首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The insect cytokine paralytic peptide (PP) induces muscle contraction in silkworm larvae. Here we demonstrate that bacterial and fungal cell wall components peptidoglycan and glucan stimulate muscle contraction via activation of PP in the hemolymph. Anti-PP antibody suppressed the muscle contraction induced by PP, peptidoglycan, or glucan. The contraction was also inhibited by free radical scavengers and serine protease inhibitors. Moreover, injecting live silkworms with peptidoglycan or glucan generated the active form of PP. The active form of PP was also produced in vitro when peptidoglycan or glucan was incubated with hemolymph containing the PP precursor. Generation of the active form of PP was suppressed by free radical scavengers and serine protease inhibitors. Furthermore, PP activation in isolated hemolymph was inhibited by potassium cyanide, suggesting that cellular activity is involved. Stimulation by peptidoglycan promoted the generation of reactive oxygen species by silkworm hemocytes. The addition of either the active form of PP or anti-PP antibody to Staphylococcus aureus injected into silkworm larvae delayed or enhanced, respectively, the killing effect of S. aureus, suggesting that activated PP contributes to host resistance to infectious pathogens. These findings suggest that immunologic stimulants such as peptidoglycan or glucan induce reactive oxygen species production from larval hemocytes, followed by the activation of serine protease, which mediates the PP processing reaction and leads to defensive responses.  相似文献   

2.
Phenoloxidase in the hemolymph of Sarcophaga bullata larvae is present as an inactive proenzyme form. Localization studies indicate that the majority of the prophenoloxidase is present in the plasma fraction whereas only a minor fraction (about 4%) is present in the cellular compartments (hemocytes). Inactive prophenoloxidase can be activated by zymosan, not by either endotoxin or laminarin. This activation process is inhibited by the serine protease inhibitors, benzamidine and p-nitrophenyl-p~-guanidobenzoate. Exogenously added proteases, such as chymotrypsin and subtilisin, also activated the prophenoloxidase in the whole hemolymph but failed to activate the partially purified proenzyme. However, an activating enzyme isolated from the larval cuticle, which exhibits trypsinlike specificity, activated the partially purified prophenoloxidase. Inhibition studies and activity measurements also revealed the presence of a similar activating enzyme in the hemolymph. Thus, the phenoloxidase system in Sarcophaga bullata larval hemolymph seems to be comprised of a cascade of reactions. An endogenous protease inhibitor isolated from the larvae inhibited chymotrypsin-mediated prophenoloxidase activation but failed to inhibit the cuticular activating enzyme-catalyzed activation. Based on these studies, the roles of prophenoloxidase, endogenous activating proteases, and protease inhibitor in insect immunity are discussed.  相似文献   

3.
S J Saul  M Sugumaran 《FEBS letters》1986,208(1):113-116
Prophenoloxidase from the hemolymph of tobacco hornworm Manduca sexta can be activated by a specific activating enzyme found in the cuticle. Inhibition studies with benzamidine, diisopropyl phosphofluoridate and p-nitrophenyl-p'-guanidinobenzoate indicate that the activating enzyme is a trypsin-like serine protease. An endogenous protease inhibitor, isolated from the hemolymph of Manduca larvae, inhibits the prophenoloxidase activation mediated by this enzyme. These results indicate that the probable physiological role of endogenous protease inhibitor is to control the undesired activation of prophenoloxidase in the hemolymph.  相似文献   

4.
Three inducible serine protease inhibitors (ISPI-1, 2, 3) have been purified from larval hemolymph of greater wax moth larvae, Galleria mellonella, and characterized at a molecular level. These inhibitors were synthesized after larvae were injected with a yeast polysaccharide, zymosan preparation. ISPI-1,2,3 were active against various serine proteases including trypsin and toxic proteases released by the entomopathogenic fungus Metarhizium anisopliae. Precipitation by trichloroacetic acid and heat, followed by FPLC and HPLC separation steps were used for purification of the protease inhibitors from cell-free hemolymph samples. The molecular masses of purified proteins were determined by MS to be 9.2 kDa (ISPI-1), 6.3 kDa (ISPI-2) and 8.2 kDa (ISPI-3) with isoelectric points ranging between 7.2 and 8.3. The N-terminal amino-acid sequences of ISPI-1 and ISPI-3 are not similar to other known proteins, whereas that of ISPI-2 exhibits extensive similarity to known Kunitz-type protease inhibitors.  相似文献   

