首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Amino acid transport in isolated rat hepatocytes   总被引:13,自引:0,他引:13  
Summary Improvements in the collagenase perfusion techniques have made isolated rat hepatocytes a popular model in which to study hepatic function. Our knowledge of hepatic amino acid transport has been advanced as a result of this methodology. Translocation across the hepatocyte plasma membrane can, in some instances, represent the rate-limiting step in the overall metabolism of certain amino acids. Furthermore, regulation of amino acid uptake by hepatocytes appears to play a role in diabetes, and perhaps in malignant transformation. Comparisons between normal adult hepatocytes and several hepatoma cell lines show basic differences in amino acids transport. There are at least eight distinct systems in normal hepatocytes for transport of the amino acids. One of these, System A, transports the small neutral amino acids most efficiently and responds to a wide variety of hormones. Systems A and N exhibit enhanced uptake rates after the cells have been maintained in the absence of extracellular amino acids, a phenomenon termed adaptive control. Further studies using isolated hepatocytes will increase our basic understanding of membrane transport processes and their regulation.  相似文献   

2.
This study investigated whether the age-related decline in hepatic ascorbic acid (AA) levels in rats was due to altered AA uptake. AA concentrations were 68% lower in freshly isolated hepatocytes from old (24-26 months) versus young (3-5 months; p<0.0005) Fischer 344 rats. When incubated with 100 microM AA, cells from old as compared to young rats showed a 66% decline in both the rate of AA transport and the steady state intracellular levels. Sodium-free media significantly reduced AA uptake, suggesting that the sodium-dependent vitamin C transporter (SVCT) was largely responsible for declines in AA transport. Analysis of SVCT messenger RNA (mRNA) levels shows that one isoform of this transport protein, SVCT1, declines 45% with age, with no significant changes in SVCT2 mRNA levels.These results show for the first time that sodium-dependent AA transport declines during the aging process, which may account for much of the loss in tissue AA content.  相似文献   

3.
Calcium transport in isolated rat hepatocytes   总被引:6,自引:0,他引:6  
  相似文献   

4.
The effect of epinephrine on the amino acid transport mediated by system A was investigated by determining the uptake of 2-amino [1-14C]isobutyric acid (AIB) in rat hepatocytes, freshly isolated at different stages of pre- and postnatal development. The data obtained show that the hormone increased AIB uptake, enhancing the Vmax, while Km was unchanged. This effect was evident in cells from adult, 18- to 20-day-old fetus, and neonate rat. Actinomycin D or cycloheximide abolished the hormone dependent increase. Experiments carried out with alpha- and beta-antagonists showed that the effect of epinephrine was beta-mediated in fetal life and alpha-mediated in adult life. Membrane binding experiments showed a higher value for epinephrine and beta-agonist dihydroalprenolol in the fetus versus the adult. The calcium depletion obtained after cell incubation with EGTA or calcium ionophore A23187 reduced the hormonal stimulation in the adult, and was ineffective in the prenatal period. An involvement of cAMP was present in the epinephrine modulation of AIB transport, both in adult and in fetal life.  相似文献   

5.
《Steroids》1982,39(1):7-19
The mechanism of the uptake of cholic acids and the interaction of various bile acids on the cholic acid uptake were investigated using isolated rat hepatocytes. The uptake consisted of unsaturable and saturable processes at 0 °C and 37 °C, respectively. The activation energy found for the saturable process was 26.1 Kcal/mo1. In the saturable process the rate of cholic acid uptake followed Michaelis-Menten kinetics with Km: 67 μM and Vmax: 1.43 nmoles/mg protein/min. The uptake was significantly inhibited by 2,4-dinitrophenol, and replacement of extracellular Na+ by choline did not decrease the uptake. The uptake of cholic acid was competitively inhibited by deoxycholic acid, taurocholic acid, glycocholic acid, chenodeoxycholic acid, taurochenodeoxycholic acid and glycochenodeoxycholic acid. It is concluded from the above results that the cholic acid uptake in isolated hepatocytes is mainly mediated by an energy-dependent and sodium-independent carrier-mediated transport process.  相似文献   

