical sensitivity. In other words, how abundant must an IgG be to allow it to be pulled out of serum in an unbiased screen using a flow cytometer? We report here a model study in which monoclonal antibodies with known ligands of varying affinities are doped into serum. We find that for antibody ligands typical of what one isolates from an unbiased combinatorial library, the target antibody must be present at 10–50?nM. True antigens, which bind with significantly higher affinity, can detect much less abundant serum antibodies.  相似文献   

6.
Garske AL  Denu JM 《Biochemistry》2006,45(1):94-101
A novel, high-throughput method for determining deacetylase substrate specificity was developed using a one-bead, one-compound (OBOC) acetyl-peptide library with a quantum dot tagging strategy and automated bead-sorting. A 5-mer OBOC peptide library of 104,907 unique sequences was constructed around a central epsilon-amino acetylated lysine. The library was screened using the human NAD+-dependent deacetylase SIRT1 for the most efficiently deacetylated peptide sequences. Beads preferentially deacetylated by SIRT1 were biotinylated and labeled with streptavidin-coated quantum dots. After fluorescent bead-sorting, the top 39 brightest beads were sequenced by mass spectrometry. In-solution deacetylase assays on randomly chosen hit and nonhit sequences revealed that hits correlated with increased catalytic activity by as much as 20-fold. We found that SIRT1 can discriminate peptide substrates in a context-dependent fashion.  相似文献   

7.
Being different from anti-phosphotyrosine antibodies, anti-phosphoserine- or anti-phosphothreonine-specific antibodies with high affinity for the detection of serine/threonine kinase substrates are not readily available. Therefore, chemical modification methods were developed for the detection of phosphoserine or threonine in the screening of protein kinase substrates based on β-elimination and Michael addition. We have developed a biotin-based detection probe for identification of the phosphorylated serine or threonine residue. A biotin derivative induced a color reaction using alkaline phosphate-conjugated streptavidin that amplified the signal. It was effective for the detection and separation of the target peptide on the resin. The detection probe was successfully used in identifying PKA substrates from peptide libraries on resin beads. The peptide library was prepared as a ladder-type, such that the active peptides on the colored resin beads were readily sequenced with the truncated peptide fragments by MALDI-TOF/MS analysis after releasing the peptides from the resin bead through photolysis.  相似文献   

8.
It is now routine using automatic Edman microsequencing to determine the primary structure of peptides or proteins containing natural amino acids; however, a deficiency in the ability to readily sequence peptides containing unnatural amino acids remains. With the advent of synthetic peptide chemistry, combinatorial chemistry, and the large number of commercially available unnatural amino acids, there is a need for efficient and accurate structure determination of short peptides containing many unnatural amino acids. In this study, 35 commercially available alpha-unnatural amino acids were selected to determine their elution profile on an ABI protein sequencer. Using a slightly modified gradient program, 19 of these 35 PTH amino acids can be readily resolved and distinguished from common PTH amino acids at low picomole levels. These unnatural amino acids in conjunction with the 20 natural amino acids can be used as building blocks to construct peptide libraries, and peptide beads isolated from these libraries can be readily microsequenced. To demonstrate this, we synthesized a simple tripeptide "one-bead one-compound" combinatorial library containing 14 unnatural and 19 natural amino acids and screened this library for streptavidin-binding ligands. Microsequencing of the isolated peptide-beads revealed the novel motif Bpa-Phe(4-X)-Aib, wherein X = H, OH, and CH3.  相似文献   

