首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effects of NaCl salinity on growth, morphology and photosynthesis of Salvinia natans (L.) All. were investigated by growing plants in a growth chamber at NaCl concentrations of 0, 50, 100 and 150 mM. The relative growth rates were high (ca. 0.3 d−1) at salinities up to 50 mM and decreased to less than 0.2 d−1 at higher salinities, but plants produced smaller and thicker leaves and had shorter stems and roots, probably imposed by the osmotic stress and lowered turgor pressure restricting cell expansion. Na+ concentrations in the plant tissue only increased three-fold, but uptake of K+ was reduced, resulting in very high Na+/K+ ratios at high salinities, indicating that S. natans lacks mechanisms to maintain ionic homeostasis in the cells. The contents of proline in the plant tissue increased at high salinity, but concentrations were very low (<0.1 μmol g−1 FW), indicating a limited capacity of S. natans to synthesize proline as a compatible compound. The potential photochemical efficiency of PSII (Fv/Fm) of S. natans remained unchanged at 50 mM NaCl but was reduced at higher salinities, and the photosynthetic capacity (ETRmax) was significantly reduced at 50 mM NaCl and higher. It is concluded that S. natans is a salt-sensitive species lacking physiological measures to cope with exposure to high NaCl salinity. At low salinities salts are taken up and accumulate in old leaves, and high growth rates are maintained because new leaves are produced at a higher rate than for plants not exposed to salt.  相似文献   

2.
Abstract Measurements of tissue ion contents (Na, K and Cl) were carried out at frequent intervals on plants of Aster tripolium L. grown at a range of salinities for 36 d. Aster tripolium behaved as a typical halophyte showing high levels of inorganic ion accumulation even at low salinities. As salinity increased Na replaced K to a large extent in the shoot but root K was unaffected up to 500 mol m?3 external NaCl. Shoot (Na + K) concentration on a tissue water basis was maintained constant in all treatments throughout the experiment, whereas shoot (Na + K) on a dry weight basis showed marked fluctuations in some treatments. An increase in (Na + K) per gram dry weight was, however, accompanied by a parallel increase in fresh weight: dry weight (FW : DW) ratio. Transport of (Na + K) to the shoot per unit root weight changed during the experiment in the manner expected, given the observed changes in shoot relative growth rate and FW : DW to result in a constant shoot (Na + K) concentration on a water basis. Chloride was the major balancing anion in the shoot at high salinity, but never accounted for more than 38% of the (Na + K) found in the root tissue. At all salinities (Na + K) salts accounted for the majority of the measured shoot sap osmotic potential. The interactions between salinity, growth, ion transport and osmotic adjustment are discussed.  相似文献   

3.
Summary Triticum aestivum cv. Chinese Spring wheat,Elytrigia elongatum (tall wheatgrass), and theTriticum-Elytrigia amphiploid were grown in complete nutrient culture containing, in addition, 0, 40, 80 and 120 mM NaCl. The 3 genotypes responded quite differently to increasing salinity; the Na concentration of wheat shoots increased in direct proportion to the increase in salinity of the external medium whereas the Elytrigia response was interpreted as showing high affinity for Na at low external Na (40 mM) but comparative exclusion of Na at high salinities (120 mM). In contrast, Na levels of the amphiploid were less than those of either wheat or Elytrigia under both low and high salinities. Thus the amphiploid behaved like wheat at 40 mM NaCl but more like Elytrigia at 120 mM NaCl because Na transport to the amphiploid shoot was restricted over the whole salinity range. The K concentration of the amphiploid shoot at high salinities was significantly greater than the K concentrations of either wheat or Elytrigia.  相似文献   

4.
Plant growth and physiology under heterogeneous salinity   总被引:3,自引:0,他引:3  

Background

Soil salinity is heterogeneous, and within the root-zone of single plants the salinity of the soil solution can vary widely.

Scope

This review shows that water uptake by roots from the least saline part of the soil is the key factor driving shoot growth; plants with part of the root at low salinity (0–10?mM NaCl) had 3- to 10-fold higher shoot dry mass than plants with roots in uniformly saline (50–800?mM NaCl) media. Plants in heterogeneous salinity had shoot water potentials similar to those of plants growing in uniform low-salt media, and this was likely a result of uptake of low salinity water and reduced stomatal conductance. Under heterogeneous conditions, roots in saline media took up ions, resulting in higher shoot Na+ and Cl- concentrations compared with plants growing in low-salt media.