6.
The uptake of dimethialium, a thiamine analog having a methyl group in place of the hydroxyethyl group in the thiazole moiety, was studied in freshly isolated rat hepatocytes. In an Na+-medium, dimethialium at 10 microM was accumulated rapidly by the cells and an almost steady intra- to extracellular distribution ratio of 4.2 was attained in 5 min of incubation. The Kt and the Vmax for the saturable component were estimated to be 27 microM and 19 pmol/10(5) cells per min, respectively. In a K+ medium, the uptake of dimethialium was decreased to 58% of that of control. Ouabain and 2,4-dinitrophenol significantly lowered the rate of dimethialium uptake. Both phenylthiazinothiamine and oxythiamine were inhibitory on the uptake of dimethialium, which uptake was also inhibited by choline. These data indicate that dimethialium transport in liver cells proceeds via a carrier-mediated active process dependent on Na+ and biological energy. Furthermore, these results also suggest that thiamine transport in liver is dissociable from thiamine phosphorylation.  相似文献   

7.
The effects of natural polyamines on cyclic AMP-mediated stimulation of amino acid transport in isolated rat hepatocytes were analyzed. Despite the fact that polyamines could directly compete with alpha-aminoisobutyric acid (AIB) for uptake, preincubation of hepatocytes with polyamines did not significantly alter basal AIB transport. The stimulatory effect of glucagon or cyclic AMP analogs was differently affected by polyamines, since it was reduced in the presence of spermine and, inversely, potentiated by spermidine, putrescine, and cadaverine. Dose-dependence analysis showed that half maximal and maximal effects occurred with 2-3 and 6-10 mM external concentrations, respectively. None of the polyamine effects could be ascribed to transstimulation or transinhibition of amino acid uptake. The inhibitory effect exerted by spermine correlated its capacity to inhibit [3H]-leucine incorporation into proteins partially. The potentiating effect of the other polyamines did not result from stabilization of newly synthesized carrier proteins. Instead, the increase in Vmax of the high affinity transport component suggested that more carriers became available, presumably because polyamines facilitated their synthesis by interacting directly with one or several steps controlled by cyclic AMP. Polyamines appear to represent a new class of factors capable of modulating the cyclic AMP-mediated stimulation of amino acid transport, in hepatocytes.  相似文献   

8.
9.
Bile acid synthesis in isolated rat hepatocytes   总被引:1,自引:0,他引:1  
Normal adult rat hepatocytes were incubated for 48h and the concentration of total and individual bile acids in homogenized samples of the culture was measured at intervals during the incubation, using radiogas chromatography and isotope derivative assay. The net increase in bile acids over the value observed at the start of the culture was taken as synthesis. The results showed that bile acid synthesis was linear up to 24h of incubation, at a rate of 20nmol/g hepatocytes per hour, and that 85% of the newly synthesized bile acid was cholic acid. The bile acid synthesized was mainly conjugated with taurine. These results suggest that isolated hepatocytes cultured in the way described could be a useful in vitro model for the study of bile acid synthesis.  相似文献   

10.
11.
The uptake of a linear peptide with renin-inhibiting activity (code number EMD 51921) was characterized in isolated rat liver cells. Isolated hepatocytes take up EMD 51921 in a time-, concentration-, energy- and temperature-dependent manner. Transport of the peptide follows mixed-type kinetics. Diffusion occurs at a rate of 8.123 x 10(-6) cm/sec at 6 degrees C. For the saturable part of uptake, a Km of 2.0 microM and a Vmax of 160 pmol/mg per min were calculated. Various substrate analogues inhibit the uptake of EMD 51921. Absence of oxygen or decreased cellular ATP content (e.g., by metabolic inhibitors or xylulose) blocks hepatocellular uptake of EMD 51921. Temperatures above 20 degrees C accelerate the uptake. The activation energy was calculated to be 58.3 kJ/mol. The apparently active uptake of EMD 51921 was not sodium dependent. The membrane potential is a driving force for the accumulation of EMD 51921. Mutual competitive transport inhibition of EMD 51921, cholate and taurocholate is indicative of a common transport system. Benzamidotaurocholate and a cyclosomatostatin analog 008, not phalloidin and iodipamide, however, considerably decrease the uptake of EMD 51921. AS 30D ascites hepatoma cells, unable to accumulate bile acids and certain cyclopeptides, also fail to transport EMD 51921. BSP, a foreign substrate of the bilirubin carrier, noncompetitively inhibits the transport of EMD 51921. The inhibition of the uptake of EMD 51921 by rifampicin, a further substrate of the bilirubin carrier, is mixed: competitive at high EMD 51921 concentrations and uncompetitive at low EMD 51921 concentrations. The uptake of rifampicin into isolated rat liver cells, however, is not influenced by EMD 51921. Substrates of the transport systems for cations, amino acids, long chain fatty acids and hexoses did not influence the transport of EMD 51921.  相似文献   