5.
The recognition of lysine-type peptidoglycans (PG) by the PG recognition complex has been suggested to cause activation of the serine protease cascade leading to the processing of Sp?tzle and subsequent activation of the Toll signaling pathway. So far, two serine proteases involved in the lysine-type PG Toll signaling pathway have been identified. One is a modular serine protease functioning as an initial enzyme to be recruited into the lysine-type PG recognition complex. The other is the Drosophila Sp?tzle processing enzyme (SPE), a terminal enzyme that converts Sp?tzle pro-protein to its processed form capable of binding to the Toll receptor. However, it remains unclear how the initial PG recognition signal is transferred to Sp?tzle resulting in Toll pathway activation. Also, the biochemical characteristics and mechanism of action of a serine protease linking the modular serine protease and SPE have not been investigated. Here, we purified and cloned a novel upstream serine protease of SPE that we named SAE, SPE-activating enzyme, from the hemolymph of a large beetle, Tenebrio molitor larvae. This enzyme was activated by Tenebrio modular serine protease and in turn activated the Tenebrio SPE. The biochemical ordered functions of these three serine proteases were determined in vitro, suggesting that the activation of a three-step proteolytic cascade is necessary and sufficient for lysine-type PG recognition signaling. The processed Sp?tzle by this cascade induced antibacterial activity in vivo. These results demonstrate that the three-step proteolytic cascade linking the PG recognition complex and Sp?tzle processing is essential for the PG-dependent Toll signaling pathway.  相似文献   

6.
The activation of Dactylopius coccus (Costa) hemolymph with microbial polysaccharide molecules was studied. Hemolymph incubated in the presence of laminarin, zymosan, and N-acetyl glucosamine produced a dark fibrillar precipitated, and the red pigment (carminic acid) was consumed (measured spectrophotometrically at 495 nm). Lipopolysaccharide (LPS) did not induce any response. The reaction was inhibited with millimolar concentrations of serine and cysteine protease inhibitors, EGTA and phenyl thiourea. It was also diminished by prostaglandin synthesis inhibitors: dexamethasone, acetylsalicylic acid, and indomethacin. However, Mg2+ chelator EDTA did not inhibit hemolymph activation. Hemolymph proteins were depleted from soluble phase during treatment with laminarin, but a group of around 34 kDa remained unmodified. These results showed that D. coccus hemolymph is activated by microbial elicitors, its activation depends on eicosanoids, and suggest participation of a prophenoloxidase (PPO)-like activation system that could consume carminic acid. We are currently dissecting the molecular factors involved in D. coccus hemolymph activation to determine homologies and differences with other arthropods immune response pathways.  相似文献   

7.
8.
The hemolymph of Sarcophaga peregrina (flesh fly) larvae was found to contain multiple inhibitors of hemocyte cysteine protease. One of them, named sarcocystatin A, was purified and found to be a mixture of the components sarcocystatin A alpha and A beta in a molar ratio of 2:1. These components can exist in either the associated or dissociated form. The apparent heterogeneity of the protease inhibitors in the hemolymph was found to be partly due to association of sarcocystatin A alpha and A beta.  相似文献   