Conclusions

Results from split-root experiments complement knowledge of plant responses to uniform salinities; the next challenge is to develop new protocols so that this understanding can be extrapolated to more complex soil- and field-based systems. More work is also required to understand the physiological mechanisms underlying changes in stomatal conductance and shoot ion regulation in plants under heterogeneous salinities and how these are linked to the saline parts of the root-zone.  相似文献   

5.
The effects of NaCl stress on growth, water status, contents of protein, proline, malondialdehyde (MDA), various sugars and photosynthetic pigments were investigated in seedlings of Salicornia persica and S. europaea grown in vitro. Seeds were germinated under NaCl (0, 100, 200, 300, 400, 500 and 600 mM) on Murashige and Skoog medium for 45 d. The shoot growth of both species increased under low NaCl concentration (100 mM) and then decreased with increasing NaCl concentrations. In contrast to S. persica, root length in S. europaea reduced steadily with an increase in salinity. Proline content in S. persica was higher than in S. europaea at most NaCl concentrations. Proline, reducing saccharide, oligosaccharide and soluble saccharide contents increased under salinity in both species. In contrast, contents of proteins and polysaccharides reduced in both species under salt stress. MDA content remained close to control at moderate NaCl concentrations (100 and 200 mM) and increased at higher salinities. MDA content in S. europaea was significantly higher than S. persica at higher salinities. Salt treatments decreased K+ and P contents in seedlings of both species. Significant reduction in contents of chlorophylls and carotenoids due to NaCl stress was also observed in seedlings of both species. Some differences appeared between S. persica and S. europaea concerning proteins profile. On the basis of the data obtained, S. persica is more salt-tolerant than S. europaea.  相似文献   

6.
Aeluropus littoralis is a perennial halophyte, native to coastal zones. Although it is usually exposed to high saline, this plant grows normally without toxicity symptoms. In order to assess leaf salt excretion, different growth parameters, Na(+), K(+), Ca(2+), Mg(2+) and Cl(-) concentrations, as well as excreted ions were examined in plants grown for 2 months in the presence of various salinity levels (0-800 mM NaCl). In addition, salt crystals, salt glands and other leaf epidermal structures were investigated. Results showed that total plant growth decreased linearly with increase to medium salinity. This reduction concerns mainly shoot growth. In addition, this species was able to maintain its shoot water content at nearly 50% of the control even when subjected to 800 mM NaCl. Root water content seemed to be unaffected by salt. Sodium and chloride ion contents in shoots and in roots increased with salinity concentrations, in contrast to our observation for potassium. However, calcium and magnesium contents were not greatly affected by salinity. Excreted salts in A. littoralis leaves were in favor of sodium and chloride, but against potassium, calcium and magnesium which were retained in plants. Sodium and chloride were excreted from special salt glands, which were scattered on the both leaf surfaces. In addition to salt glands, papillae were the most frequent epidermal structure found on A. littoralis leaves, and are likely involved in A. littoralis salt resistance.  相似文献   

7.
Effects of salinity and nitrogen on cotton growth in arid environment   总被引:5,自引:0,他引:5  
The influences of different N fertilization rates and soil salinity levels on the growth and nitrogen uptake of cotton was evaluated with a pot experiment under greenhouse conditions. Results showed that cotton growth measured as plant height was significantly affected by the soil salinity and N-salinity interaction, but not by N alone. Cotton was more sensitive to salinity during the emergence and early growth stages than the later developmental stages. At low to moderate soil salinity, the growth inhibition could be alleviated by fertilizer application. Soil salinity was a dominated factor affecting cotton’s above-ground dry mass and root development. Dry mass of seed was reduced by 22%, 52%, and 84% respectively, when the soil salinity level increased from control level of 2.4 dS m?1 to 7.7 dS m?1, 12.5 dS m?1 and to 17.1 dS m?1, respectively. N uptake increased with N fertilization at adequate rates at both low and medium soil salinities but was not influenced by over N fertilization. At higher salinities, N uptake was independent of N rates and mainly influenced by soil salinity. The uptake of K decreased with soil salinity. The concentration of Na, Cl and Ca in plant tissues increased with soil salinity with highest concentrations in the cotton leaf.  相似文献   