12.
The effect of amino acids, in concentrations corresponding to those found in the portal vein of rats given a high-protein diet, was investigated on the activity of system A amino acid transport in hepatocytes from fed rats. Amino acids counteracted the induction of system A by insulin or glucagon. This effect was observed at all concentrations of hormones tested, up to 1 microM. Amino acids did not affect the basal cyclic AMP concentration in hepatocytes, or the large rise in cyclic AMP elicited by glucagon. The reversal of system-A induction was observed at relatively low concentration of amino acids, corresponding to plasma values reported in rats given a basal diet. Amino acids were separately tested: substrates of system A were particularly efficient, but so were glutamine and histidine. Non-metabolizable substrates of system A, such as 2-aminoisobutyrate, were also inhibitory, suggesting that a part of the effect of amino acids is independent of their cellular metabolism. Provision of additional energy substrates such as lactate and oleate did not affect induction of system A or the inhibitory effects of amino acids. Thus amino acids do not act by serving as an energy source and by maintaining the integrity of hepatocytes. Inhibition of mRNA synthesis by actinomycin practically abolished the effect of amino acids on the induction of system A by glucagon. The results suggest that amino acids may promote the synthesis of protein(s) affecting the activity of system A either directly at the carrier unit or at an intermediate stage of its emergence.  相似文献   

13.
The conjugated trihydroxy bile salts glycocholate and taurocholate removed approx. 20--30% of the plasma-membrane enzymes 5'-nucleotidase, alkaline phosphatase and alkaline phosphodiesterase I from isolated hepatocytes before the onset of lysis, as judged by release of the cytosolic enzyme lactate dehydrogenase. The conjugated dihydroxy bile salt glycodeoxycholate similarly removed 10--20% of the 5'-nucleotidase and alkaline phosphatase activities, but not alkaline phosphodiesterase activity; this bile salt caused lysis of hepatocytes at approx. 10-fold lower concentrations (1.5--2.0mM) than either glycocholate or taurocholate (12--16mM). At low concentrations (7 mM), glycocholate released these enzymes in a predominantly particulate form, whereas at higher concentrations (15 mM) glycocholate further released these components in a predominantly 'soluble' form. Inclusion of 1% (w/v) bovine serum albumin in the incubations had a small protective effect on the release of enzymes from hepatocytes by glycodeoxycholate, but not by glycocholate. These observations are discussed in relation to the possible role of bile salts in the origin of some biliary proteins.  相似文献   

14.
The changes in intracellular Ca2+ concentration [( Ca2+]i) of hepatocytes induced by certain bile acids are biphasic: an initial increase is followed by a more gradual decrease. This latter decline in [Ca2+]i may be due to an efflux of Ca2+ across the plasma membrane. This hypothesis was tested by studying the effect of different bile acids on the efflux of 45Ca from preloaded rat hepatocytes and isolated perfused rat livers. The following bile acids were studied: cholic (C), ursodeoxycholic (UDC), chenodeoxycholic (CDC), and deoxycholic (DC) acids; their taurine (T) conjugates (TC, TUDC, TCDC, and TDC); and the taurine, sulfate (S), and glucuronide (Glu) derivatives of lithocholic acid (TLC, LS, TLS, and LGlu, respectively). At 0.3 mM, all bile acids except C, TC, TCDC, UDC, and TUDC significantly increased 45Ca efflux from preloaded hepatocytes without affecting cell viability. Dose-response studies revealed that the minimum effective concentration needed to induce 45Ca efflux was 0.06 mM for LS, 0.8 mM for TCDC, and 10 mM for TC. Efflux of 86Rb from preloaded hepatocytes was not significantly altered by 0.1 mM LS, indicating relative specificity for calcium. TDC and DC, but not TC, increased 45Ca efflux from preloaded perfused rat livers. These results showed that bile acids known to increase [Ca2+]i (CDC, DC, TDC, and TLC) also increased 45Ca efflux from hepatocytes and perfused livers and that efflux was also stimulated by LS, TLS, and LGlu. The extent of this efflux was related to the hydrophobicity of the steroid nucleus of the bile acid. It is speculated that bile acid-induced increases in [Ca2+]i activate the plasma membrane Ca2+ pump resulting in increased Ca2+ efflux.  相似文献   