9.
Serpins are known to be necessary for the regulation of several serine protease cascades. However, the mechanisms of how serpins regulate the innate immune responses of invertebrates are not well understood due to the uncertainty of the identity of the serine proteases targeted by the serpins. We recently reported the molecular activation mechanisms of three serine protease-mediated Toll and melanin synthesis cascades in a large beetle, Tenebrio molitor. Here, we purified three novel serpins (SPN40, SPN55, and SPN48) from the hemolymph of T. molitor. These serpins made specific serpin-serine protease pairs with three Toll cascade-activating serine proteases, such as modular serine protease, Spätzle-processing enzyme-activating enzyme, and Spätzle-processing enzyme and cooperatively blocked the Toll signaling cascade and β-1,3-glucan-mediated melanin biosynthesis. Also, the levels of SPN40 and SPN55 were dramatically increased in vivo by the injection of a Toll ligand, processed Spätzle, into Tenebrio larvae. This increase in SPN40 and SPN55 levels indicates that these serpins function as inducible negative feedback inhibitors. Unexpectedly, SPN55 and SPN48 were cleaved at Tyr and Glu residues in reactive center loops, respectively, despite being targeted by trypsin-like Spätzle-processing enzyme-activating enzyme and Spätzle-processing enzyme. These cleavage patterns are also highly similar to those of unusual mammalian serpins involved in blood coagulation and blood pressure regulation, and they may contribute to highly specific and timely inactivation of detrimental serine proteases during innate immune responses. Taken together, these results demonstrate the specific regulatory evidences of innate immune responses by three novel serpins.  相似文献   

10.
A M Fox  S E Reynolds 《Peptides》1991,12(5):937-944
The hemolymph (blood) of the Lepidopteran insect Manduca sexta contains an endopeptidase that metabolizes the nonapeptide Manduca adipokinetic hormone. In contrast to the situation in other insects, where the major site of inactivation is the Malpighian tubules (excretory organs), in Manduca the capacity of the hemolymph to metabolize adipokinetic hormone is comparable to that of the Malpighian tubules. The hemolymph enzyme cleaves Manduca adipokinetic hormone (pGlu-Leu-Thr-Phe-Thr-Ser-Ser-Trp-Gly-NH2) to give the fragment pGlu-Leu-Thr-Phe-Thr. Other fragments were not positively identified. The enzyme is present in the plasma and not in hemocytes, and occurs at similar levels in the hemolymph of larvae, pupae and adults. The enzyme is inactivated by boiling, has a neutral pH optimum (7.0-7.5), and an estimated molecular weight of 66 kDa. The enzyme was strongly inhibited by inhibitors of metalloprotease activity (EGTA and 1,10-phenanthroline), but not by serine protease inhibitors. The enzyme was capable of metabolizing a number of AKH family peptides with varying sequences around the presumed site of cleavage. An accurate assessment of enzyme kinetics was not possible with the assay method used, but the enzyme was not saturated at a substrate concentration of 10 microM, and the value of Km must be at least 1 microM. It is possible that the enzyme may represent a low affinity system of peptide removal rather than the principal means of inactivation.  相似文献   

11.
12.
Polyclonal antibodies were raised against the isolated hemolymph serine proteinase inhibitors (serpins) of Manduca sexta larvae. Two of these antibodies, MsH49a and MsH49b, displayed characteristic differences in labelling patterns of hemocytes, fat body, integumental epidermis and cuticle on immunoblots, and in light- and electronmicroscopic sections. The serpin composition of the latter three tissue homogenates was determined by native immunoblots and inhibitor binding assays. The results were compared to the hemolymph samples containing all the known inhibitors encoded by the well-characterized serpin-1 gene. The enzyme specificity of the MsH49b-labelled cuticular serpin was similar to serpin-1J, although its electrophoretic mobility on native PAGE was not identical with any of the known proteinase inhibitors encoded by the serpin-1 gene. Based on these data, we suggest that the cuticle and hemolymph may contain novel serpin(s) encoded by a gene other than the serpin-1 gene. Since the serpin-1J proved to be involved in the activation pathway of the prophenoloxidase system in the hemolymph, the in vivo function of cuticular MsH49b serpin was investigated by prophenoloxidase tests in native cuticular homogenates. Our results demonstrated that the cuticular serpin(s) that are labelled by the MsH49b antibody may play a determinant role in the regulation of the prophenoloxidase system of the integumental cuticle.  相似文献   