9.
Discovery of high-affinity peptide ligands for vancomycin   总被引:1,自引:0,他引:1  
Yao N  Wu CY  Xiao W  Lam KS 《Biopolymers》2008,90(3):421-432
Vancomycin, an important antibiotic against medically relevant gram-positive bacteria such as methicillin-resistant Staphylococcus aureus, exerts its antibacterial effects by binding with moderate affinity to the C-terminal Lys-D-Ala-D-Ala motif (Kaa) of the bacterial cell wall peptide precursor. Essential for Kaa binding to vancomcyin is the free-carboxyl group on the terminal D-Ala in Kaa. In efforts to identify other Kaa-based peptides which bind vancomycin with higher affinity, we utilized our one-bead-one-compound (OBOC) combinatorial library approach, a method which has been widely used to discover highly specific ligands against various receptors. In standard OBOC peptide libraries, the C-terminal end of the synthesized peptide is tethered to a solid-support/resin, however, this study reports development of a synthetic strategy for generating OBOC peptide libraries with a free D-Ala-D-Ala carboxyl end. We screened these "OBOC inverted" peptide libraries against vancomycin, and discovered a series of peptide ligands with strong consensus, which bind vancomycin. To further optimize these ligands, two highly focused Kaa-containing OBOC combinatorial peptidomimetic libraries were designed, synthesized, and screened against vancomycin under more stringent conditions. Peptidomimetic ligands which bind vancomycin with higher affinity than Kaa were identified. The dissociation constant of one of these ligands, Lys(Ac)-HOCit-Glu-Cha-Lys(3,5-dihydroxybenzoyl)-D-Ala-D-Ala (9), as determined by surface plasmon resonance, was 1.03 microM, roughly a 50-fold improvement in affinity compared to Kaa (K(D) = 50 microM).  相似文献   

10.
Joo SH  Pei D 《Biochemistry》2008,47(9):3061-3072
Preparation of support-bound combinatorial peptide libraries with free C-termini has been challenging in the past because solid-phase peptide synthesis usually starts from the C-terminus, which must be covalently attached to the solid support. In this work, we have developed a general methodology to synthesize and screen one-bead-one-compound peptide libraries containing free C-termini. TentaGel microbeads (90 mum) were spatially segregated into outer and inner layers, and peptides were synthesized on the beads in the conventional C --> N manner, with their C-termini attached to the support through an ester linkage on the bead surface but through an amide bond in the bead interior. The surface peptides were cyclized between their N-terminal amine and a carboxyl group installed at a C-terminal linker sequence, while the internal peptides were kept in the linear form. Base hydrolysis of the ester linkage in the cyclic peptides regenerated linear peptides that contained a free alpha-carboxyl group at their C-termini but remained covalently attached to the resin via the N-termini ("inverted" peptides). An inverted peptide library containing five random residues (theoretical diversity of 3.2 x 10 (6)) was synthesized and screened for binding to four postsynaptic density-95/discs large/zona occluden-1 (PDZ) domains of sodium-hydrogen exchanger regulatory factor-1 (NHERF1) and channel-interacting PDZ domain protein (CIPP). The identity of the binding peptides was determined by sequencing the linear encoding peptides inside the bead by partial Edman degradation/mass spectrometry. Consensus recognition motifs were identified for the PDZ domains, and representative peptides were resynthesized and confirmed for binding to their cognate PDZ domains. This method should be generally applicable to all PDZ domains as well as other protein domains and enzymes that recognize the C-terminus of their target proteins.  相似文献   

11.
A library system was developed for the discovery of bioactive peptides. Library synthesis and peptide sequencing was performed on a solid support while the screening for bioactivity was done with peptides in solution. The peptides were synthesized by split and mix, one-bead–one-peptide library synthesis, using a Tentagel S-NH2 solid support with a loading of approximately 100 pmol/bead. The major part of the peptide was connected to the support by a single acid-labile linker and a minor part of the peptide was acid-stabile attached to the polymer. The percentage of acid-stabile attached peptides could easily be controlled during modification of the amino functionalities of the resin at the start of the process. The cleavage rate of the acid-labile attached peptide from the resin depends on the composition of the cleavage mixture. When cleavage conditions were carefully controlled, a three-step partial cleavage protocol allowed for convergent bioactivity screening on peptide libraries using only one type of acid-labile linker. The partial cleavage and convergent screening procedure was repeated three times, after which the bead containing the bioactive peptide was sequenced. As such a bead still contained acid-stabile attached peptide, the Edman sequencing was straightforward and repetitive yields were excellent because the immobilized peptide was not washed out. © 1998 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