15.
Isolated rat hepatocytes prepared by an enzyme perfusion technique possess a functional amino acid transport system and retain the capacity to synthesize protein. Amino acid transport was studied using the non-metabolizable amino acid analog alpha-aminoisobutyric acid. The transport process was time, temperature and concentration dependent. Similarly, leucine incorporation into protein was time and temperature dependent being optimal at 3m degrees C. Amino acid, fetal calf serum, growth hormone and glucose all produced small, reproducible increases in protein synthesis rates. Bovine serum albumin diminished the uptake of alpha-aminoisobutyric acid and leucine incorporation into protein. The amino acid content on either side of the cell membrane was found to affect transport into or out of the cellular compartment (transconcentration effects). High cell concentrations decreased transport and protein synthesis as a result of isotopic dilution of labelled amino acids with those released by the hepatocytes. This was consistent with the capacity of naturally occurring amino aicds to compete with alpha-aminoisobutyric acid for uptake into the hepatocyte. In order to define more precisely the effects of bioregulators on transport and protein synthesis it will be necessary to define and subfractionate cellular compartments and proteins which are the specific targets of cellular regulation.  相似文献   

16.
Effect of thiazolidinediones on bile acid transport in rat liver   总被引:2,自引:0,他引:2  
Snow KL  Moseley RH 《Life sciences》2007,80(8):732-740
The thiazolidinedione derivatives, troglitazone, rosiglitazone, and pioglitazone, are novel insulin-sensitizing drugs that are useful in the treatment of type 2 diabetes. However, hepatotoxicity associated with troglitazone led to its withdrawal from the market in March 2000. In view of case reports of hepatotoxicity from rosiglitazone and pioglitazone, it is unclear whether thiazolidinediones as a class are associated with hepatotoxicity. Although the mechanism of troglitazone-associated hepatotoxicity has not been elucidated, troglitazone and its major metabolite, troglitazone sulfate, competitively inhibit adenosine triphosphate (ATP)-dependent taurocholate transport in isolated rat canalicular liver plasma membrane vesicles mediated by the canalicular bile salt export pump (Bsep). These results suggest that cholestasis may be a factor in troglitazone-associated hepatotoxicity. To determine whether this effect is 1) limited to canalicular bile acid transport and 2) is specific to troglitazone, the effect of troglitazone, rosiglitazone, and ciglitazone on bile acid transport was examined in rat basolateral (blLPM) and canalicular (cLPM) liver plasma membrane vesicles. In cLPM vesicles, troglitazone, rosiglitazone, and ciglitazone (100 microM) all significantly inhibited ATP-dependent taurocholate transport. In blLPM vesicles, these three thiazolidinediones also significantly inhibited Na(+)-dependent taurocholate transport. Inhibition of bile acid transport was concentration dependent and competitive in both cLPM and blLPM vesicles. In conclusion, these findings are consistent with a class effect by thiazolidinediones on hepatic bile acid transport. If hepatotoxicity is associated with this effect, then hepatotoxicity is not limited to troglitazone. Alternatively, if hepatotoxicity is limited to troglitazone, other mechanisms are responsible for its reported hepatotoxicity.  相似文献   

17.
Cholic acid uptake was studied in isolated rat hepatocytes using a centrifugal filtration technique to allow rapid sampling. Hepatocytes were found to adsorb as well as to transport cholic acid. The adsorption was characterized by a capacity of 24 nmol X mg cell protein-1 and an association constant of 0.59 X 103 M-1. Cholic acid uptake was linear with respect to concentration at or below 10 degree C, suggesting a unsaturable uptake process which was considered to represent simple diffusion and is quantitated by a diffusion coefficient of 1.76 pmol cholic acid X min-1 X mg protein-1 X muM-1. Above 10 degrees C the uptake curve was biphasic. After subtracting the unsaturable component from uptake rates at higher temperatures, a curve showing saturable kinetics resulted. The apparent Km and V values at 37 degrees C were calculated to be 31muM and 0.8 nmol X min-1 X mg protein-1 respectively. This saturable uptake process was temperature-dependent with an activation energy of 13 kcal X mol-1 (5.44 X 104 J X mol-1) and was inhibited by oligomycin and KCN. Countertransport was demonstrated with cholic, taurocholic and chenodeoxycholic acids. The results suggest that cholic acid is transported by an energy-dependent carrier-mediated process in addition to simple diffusion by hepatocytes, and that the postulated carrier has affinity for other bile acids.  相似文献   