8.
The aquatic corixid Trichocorixa reticulata (Guerin-Meneville) inhabits coastal marshes, brackish water ponds and salt ponds of high salinity, suggesting the presence of well developed mechanisms for hydromineral regulation.Groups of corixids acclimated in salinities ranging from fresh water to just above 300% sea water (100‰) were analyzed for total body water content, haemolymph ionic and osmotic levels, and haemolymph free amino acids.Results indicate an excellent ability to maintain haemolymph Na+, Cl?, Mg2+ and K+ hyperosmotic to the medium at low salinities and hyposmotic at high salinities. Calcium appears to conform closely to changes in external medium, becoming hyposmotic at very high salinities (80‰).Total haemolymph osmotic pressure was well regulated, the freezing point depression varying from 0.75°C in distilled water to 1.15°C in salinities of 100‰. Total body water was maintained at approx. 75% of the total animal wet weight at all salinities tested.Free amino acids were maintained between 40–60 mM in all tests and did not appear to change with salinity.  相似文献   

9.
Adaptation to salinity of a semi-arid inhabitant plant, henna, is studied. The salt tolerance mechanisms are evaluated in the belief that gas exchange (water vapor and CO2) should play a key role on its adaptation to salt stress because of the strong evaporation conditions and soil water deficit in its natural area of distribution. We grow henna plants hydroponically under controlled climate conditions and expose them to control (0 mM NaCl), and two levels of salinity; medium (75 mM NaCl) and high (150 mM NaCl). Relative growth rate (RGR), biomass production, whole plant and leaf structure and ultrastructure adaptation, gas exchange, chlorophyll fluorescence, nutrients location in leaf tissue and its balance in the plant are studied. RGR and total biomass decreased as NaCl concentration increased in the nutrient solution. At 75 mM NaCl root biomass was not affected by salinity and RGR reached similar values to control plants at the end of the experiment. At this salinity level henna plant responded to salinity decreasing shoot to root ratio, increasing leaf specific mass (LSM) and intrinsic water use efficiency (iWUE), and accumulating high concentrations of Na+ and Cl in leaves and root. At 150 mM NaCl growth was severely reduced but plants reached the reproductive phase. At this salinity level, no further decrease in shoot to root ratio or increase in LSM was observed, but plants increased iWUE, maintaining water status and leaf and root Na+ and Cl concentrations were lower than expected. Moreover, plants at 150 mM NaCl reallocated carbon to the root at the expense of the shoot. The effective PSII quantum yield [Y(II)] and the quantum yield of non-regulated energy dissipation [Y(NO)] were recovered over time of exposure to salinity. Overall, iWUE seems to be determinant in the adaptation of henna plant to high salinity level, when morphological adaptation fails.  相似文献   

10.
Summary The effects of salinity in the root medium, time, and relative humidity on the salt secretion of Glaux maritima were investigated. Both in the greenhouse and in the field increasing salinity stimulated sodium and chloride secretion, whereas the essential elements potassium, calcium, and magnesium remained at low secretion levels, which might be interpreted as efficient mineral economy. The low secretion level of potassium is remarkable, because growing on a nutrient solution containing 6 mM potassium, the concentration of the plant sap increases to 150 mM K+ and the secreted quantity amounts to only 2 m mol l-1 plant sap 24 h-1.Attempts were made to establish the secretion rate. The maximum secretion rate calculated may be 80 pEq NaCl cm-2 s-1, but for long periods (days) the secretion rate will be lower. Measurement of salt secretion unavoidably leads to removal of secreted salt. Salt was removed by rinsing with distilled water, which artificially accelerates the secretion process or parts of it by diffusion of salt from the cuticle cavity or secretory cells. At increasing salinities the amount of secreted ions showed a fivefold increase, whereas the osmotic potential of the plant sap was raised only twofold, indicating the importance of secretion as a rapid regulation mechanism with regard to the salt economy.  相似文献   

