首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Three functionally distinct populations of PSII reaction centers differing in the ability to keep the primary acceptors in a reduced state and to transfer electrons to PSI were estimated using chlorophyll fluorescence measurements in primary barley leaves exposed to elevated temperatures in the range of 37–51°C. The capacity of the PSII reaction centers to perform at least one light-induced charge separation was not affected by a 5-min heat treatment at temperatures up to 51°C. The first population containing QB-non-reducing centers corresponded to 15–20% of the total PSII activity up to 45°C. In a second population, PSII reaction centers maintained QA reduction under light in the presence of oxygen, but not in the presence of a strong artificial PSI electron acceptor, methyl viologen. In a third population that gradually increases from zero at 37°C to about 60% at 45°C, the PSII centers were not able to keep QA in the reduced state even in the presence of oxygen as the sole electron acceptor. Three electron transport pathways, the pseudocyclic one involving both PSII and PSI, the NAD(P)H-dependent pathway mediated by PSI alone after the loss of activity in some PSII centers, and the PSI-driven ferredoxin-dependent route enhanced by weakly efficient PSII centers that are able to provide only catalytic amounts of electrons, are suggested to create a proton gradient in chloroplasts of heat-stressed leaves thus protecting PSII reaction centers from photodamage.  相似文献   

3.
The "saturating pulse" method of in vivo Chl fluorescence measurement has been widely used by physiologists and especially ecophysiologists, as it allows a simple, rapid and non-invasive assessment of PSII function and the allocation of absorbed energy into photochemical and non-photochemical processes. It is based on the accurate determination of the so-called Fm('), i.e. the fluorescence signal emitted when a "saturating" light pulse closes all PSII centers. In this methodological investigation, we examined whether the saturating pulse intensities required to obtain maximal fluorescence yields differ between leaves of various species receiving varying actinic light irradiances. It was shown that, in leaves adapted to comparatively high (yet realistic) levels of natural irradiances, the saturating pulses usually applied are not able to close all PSII reaction centers. As a result, there is a high risk of considerable Fm(') underestimation. Accordingly, the derived values of effective PSII yields and linear electron transport rates (ETR) are also underestimated, even at the highest saturation pulse levels afforded by commercial instruments. Since the extent of underestimation increases with actinic irradiance, the ETR versus light curves are considerably distorted. The possible reasons for the apparent inability of "saturating" pulses to close all PSII centers at high actinic light and the practical implications, especially in field work, are discussed.  相似文献   

4.
Treatment with the herbicide acifluorfen-sodium (AF-Na), an inhibitor of protoporphyrinogen oxidase, caused an accumulation of protoporphyrin IX (Proto IX) , light-induced necrotic spots on the cucumber cotyledon within 12-24 h, and photobleaching after 48-72 h of light exposure. Proto IX-sensitized and singlet oxygen ((1)O(2))-mediated oxidative stress caused by AF-Na treatment impaired photosystem I (PSI), photosystem II (PSII) and whole chain electron transport reactions. As compared to controls, the F(v)/F(m) (variable to maximal chlorophyll a fluorescence) ratio of treated samples was reduced. The PSII electron donor NH(2)OH failed to restore the F(v)/F(m) ratio suggesting that the reduction of F(v)/F(m) reflects the loss of reaction center functions. This explanation is further supported by the practically near-similar loss of PSI and PSII activities. As revealed from the light saturation curve (rate of oxygen evolution as a function of light intensity), the reduction of PSII activity was both due to the reduction in the quantum yield at limiting light intensities and impairment of light-saturated electron transport. In treated cotyledons both the Q (due to recombination of Q(A)(-) with S(2)) and B (due to recombination of Q(B)(-) with S(2)/S(3)) band of thermoluminescence decreased by 50% suggesting a loss of active PSII reaction centers. In both the control and treated samples, the thermoluminescence yield of B band exhibited a periodicity of 4 suggesting normal functioning of the S states in centers that were still active. The low temperature (77 K) fluorescence emission spectra revealed that the F(695) band (that originates in CP-47) increased probably due to reduced energy transfer from the CP47 to the reaction center. These demonstrated an overall damage to the PSI and PSII reaction centers by (1)O(2) produced in response to photosensitization reaction of protoporphyrin IX in AF-Na-treated cucumber seedlings.  相似文献   