12.
Large combinatorial libraries of random peptides have been used for a variety of applications that include analysis of protein-protein interactions, epitope mapping, and drug targeting. The major obstacle in screening these libraries is the loss of specific but low affinity binding peptides during washing steps. Loss of these specific binders often results in isolation of peptides that bind nonspecifically to components used in the selection process. Previously, it has been demonstrated that dimerizing or multimerizing a peptide can remarkably improve its binding kinetics by 10- to 1000-fold due to an avidity effect. To take advantage of this observation, we constructed a random library of 12 amino acid dimeric peptides on polyethylene glycol acrylamide (PEGA) beads by modifying the 'one-bead-one-compound' approach. The chemical synthesis of 100,000 peptides as dimers can be problematic due to steric and aggregation effects and the presence of many peptide sequences that are difficult to synthesize. We have designed a method, described in detail here, to minimize the problems inherent in the synthesis of a dimeric library by modifying the existing 'split and pool' synthetic method. Using this approach the dimeric library was used to isolate a series of peptides that bound selectively to epithelial cancer cells. One peptide with the amino acid sequence QMARIPKRLARH bound as a dimer to prostate cancer cells spiked into the blood but did not bind to circulating hematopoeitic cells. The monomeric form of this peptide, however, did not bind well to the same LNCaP cell line. These data demonstrate that "hits" obtained from such a 'one-bead-one-dimer' library can be used directly for the final application or used as leads for construction of second generation libraries.  相似文献   

13.
In an effort to increase the probability of finding novel peptides in resin-bound combinatorial libraries displaying affinity to various macromolecular targets, we increased the diversity of a solid-phase library considerably by synthesizing multiple structures on each bead – a motif-library – including 45 building blocks. The building blocks consist of L -aa, D -aa and eight hydrophobic non-proteinogenic α-amino acids. A library with the format O-Z0–1-O-Z0–1-O-XX-resin was synthesized giving the four motifs OOOXX, OZOOXX, OOZOXX, OZOZOXX corresponding to 364.500 different motifs (453×4 theoretical combinations). The positions O are defined amino acids while Z represents three mixtures Π, Ω, ϖ, where Π is a mixture of polar and charged residues, Ω is a mixture of aliphatic residues and ϖ is a mixture of aromatic residues. X represents a mixture of all 45 residues. The library was screened with the macromolecular target streptavidin which served as a model receptor. Binding peptides were sequenced by microsequencing. We included small amounts of norvaline and norleucine in the library, which served as index residues to be able to distinguish between LD -amino acids and other residues with the same retention time in the HPLC system. Beads that interact with the receptor were found, and the binding motifs that appeared had no homology to known binding motifs found in either L -aa or D -aa libraries, instead motifs with the non-proteinogenic residues L -phenylglycine, O-benzyl-L -hydroxyproline and O-benzyl-L -tyrosine dominated. The novel peptides inhibit binding of biotin to streptavidin but do not bind to avidin, and the affinity is higher than the peptides found in linear all L -aa peptide libraries. © 1997 European Peptide Society and John Wiley & Sons, Ltd  相似文献   

14.
15.
Here we report on a novel peptide library based method for HLA class II binding motif identification. The approach is based on water soluble HLA class II molecules and soluble dedicated peptide libraries. A high number of different synthetic peptides are competing to interact with a limited amount of HLA molecules, giving a selective force in the binding. The peptide libraries can be designed so that the sequence length, the alignment of binding registers, the numbers and composition of random positions are controlled, and also modified amino acids can be included. Selected library peptides bound to HLA are then isolated by size exclusion chromatography and sequenced by tandem mass spectrometry online coupled to liquid chromatography. The MS/MS data are subsequently searched against a library defined database using a search engine such as Mascot, followed by manual inspection of the results. We used two dodecamer and two decamer peptide libraries and HLA-DQ2.5 to test possibilities and limits of this method. The selected sequences which we identified in the fraction eluted from HLA-DQ2.5 showed a higher average of their predicted binding affinity values compared to the original peptide library. The eluted sequences fit very well with the previously described HLA-DQ2.5 peptide binding motif. This novel method, limited by library complexity and sensitivity of mass spectrometry, allows the analysis of several thousand synthetic sequences concomitantly in a simple water soluble format.  相似文献   

16.
Prolactin receptor is involved in normal lactation and reproduction; however, excessive prolactin levels can cause various reproductive disorders such as prolactinomas. Small-molecule antagonists against the human prolactin receptor (hPRLr) thus have potential clinical applications and may serve as useful molecular probes in biomedical research. In this work, we synthesized a large, support-bound cyclic peptide library (theoretical diversity of 1.2x10(7)) on 90-microm TentaGel beads and screened it against the extracellular domain of hPRLr. To facilitate hit identification, each TentaGel bead was spatially segregated into outer and inner layers, with a cyclic peptide displayed on the bead surface while the bead interior contained the corresponding linear peptide. The identity of a positive bead was revealed by sequencing the linear encoding peptide within the bead by partial Edman degradation/mass spectrometry. Screening of the library resulted in 20 hits, two of which were selected for further analysis and shown to bind to hPRLr with dissociation constants of 2-3 microM.  相似文献   