13.
【目的】丝氨酸蛋白酶抑制剂家族蛋白是昆虫中调控自身免疫反应的重要蛋白酶抑制剂,本研究旨在研究家蚕Bombyx mori丝氨酸蛋白酶抑制剂2(Bmserpin2)在家蚕2个重要的自身免疫通路即酚氧化酶原(prophenol oxidase, PPO)激活通路和革兰氏阳性菌诱导抗菌肽的TOLL通路中的调控作用。【方法】PCR扩增家蚕Bmserpin2基因片段后原核表达并通过镍柱纯化。利用纯化后的重组Bmserpin2蛋白分别与胰蛋白酶、胰凝乳蛋白酶、弹性蛋白酶和蛋白酶K反应,检测Bmserpin2对上述蛋白酶活性的影响。通过RT-qPCR检测Bmserpin2在家蚕5龄第3天幼虫头、中肠、脂肪体、血淋巴、丝腺和表皮组织中表达的模式。往家蚕5龄第3天幼虫注射Bmserpin2重组蛋白,检测Bmserpin2对其血淋巴中PPO活性的影响。通过滕黄微球菌Micrococcus luteus诱导家蚕5龄第3天幼虫产生抗菌肽并注射Bmserpin2重组蛋白后,RT-qPCR检测其血淋巴中抗菌肽基因gloverin2和moricin表达量。【结果】成功构建重组质粒并表达纯化目的蛋白Bmserpin2。通过与不同蛋白酶反应得出Bmserpin2可极显著抑制消化酶胰蛋白酶和弹性蛋白酶活性,对胰凝乳蛋白酶和蛋白酶K活性影响不显著,提示Bmserpin2对不同蛋白酶具有生物学活性和催化特异性。基因表达模式显示Bmserpin2在家蚕5龄幼虫血淋巴和脂肪体中表达量最高。家蚕5龄幼虫注射重组Bmserpin2蛋白后发现目的蛋白能有效抑制血淋巴中PPO活性。利用滕黄微球菌诱导家蚕5龄幼虫产生抗菌肽后,滕黄微球菌和Bmserpin2混合注射组中血淋巴中抗菌肽基因gloverin2和moricin的转录表达与只注射滕黄微球菌的比较被显著下调。【结论】Bmserpin2可能参与家蚕酚氧化酶原激活和TOLL途径的胞外级联反应的免疫通路。  相似文献   

14.
15.
16.
Serpins are a superfamily of proteins, most of which inhibit cognate serine proteases by forming inactive acyl-enzyme complexes. In the tobacco hornworm Manduca sexta, serpin-1, -3 through -7 negatively regulate a hemolymph serine protease system that activates precursors of the serine protease homologs (SPHs), phenoloxidases (POs), Spätzles, and other cytokines. Here we report the cloning and characterization of M. sexta serpin-9 and -13. Serpin-9, a 402-residue protein most similar to Drosophila Spn77Ba, has R366 at the P1 position right before the cleavage site; Serpin-13, a 444-residue ortholog of Drosophila Spn28Dc, is longer than the other seven serpins and has R410 as the P1 residue. Both serpins are mainly produced in fat body and secreted into plasma to function. While their mRNA and protein levels were not up-regulated upon immune challenge, they blocked protease activities and affected proPO activation in hemolymph. Serpin-9 inhibited human neutrophil elastase, cathepsin G, trypsin, and chymotrypsin to different extents; serpin-13 reduced trypsin activity to approximately 10% at a molar ratio of 4:1 (serpin: enzyme). Serpin-9 was cleaved at Arg366 by the enzymes with different specificity, but serpin-13 had four P1 sites (Arg410 for trypsin-like proteases, Gly406 and Ala409 for the elastase and Thr404 for cathepsin G). Supplementation of induced cell-free hemolymph (IP, P for plasma) with recombinant serpin-9 did not noticeably affect proPO activation, but slightly reduced the PO activity increase after 0–50% ammonium sulfate fraction of the IP had been elicited by bacteria. In comparison, addition of recombinant serpin-13 significantly inhibited proPO activation in IP and the suppression was stronger in the fraction of IP. Serpin-9- and -13-containing protein complexes were isolated from IP using their antibodies. Hemolymph protease-1 precursor (proHP1), HP6 and HP8 were found to be associated with serpin-9, whereas proHP1, HP2 and HP6 were pulled downed with serpin-13. These results indicate that both serpins regulate immune proteases in hemolymph of M. sexta larvae.  相似文献   