5.
The subaerial cyanobacterium Nostoc flagelliforme can survive for years in the desiccated state and light exposure may stimulate photosynthetic recovery during rehydration. However, the influence of light quality on photosynthetic recovery and the underlying mechanism remain unresolved. Exposure of field collected N. flagelliforme to light intensity ≥2 μmol photons m−2 s−1 showed that the speed of photosystem II (PSII) recovery was in the following order: red > green > blue ≈ violet light. Decreasing the light intensity showed that weak red light stimulated PSII recovery during rehydration. The chlorophyll fluorescence transient and oxygen evolution activity indicated that the oxygen evolution complex (OEC) was the activated site triggered by weak red light. The damaged D1 protein accumulated in the thylakoid membrane during dehydration and is degraded and resynthesized during dark rehydration. PsbO interaction with the thylakoid membrane was induced by weak red light. Thus, weak red light plays an important role in triggering OEC photoactivation and the formation of functional PSII during rehydration. In its arid habitats, weak red light could stimulate the awakening of dormant N. flagelliforme after absorbing water from nighttime dew or rain to maximize growth during the early daylight hours of the dry season.  相似文献   

6.
Exposure of isolated thylakoids or intact plants to elevated temperature is known to inhibit photosynthesis at multiple sites. We have investigated the effect of elevated temperature (40 degrees C) for 24 hr in dark on rice seedlings to characterize the extent of damage by in vivo heat stress on photofunctions of photosystem II (PSII). Chl a fluorescence transient analysis in the intact rice leaves indicated a loss in PSII photochemistry (Fv) and an associated loss in the number of functional PSII units. Thylakoids isolated from rice seedlings exposed to mild heat stress exhibited >50% reduction in PSII catalyzed oxygen evolution activity compared to the corresponding control thylakoids. The ability of thylakoid membranes from heat exposed seedlings to photooxidize artificial PSII electron donor, DPC, subsequent to washing the thylakoids with alkaline Tris or NH2OH was also reduced by approximately 40% compared to control Tris or NH2OH washed thylakoids. This clearly indicated that besides the disruption of oxygen evolving complex (OEC) by 40 degrees C heat exposure for 24 hr, the PSII reaction centers were impaired by in vivo heat stress. The analysis of Mn and manganese stabilizing protein (MSP) contents showed no breakdown of 33 kDa extrinsic MSP and only a marginal loss in Mn. Thus, we suggest that the extent of heat induced loss of OEC must be due to disorganization of the OEC complex by in vivo heat stress. Studies with inhibitors like DCMU and atrazine clearly indicated that in vivo heat stress altered the acceptor side significantly. [14C] Atrazine binding studies clearly demonstrated that there is a significant alteration in the QB binding site on D1 as well as altered QA to QB equilibrium. Thus, our results show that the loss in PSII photochemistry by in vivo heat exposure not only alters the donor side but significantly alters the acceptor side of PSII.  相似文献   

7.
The response of Spirulina (Arthrospira) platensis to high salt stress was investigated by incubating the cells in light of moderate intensity in the presence of 0.8 M NaCl. NaCl caused a decrease in photosystem II (PSII) mediated oxygen evolution activity and increase in photosystem I (PSI) activity and the amount of P700. Similarly maximal efficiency of PSII (Fv/Fm) and variable fluorescence (Fv/Fo) were also declined in salt-stressed cells. Western blot analysis reveal that the inhibition in PSII activity is due to a 40 % loss of a thylakoid membrane protein, known as D1, which is located in PSII reaction center. NaCl treatment of cells also resulted in the alterations of other thylakoid membrane proteins: most prominently, a dramatic diminishment of the 47-kDa chlorophyll protein (CP) and 94-kDa protein, and accumulation of a 17-kDa protein band were observed in SDS-PAGE. The changes in 47-kDa and 94-kDa proteins lead to the decreased energy transfer from light harvesting antenna to PSII, which was accompanied by alterations in the chlorophyll fluorescence emission spectra of whole cells and isolated thylakoids. Therefore we conclude that salt stress has various effects on photosynthetic electron transport activities due to the marked alterations in the composition of thylakoid membrane proteins.  相似文献   