11.
Bouzid Nedjimi 《Flora》2009,204(10):747-754
Lygeum spartum L. is a native species in Algerian salt steppes. The plant is of interest because of its tolerance to environmental stresses and its use as a fodder grass for livestock in low-rainfall Mediterranean areas. Nevertheless, plant responses of this plant to salt stress are still not investigated in detail. Therefore, L. spartum L. was grown in hydroponic conditions to investigate the effect of salinity (0, 30, 60 and 90 mM NaCl) on growth, water relations, gas exchange, leaf chlorophyll concentration, glycine betaine and mineral uptake. Plant growth was reduced at 60 and 90 mM NaCl, but was not significantly lower than in the controls at 30 mM NaCl. Sodium (Na+), chloride (Cl) and glycine betaine contents in plants increased, whereas calcium (Ca2+), potassium (K+), relative water content (RWC), root hydraulic conductivity (L0) and chlorophyll content decreased with an increase in salinity. Water potential (Ψω) and osmotic potential (Ψπ) of plants decreased with an increase in salinity. No change was observed in the turgor potential (Ψτ). Photosynthesis parameters (CO2 assimilation rate, stomatal conductance and transpiration rate) did not change significantly at 30 mM NaCl, as compared to the control. Higher salt levels impaired photosynthetic capacity of L. spartum mainly via a stomatal limitation leading to a low CO2 assimilation rate. This might be a consequence of the reduced whole-plant hydraulic conductivity under salt stress. The results demonstrated that L. spartum L. can be characterised as a moderately salt-tolerant species. Salt tolerance in this species is achieved by appropriate osmotic adjustment involving accumulation of ions and glycine betaine. At high salinities, growth reduction probably occurs as a result of high concentrations of Na+ and Cl and their interference with other ions such as Ca2+ and K+. This plant can be used locally as a fodder for livestock and to stabilise sand dunes and rehabilitate salt soils.  相似文献   

12.
Responses of Atriplex portulacoides upon 40-day-long exposure to salinity (0?C1,000?mM NaCl) were investigated. Mother plants originated from a sabkha located in a semi-arid region of Tunisia. The plant relative growth rate and leaf expansion increased significantly at 200?mM NaCl but decreased at higher salinities. Interestingly, the plants survived salinity as high as 1,000?mM NaCl without displaying salt-induced toxicity symptoms. Despite significant increase in leaf Na+ and Cl? concentrations upon salt treatment, no significant effect on leaf relative water content was registered. Chlorophyll contents and the gas exchange parameters showed a significant stimulation at the optimal salinity (200?mM NaCl) followed by a decline at higher salinities. Extreme salinity hardly impacted the maximal efficiency of photosystem II photochemistry (F v/F m), but a marked decrease in the relative quantum yield of photosystem II (??PSII) was observed, along with a significant increase in non-photochemical quenching (NPQ). Leaf malondialdehyde and carotenoid contents were generally unaffected following salt exposure, whereas those of anthocyanins, polyphenols, and proline increased significantly, being maximal at 1,000?mM NaCl. Leaf superoxide dismutase (EC 1.15.1.1), ascorbate peroxidase (EC 1.11.1.11), and glutathione reductase (EC 1.6.4.2) activities were significantly stimulated by salinity, whereas catalase (EC 1.11.1.6) activity was maximal in the 0?C400?mM NaCl range. As a whole, protecting the photosynthetic machinery from salt-induced photodamage together with the sustained antioxidant activity may account for the performance of A. portulacoides under high salinity.  相似文献   

13.
Abstract Uptake and transport of Na and K was studied using the radioactive tracers 22Na and 42K in intact Aster tripolium L. seedlings grown at two salinities CS 10 and CS 100, (containing 10mol m?1 and 100 mol m?3 Na, respectively, together with other major ions in the proportions found in sea water). At both salinities a much greater proportion of the Na than K taken up by the plant was subsequently transported to the shoot. Most 42K fluxes were reduced by about 40% in CS 100 plants relative to CS 10 except root accumulation which increased. Experiments involving changing the salinity from CS 10 to CS 100 showed that 42K fluxes remained constant for at least 40 h, indicating that competition with Na for uptake sites was not the cause of the reduced flux in CS 100 plants. 22Na fluxes responded immediately to a change in salinity with all fluxes increasing six-fold when the salinity was raised. When the salinity was lowered, however, root accumulation returned to the level in CS 10 control plants whereas transport to the shoot was inhibited by the previous high salinity treatment, being reduced to only 35% of the rate in CS 10 plants. The time courses of osmotic adjustment and Na accumulation following an increase in salinity were found to be very similar, with sufficient Na being accumulated to account for the observed increase in sap osmotic pressure.  相似文献   