17.
Two serine protease inhibitors, trypsin inhibitor and alpha-chymotrypsin inhibitor, were isolated from the hemolymph of Mythimna unipuncta. Mythimna trypsin and alpha-chymotrypsin inhibitors were purified by gel filtration and anion-exchange chromatography. They displayed molecular masses of 52 kDa and 43 kDa, respectively, as determined by electrophoresis under reducing and non-reducing conditions on denaturing polyacrylamide gels. Their isoelectric points were evaluated by isoelectric focusing and two-dimensional electrophoresis. Their N-terminal sequences have been analyzed as APSDTTIAETLTITEEFFPD and FDESFGFQGPSTYEKTPLGEP, respectively. The role of these inhibitors in the regulation of the defense reaction of the insect is discussed.  相似文献   

18.
《Insect Biochemistry》1990,20(2):141-147
Four serine proteinase inhibitors have been isolated from hemolymph of fifth instar larvae of Manduca sexta. One of these, an inhibitor specific for elastase, has been previously shown to be a member of the serpin family of serine proteinase inhibitors. Of the three remaining inhibitors, two are specific for chymotrypsin and one for trypsin. The four inhibitors have molecular weights of approx. 47,000 and isoelectric points between 4.4 and 4.8. The four proteins have very similar amino acid compositions, and NH2-terminal sequence analysis suggests that they represent members of a gene family.  相似文献   

19.
Analogous to blood coagulation and complement activation in mammals, some insect defense responses (e.g. prophenoloxidase (proPO) activation and Toll pathway initiation) are mediated by serine proteinase cascades and regulated by serpins in hemolymph. We recently isolated Manduca sexta serpin-6 from hemolymph of the bacteria-challenged larvae, which selectively inhibited proPO-activating proteinase-3 (PAP-3) (Wang, Y., and Jiang, H. (2004) Insect Biochem. Mol. Biol. 34, 387-395). To further characterize its structure and function, we cloned serpin-6 from an induced fat body cDNA library using a PCR-derived probe. M. sexta serpin-6 is 55% similar in amino acid sequence to Drosophila melanogaster serpin-5, an immune-responsive protein. We produced serpin-6 in an Escherichia coli expression system and purified the soluble protein by nickel affinity and hydrophobic interaction chromatography. The recombinant protein specifically inhibited PAP-3 and blocked proPO activation in vitro in a concentration-dependent manner. Matrix-assisted laser desorption ionization-time of flight mass spectrometry indicated that the cleavage site of serpin-6 is between Arg373 and Ser374. Serpin-6 is constitutively present in hemolymph of naive larvae, and its mRNA and protein levels significantly increase after a bacterial injection. The association rate constant of serpin-6 and PAP-3 is 2.6 x 10(4) m(-1) s(-1), indicating that serpin-6 may contribute to the inhibitory regulation of PAP-3 in the hemolymph. We also identified the covalent complex of serpin-6 and PAP-3 in induced hemolymph by immunoaffinity chromatography and mass spectrometry. Furthermore, immulectin-2, serine proteinase homologs, proPO, PO, attacin-2, and a complex of serpin-6 and hemolymph proteinase-8 were also detected in the proteins eluted from the immunoaffinity column using serpin-6 antibody. These results suggest that serpin-6 plays important roles in the regulation of immune proteinases in the hemolymph.  相似文献   

20.
Although cytolysis of invading organisms is an innate form of immunity used by invertebrates, so far the underlying mechanism remains less explored. The pupal hemolymph of the mosquito Armigeres subalbatus induces an activity that causes hemolysis of human red blood cells (HRBC). This hemolytic activity was inhibited by sialic acid (N-acetylneuraminic acid) and serine protease inhibitors. We purified the sialic acid-specific lectin(s) from the pupal hemolymph using formaldehyde-fixed HRBC and determined the sequence of the amino-terminal 19 amino acid residues. A polyclonal antibody produced against this N-terminal peptide clearly inhibited the hemolytic activity of the hemolymph in vitro, thus suggesting that the hemolysis of HRBC is caused by the lectin present in the mosquito hemolymph. We suggest that mosquitoes possess a cytolysis system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号