8.
Fluorimetric, photoacoustic, polarographic and absorbance techniques were used to measure in situ various functional aspects of the photochemical apparatus of photosynthesis in intact pea leaves (Pisum sativum L.) after short exposures to a high temperature of 40 ° C. The results indicated (i) that the in-vivo responses of the two photosystems to high-temperature pretreatments were markedly different and in some respects opposite, with photosystem (PS) II activity being inhibited (or down-regulated) and PSI function being stimulated; and (ii) that light strongly interacts with the response of the photosystems, acting as an efficient protector of the photochemical activity against its inactivation by heat. When imposed in the dark, heat provoked a drastic inhibition of photosynthetic oxygen evolution and photochemical energy storage, correlated with a marked loss of variable PSII-chlorophyll fluorescence emission. None of the above changes were observed in leaves which were illuminated during heating. This photoprotection was saturated at rather low light fluence rates (around 10 W · m–2). Heat stress in darkness appeared to increase the capacity for cyclic electron flow around PSI, as indicated by the enhanced photochemical energy storage in far-red light and the faster decay of P 700 + (oxidized reaction center of PSI) monitored upon sudded interruption of the far-red light. The presence of light during heat stress reduced somewhat this PSI-driven cyclic electron transport. It was also observed that heat stress in darkness resulted in the progressive closure of the PSI reaction centers in leaves under steady illumination whereas PSII traps remained largely open, possibly reflecting the adjustment of the photochemical efficiency of undamaged PSI to the reduced rate of photochemistry in PSII.Abbreviations B1 and B2 fraction of closed PSI and PSII reaction centers, respectively - ES photoacoustically measured energy storage - Fo, Fm and Fs initial, maximal and steady-state levels of chlorophyll fluorescence - P700 reaction center of PSI - PS (I, II) photosystem (I, II) - V = (Fs – Fo)/(Fm – Fo) relative variable chlorophyll fluorescence We wish to thank Professor R. Lannoye (ULB, Brussels) for the use of this photoacoustic spectrometer and Mrs. M. Eyletters for her help.  相似文献   

9.
Lutescens-1, a tobacco mutant with a maternally inherited dysfunction, displayed an unusual developmental phenotype. In vivo measurement of chlorophyll fluorescence revealed deterioration in photosystem II (PSII) function as leaves expanded. Analysis of thylakoid membrane proteins by polyacrylamide gel electrophoresis indicated the physical loss of nuclear- and chloroplast-encoded polypeptides comprising the PSII core complex concomitant with loss of activity. Freeze fracture electron micrographs of mutant thylakoids showed a reduced density, compared to wild type, of the EFs particles which have been shown previously to be the structural entity containing PSII core complexes and associated pigment-proteins. The selective loss of PSII cores from thylakoids resulted in a higher ratio of antenna chlorophyll to reaction centers and an altered 77 K chlorophyll fluorescence emission spectra; these data are interpreted to indicate functional isolation of light-harvesting chlorophyll a/b complexes in the absence of PSII centers. Examination of PSII reaction centers (which were present at lower levels in mutant membranes) by monitoring the light-dependent phosphorylation of PSII polypeptides and flash-induced O2 evolution patterns demonstrated that the PSII cores which were assembled in mutant thylakoids were functionally identical to those of wild type. We conclude that the lutescens-1 mutation affected the correct stoichiometry of PSII centers, in relation to other membrane constituents, by disrupting the proper assembly and maintenance of PSII complexes in lutescens-1 thylakoid membranes.  相似文献   