14.
The antioxidative defense mechanism to salinity was assessed by monitoring the activities of some antioxidative enzymes and levels of antioxidants in an obligate halophyte, Salicornia brachiata, subjected to varying levels of NaCl (0, 200, 400, and 600 mM) under hydroponic culture. In the shoots of S. brachiata, salt treatment preferentially enhanced the activities of ascorbate peroxidase (APX), guaiacol peroxidase (POX), glutathione reductase (GR), and superoxide dismutase (SOD), whereas it induced the decrease of catalase (CAT) activity. Similarly, salinity caused an increase in total glutathione content (GSH + GSSG) and a decrease in total ascorbate content. Growth of S. brachiata was optimum at 200 mM NaCl and decreased with further increase in salinity. Salinity caused an increase in Na+ content and a decrease in K+ content of shoots. Proline levels did not change at low (0-200 mM NaCl) or moderate (400 mM NaCl) salinities, whereas a significant increase in proline level was observed at high salinity (600 mM NaCl). Accumulation of Na+ may have a certain role in osmotic homeostasis under low and moderate salinities in S. brachiata. Parameters of oxidative stress such as malondialdehyde (MDA), a product of lipid peroxidation, and H2O2 concentrations decreased at low salinity (200 mM NaCl) and increased at moderate (400 mM NaCl) and high salinities (600 mM NaCl). As a whole, our results suggest that the capacity to limit ionic and oxidative damage by the elevated levels of certain antioxidative enzymes and antioxidant molecules is important for salt tolerance of S. brachiata.  相似文献   

15.
Effects of variable levels of photosynthetically active radiation (PAR) and NaCl concentrations, typical of closed ecological life support systems, on growth of Salicornia europaea L. plants, CO2 exchange, mineral composition, and the content of malondialdehyde (MDA) and photosynthetic pigments were investigated. The plants were grown for 25 days at different salinities of nutrient Knop solution (171, 342, and 513 mM NaCl) under two PAR levels (690 and 1150 μmol/(m2 s)). At PAR of 690 μmol/(m2 s), the plant productivity did not show significant changes at increasing salinities; at 1150 μmol/(m2 s), the maximal productivity was observed at NaCl concentrations of 171 and 342 mM. The increase in NaCl concentration from 171 to 513 mM in the nutrient solution led to a substantial increase in the relative Na content in aboveground organs at PAR level of 1150 μmol/(m2 s). The MDA content in aboveground organs by the end of the growth period was independent of PAR intensity. The content of photosynthetic pigments in the assimilatory tissue decreased with the increase in salinity from 342 to 513 mM NaCl at PAR level of 1150 μmol/(m2 s) but not at the lower irradiance. The combination of 1150 μmol/(m2 s) PAR intensity with the salinity as high as 342 mM NaCl was found to be the most effective for optimal productivity of S. europaea plants.  相似文献   

16.
Natural-abundance 13C-nuclear magnetic resonance was used to probe the intracellular organic solute content of the moderately halophilic bacterium Tetragenococcus halophila. When grown in complex growth media supplemented or not with NaCl, T. halophila accumulates glycine betaine and carnitine. Unlike other moderate halophiles, T. halophila was not able to produce potent osmoprotectants (such as ectoines and glycine betaine) through de novo synthesis when cultured in defined medium under hyperosmotic constraint. Addition of 2 mM carnitine, glycine betaine, or choline to defined medium improved growth parameters, not only at high salinity (up to 2.5 M NaCl) but also in media lacking NaCl. These compounds were taken up when available in the surrounding medium. The transport activity occurred at low and high salinities and seems to be constitutive. Glycine betaine and carnitine were accumulated by T. halophila in an unmodified form, while exogenously provided choline led to an intracellular accumulation of glycine betaine. This is the first evidence of the existence of a choline-glycine betaine pathway in a lactic acid bacterium. An assay showed that the compatible solutes strikingly repressed the accumulation of glutamate and slightly increased the intracellular potassium level only at high salinity. Interestingly, osmoprotectant-treated cells were able to maintain the intracellular sodium concentration at a relatively constant level (200 to 300 nmol/mg [dry weight]), independent of the NaCl concentration of the medium. In contrast, in the absence of osmoprotectant, the intracellular sodium content increased sharply from 200 to 2,060 nmol/mg (dry weight) when the salinity of the medium was raised from 1 to 2 M. Indeed, the imported compatible solutes play an actual role in regulating the intracellular Na+ content and confer a much higher salt tolerance to T. halophila.  相似文献   