18.
3-O-Methyl-D-glucose transport across the plasma membrane of isolated rat hepatocytes was followed for net entry of the sugar into sugar-free cells (zero trans entry), net exit of sugar into sugar-free medium (zero trans exit) and for unidirectional entry and exit fluxes when cells had been equilibrated with sugar in the extracellular medium (equilibrium exchange entry and exit). These measurements were performed at 20 degrees C and pH 7.4 by the use of simple manual methods. Initial rates of transport showed a Michaelis--Menten dependency on the sugar concentration at the cis side of the membrane over the range of concentrations tested (100 microM to 100 mM). Transport was found to be symmetrical with no evidence of substrate stimulation of transport from the trans side of the membrane. Parameters (mean values +/- S.E.M.) of transport were estimated as Vmax. 86.2 +/- 9.7 mmol/litre of cell water per min and Km 18.1 +/- 5.9 mM for exchange entry, Vmax. 78.8 +/- 5.3 mmol/litre of cell water per min and Km 17.6 +/- 3.5 mM for exchange exit, Vmax. 84.1 +/- 8.4 mmol/litre of cell water per min and Km 16.8 +/- 4.6 mM for zero trans exit.  相似文献   

19.
Hydrophobic bile acids are toxic to isolated rat hepatocytes by mechanisms involving mitochondrial dysfunction and oxidative stress. In the current study we examined the role of nitric oxide (NO), a potential mediator of apoptosis, during bile acid-induced apoptosis. Freshly isolated rat hepatocytes and hepatic mitochondria generated NO and peroxynitrite (ONOO(-)) in a concentration- and time-dependent manner when exposed to the toxic bile salt glycochenodeoxycholate (GCDC) (25-500 microm), which was prevented by the nitric-oxide synthase (NOS) inhibitors N(G)-monomethyl-N-arginine monoacetate (l-NMMA) and 1400W. Relationships between hepatocyte NO production and apoptosis were examined by comparing the effects of NOS inhibitors with other inhibitors of GCDC-induced apoptosis. Inhibitors of caspases 8 and 9, the mitochondrial permeability transition blocker cyclosporin A, and the antioxidant idebenone reduced NO generation and apoptosis in GCDC-treated hepatocytes. In contrast, NOS inhibitors had no effect on GCDC-induced apoptosis despite marked reduction of NO and ONOO(-). However, treatment with the NO donors S-nitroso-N-acetylpenicillamine and spermine NONOate [N-(-aminoethyl)N-(2-hydroxy-2-nitrohydrazino)-1,2-ethylenediamine) inhibited apoptosis and caspase 3 activity while significantly elevating NO levels above GCDC-stimulated levels. Neither NO donors nor NOS inhibitors affected GCDC-induced mitochondrial permeability transition or cytochrome c release from liver mitochondria or GCDC-induced mitochondrial depolarization from isolated hepatocytes, suggesting that NO inhibits bile acid-induced hepatocyte apoptosis by a non-mitochondrial-dependent pathway. In conclusion, whereas NO produced from GCDC-treated hepatocytes neither mediates nor protects against bile acid-induced apoptosis, higher levels of NO inhibit GCDC-induced hepatocyte apoptosis by caspase-dependent pathways.  相似文献   

20.
Isolated rat hepatocytes were used to investigate the uptake of zinc at early exposure times. Hepatocytes were incubated with 65Zn (1–500 μM) and samples were withdrawn at times ranging from 25 s to 60 min. A biphasic pattern of uptake was observed with a rapid first phase of uptake followed by a slower second phase. The relationship between velocity of uptake and substrate concentration for the first phase was nonlinear, while that of the second phase was linear. The presence of 10 μM cadmium produced a decrease in the velocity of uptake of only the first phase. This suggests that the first phase is at least partly carrier mediated, while there is no indication of involvement of a carrier in the second phase. KCN (1 mM) and carbonyl cyanide m-chlorophenylhydrazone (2 μM), did not cause any change in the uptake of 65Zn (1 μM), which suggests that there is no active component in the uptake of zinc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号