10.
The fluorescence induction curve of photoinhibited thylakoids measured in the presence of 3-(3,4-dichlorophenyl)-1,1-dimethyl urea was modeled using an extension of the model of Lavergne and Trissl (Biophys. J. 68:2474-2492), which takes into account the reversible exciton trapping by photosystem II (PSII) reaction centers and exciton exchange between PSII units. The model of Trissl and Lavergne was modified by assuming that PSII consists of photosynthetically active and photoinhibited (inactive in oxygen evolution) units and that the inactive PSII units can efficiently dissipate energy even if they still retain the capacity for the charge separation reaction. Comparison of theoretical and experimental fluorescence induction curves of thylakoids, which had been subjected to strong light in the presence of the uncoupler nigericin, suggests connectivity between the photoinhibited and active PSII units. The model predicts that photoinhibition lowers the yield of radical pair formation in the remaining active PSII centers. However, the kinetics of PSII inactivation in nigericin-treated thylakoids upon exposure to photoinhibitory light ranging from 185 to 2650 micromol photons m-2 s-1 was strictly exponential. This may suggest that photoinhibition occurs independently of the primary electron transfer reactions of PSII or that increased production of harmful substances by photoinhibited PSII units compensates for the protection afforded by the quenching of excitation energy in photoinhibited centers.  相似文献   

11.
Previously, we showed that ascorbate (Asc), by donating electrons to photosystem II (PSII), supports a sustained electron transport activity in leaves in which the oxygen-evolving complexes were inactivated with a heat pulse (49°C, 40 s). Here, by using wild-type, Asc-overproducing, and -deficient Arabidopsis (Arabidopsis thaliana) mutants (miox4 and vtc2-3, respectively), we investigated the physiological role of Asc as PSII electron donor in heat-stressed leaves (40°C, 15 min), lacking active oxygen-evolving complexes. Chlorophyll-a fluorescence transients show that in leaves excited with trains of saturating single-turnover flashes spaced 200 ms apart, allowing continual electron donation from Asc to PSII, the reaction centers remained functional even after thousands of turnovers. Higher flash frequencies or continuous illumination (300 μmol photons m(-2) s(-1)) gradually inactivated them, a process that appeared to be initiated by a dramatic deceleration of the electron transfer from Tyr(Z) to P680(+), followed by the complete loss of charge separation activity. These processes occurred with half-times of 1.2 and 10 min, 2.8 and 23 min, and 4.1 and 51 min in vtc2-3, the wild type, and miox4, respectively, indicating that the rate of inactivation strongly depended on the Asc content of the leaves. The recovery of PSII activity, following the degradation of PSII proteins (D1, CP43, and PsbO), in moderate light (100 μmol photons m(-2) s(-1), comparable to growth light), was also retarded in the Asc-deficient mutant. These data show that high Asc content of leaves contributes significantly to the ability of plants to withstand heat-stress conditions.  相似文献   

12.
Climate change is expected to result in an increase in the frequency and magnitude of extreme weather events. Alhagi sparsifolia is an important factor for wind prevention and sand fixation in the forelands of the Taklamakan Desert. The effects of high temperature on desert plants remain widely unknown. In this work, chlorophyll a fluorescence induction kinetics were investigated at different time stresses of 5, 20, 40, and 60 min at temperature gradients of 38–44 °C at 2 °C intervals. A pronounced K-step was found, and the values of the maximum quantum yield for primary photochemistry, the quantum yield of electron transport, the density of reaction centers and the performance index on absorption basis were lowest after 60 min at 44 °C, thus indicating that the oxygen-evolving complex was damaged, the inactivated reaction centers increased, and the activity of the photosystem II (PSII) reaction center in leaves was seriously limited. Therefore, we suggest that under normal temperature (below 42 °C), the PSII of A. sparsifolia would be unaffected. When such temperature is maintained for 40 min, the activity of PSII would be limited, and when retained for 60 min, PSII may be severely damaged.  相似文献   