17.
Summary Multiple shoots were grown from seedling explants of Alnus cremastogyne Burk by a two-stage culture procedure: initiation on WP medium supplemented with 2–8 M benzylammopurine(BAP) for 6 weeks, thereafter 3 weeks of subculture(shoot multiplication) on the same medium with 1 M BAP. A 5–9 fold multiplication rate was achieved. Type and concentration of sugar used in the multiplication medium were shown to be critical factors for both multiple shoot induction and bud elongation, the optima being 87.5mM glucose and 87.5mM sucrose respectively. After transfer to half-strength WP media either containing indolebutyric acid (IBA) or lacking plant growth regulator, almost all the shoots rooted. However, high rhizogenesis could be achieved only with shoots cultured in rooting medium containing 87.5mM sucrose or 175mM glucose, and shoots from multiplication media containing 87.5mM sucrose. Survival of the plantlets following transfer to vermiculite was 100%.Abbreviations BAP 6-benzylaminopurine - 2iP N6-(2-isopentenyl)adenine - kinetin 6-furfurylaminopurine - zeatin trans-6-(4-hydroxy-3-methylbut-2-enyl)aminopurine - IBA indol-3-butyric acid - WPM Woody plant medium (Lloyd and McCown, 1981)  相似文献   

18.
Members of the genus Acinetobacter are well known for their metabolic versatility that allows them to adapt to different ecological niches. Here, we have addressed how the model strain Acinetobacter baylyi copes with different salinities and low water activities. A. baylyi tolerates up to 900 mM sodium salts and even higher concentrations of potassium chloride. Growth at high salinities was better in complex than in mineral medium and addition of glycine betaine stimulated growth at high salinities in mineral medium. Cells grown at high salinities took up glycine betaine from the medium. Uptake of glycine betaine was energy dependent and dependent on a salinity gradient across the membrane. Inspection of the genome sequence revealed two potential candidates for glycine betaine transport, both encoding potential secondary transporters, one of the major facilitator superfamily (MFS) class (ACIAD2280) and one of the betaine/choline/carnitine transporter (BCCT) family (ACIAD3460). The latter is essential for glycine betaine transport in A. baylyi. The broad distribution of ACIAD3460 homologues indicates the essential role of secondary transporters in the adaptation of Acinetobacter species to osmotic stress.  相似文献   

19.
We attempted to find the suitable parents for the development of tomato hybrids for high salt soils by exploiting combining ability, gene action and heterosis. Six salt-tolerant and three salt-intolerant genotypes, along with their 18 F1 crosses, were evaluated at seedling stage under 10 and 15 dS/m (NaCl) salinity stress, compared to the control level of salinity. The experiment was laid out based on a two-way complete randomized design factorial arrangement with two replications; data on root and shoot length, fresh and dry weights, leaf area, plant length, Na(+), K(+) and K(+)/Na(+) concentrations were recorded. There was significant variation within genotypes, lines, testers, crosses, and line × tester interaction for all plant characters studied under normal and two salinity levels. Estimates of combining ability indicated that under low (10 dS/m) and high (15 dS/m) salinities, line BL1176 and tester LO2875 showed significant GCA effects for most of the traits studied. The cross-combinations 6233 × LO2875, CLN2498A x LO2875 and BL1176 × 17902 showed highest SCA values for most of the characters under 10 and 15 dS/m, respectively. Potence ratio showed that under low and high salinities, all the traits showed over dominant type of gene action except leaf area and K(+) concentration (in 10 dS/m) and shoot length, and leaf area (in 15 dS/m). The highest heterosis for most of the parameters was observed in cross-combinations BL1176 × LO2875 and CLN2498A x LO2875.  相似文献   

20.
The salinity tolerance ofVaucheria dichotoma, a siphonous Xanthophycean alga was investigated. The alga survived an external osmotic potential range between 74 and 1, 176 mOsmol (ca. 2.5 and 40.0 ppt. (parts per thousand]). Turgor pressure was regulated in salinities ranging from 74 to 441 mOsmol. With further increase of the salinity, turgor pressure decreased from 153 to 9 mOsmol (0.44 to 0.08 MPa). At 441 mOsmol salinity the major intracellular ions were present in the following concentrations (mM/l cell water): K+, 145; Na+; 90; sulphate, 91; Cl, 91. Under the most severe salinity stress (1,176 mOsmol) the ionic concentration increased to (mM/l cell water): K+, 250; Na+, 75; sulphate, 35; Cl, 351. The content of amino acids: alanine (Ala), threonine (Thr and glutamic acid (Glu) was lower, nerver exceeding 5–11 mM, however; the concentrations were positively correlated with salinity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号