17.
Through screening of random one-bead one-compound (OBOC) libraries, we previously identified cyclic peptides with the cDGXGXXc motif that bind to alpha3 integrin subunit on ovarian adenocarcinoma cell lines ES-2, SKOV-3, and CaOV-3. We subsequently synthesized two secondary libraries based on this motif and identified new peptides that bound with a higher affinity to these cell lines. One of the peptides identified from the 20% "down-substituted" focused library was the c-dGHCitGPQ-c ("OA02") peptide. The goal of this study was to determine whether this peptide labeled with near-infrared probes could be detected after intravenous injection in ovarian tumor-bearing mice and if it would selectively localize in the tumor. Three different forms of this peptide were synthesized, "OA02"-biotin (noncovalently linked to streptavidin-Cy5.5); "OA02"-Cy5.5 and "OA02"-AlexaFluo 680. Using a KODAK IS2000MM image station, these peptide probes were used at the near-infrared (NIR) spectra to image nude mice bearing ES-2 (alpha3 integrin positive) and Raji (alpha3 integrin negative) xenografts. The peptide probe displayed highly specific tumor uptake within 15 min, which lasted for 70 min for "OA02"-Cy5.5 and "OA02"-AlexaFluo 680 and for 24 hours for "OA02"-biotin-streptavidin-Cy5.5. Some kidney and bladder signal were noted. Prior injection with anti-alpha3 monoclonal antibody blocked the binding of this peptide to the ES-2 tumors.  相似文献   

18.
An efficient and rapid on-bead screening method was established to identify non-natural peptides that target the Androgen Receptor-cofactor interaction. Binding of the Androgen Receptor ligand binding domain to peptide sequences displayed on beads in a One-Bead-One-Compound format could be screened using fluorescence microscopy. The method was applied to generate and screen both a focussed and a random peptide library. Resynthesis of the peptide hits allowed for the verification of the affinity of the selected peptides for the Androgen Receptor in a competitive fluorescence polarization assay. For both libraries strong Androgen Receptor binding peptides were found, both with non-natural and natural amino acids. The peptides identified with natural amino acids showed great similarity in terms of preferred amino acid sequence with peptides previously isolated from biological screens, thus validating the screening approach. The non-natural peptides featured important novel chemical transformations on the relevant hydrophobic amino acid positions interacting with the Androgen Receptor. This screening approach expands the molecular diversity of peptide inhibitors for nuclear receptors.  相似文献   

19.
20.
We have developed a rapid method for probing the affinity of peptides toward an amphiphilic surface. Hydrophobic polystyrene-divinylbenzene beads of 5.7 +/- 1.5 micron diameter are coated with a monomolecular film of egg lecithin to achieve the equilibrium spreading density of the phospholipid, 6 X 10(-3) molecule/A2. The coated beads are ideally suited for assessing the affinity of peptides for phospholipid surfaces: Large quantities of lipid-coated beads of known surface area can be prepared easily and rapidly. Within the pH range 2.0 to 9.0, the adsorbed phospholipids are relatively resistant to hydrolysis and remain bound indefinitely. Following incubation with peptide ligands, beads can be separated from the reaction mixture by centrifugation. Peptides, such as melittin, which destroy or cause fusion of single bilayer phospholipid vesicles, cannot disrupt lecithin-coated beads in a comparable way, and do not displace lecithin from the surface of beads. After incubating these beads in solutions of peptides and proteins, we have determined the parameters for the binding of several ligands to the phospholipid surface. The binding of many amphiphilic peptides obeys a Langmuir adsorption isotherm, i.e., saturable reversible binding to independent and equivalent sites on the bead. That the binding is a true reversible equilibrium is shown by desorption of the ligand upon dilution. From the isotherm, the surface areas occupied by the ligand molecules were calculated, and were observed to be similar to those observed in monolayers at the air-water interface. In comparing the binding of amphiphilic peptides to that of completely hydrophilic peptides, we observed that only the former bind at levels measurable by our techniques. Thus, this method can serve as a rapid assay for detecting amphiphilicity in peptides of putative amphiphilic character.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号