13.
The supramolecular organization of photosystem II (PSII) was characterized in distinct domains of the thylakoid membrane, the grana core, the grana margins, the stroma lamellae, and the so-called Y100 fraction. PSII supercomplexes, PSII core dimers, PSII core monomers, PSII core monomers lacking the CP43 subunit, and PSII reaction centers were resolved and quantified by blue native PAGE, SDS-PAGE for the second dimension, and immunoanalysis of the D1 protein. Dimeric PSII (PSII supercomplexes and PSII core dimers) dominate in the core part of the thylakoid granum, whereas the monomeric PSII prevails in the stroma lamellae. Considerable amounts of PSII monomers lacking the CP43 protein and PSII reaction centers (D1-D2-cytochrome b559 complex) were found in the stroma lamellae. Our quantitative picture of the supramolecular composition of PSII, which is totally different between different domains of the thylakoid membrane, is discussed with respect to the function of PSII in each fraction. Steady state electron transfer, flash-induced fluorescence decay, and EPR analysis revealed that nearly all of the dimeric forms represent oxygen-evolving PSII centers. PSII core monomers were heterogeneous, and a large fraction did not evolve oxygen. PSII monomers without the CP43 protein and PSII reaction centers showed no oxygen-evolving activity.  相似文献   

14.
Mixed photosystem II (PSII) samples consisting of Cl(-)-depleted and active, or Ca(2+)-depleted and active PSII enriched membrane fragments, respectively, were investigated with respect to their susceptibility to light. In the presence of Cl(-)-depleted PSII, active centers were damaged more severely, most likely caused by a higher amount of reactive oxygen species formed in the nonfunctional centers. Cl(-) depletion led to an increased H(2)O(2) production, which seemed to be responsible for the stimulation of PSII activity loss. To distinguish between direct H(2)O(2) formation by partial water oxidation and indirect H(2)O(2) formation by oxygen reduction involving the prior formation of O(2)(-?), the production of reactive oxygen species was followed by spin trapping EPR spectroscopy. All samples investigated, i.e. PSII with a functional water splitting complex, Ca(2+)- and Cl(-)-depleted PSII, produced upon illumination O(2)(-?) and OH(?) radicals on the acceptor side, while Cl(-)-depleted PSII produced additionally OH(?) radicals originating from H(2)O(2) formed on the donor side of PSII.  相似文献   

15.
The role of light in the effect of salt stress on PSII photochemistry in the cyanobacterium Spirulina platensis grown at 50 micromol m(-2) s(-1) was investigated. The time-course of changes in PSII photochemistry in response to high salinity (0.8 M NaCl) incubated in the dark and at 30, 50 and 100 micromol m(-2) s(-1) was composed of two phases. The first phase, which was independent of light, was characterized by a rapid decrease (20-50%) in the maximal efficiency of PSII photochemistry (F:(v)/F:(m)), the efficiency of excitation energy capture by open PSII reaction centres (F(1)(v)/F(1)(m)), photochemical quenching (q(P)), and the quantum yield of PSII electron transport (Phi(PSII)) in the first 15 min, followed by a recovery of up to about 86-92% of their initial levels after 4 h of incubation. The second phase took place after 4 h, in which a further decline in the above parameters occurred only in the light but not in the dark, reaching levels as low as 32-56% of their initial levels after 12 h. Moreover, the higher incubation light intensity, the greater the decrease in the above parameters. At the same time, Q(B)-non-reducing PSII reaction centres increased significantly in the first 15 min and then recovered to the initial level during the first phase, but increased again in the light in the second phase. Photosynthetic oxygen evolution activity decreased sharply by 70% in the first 5 min, and then kept largely constant until 12 h. The changes in oxygen evolution activity were independent of light intensity during both phases.  相似文献   

16.
The inhibitory effect of Al3+on photosystem II (PSII) electron transport was investigated using several biophysical and biochemical techniques such as oxygen evolution, chlorophyll fluorescence induction and emission, SDS-polyacrylamide and native green gel electrophoresis, and FTIR spectroscopy. In order to understand the mechanism of its inhibitory action, we have analyzed the interaction of this toxic cation with proteins subunits of PSII submembrane fractions isolated from spinach. Our results show that Al 3+, especially above 3 mM, strongly inhibits oxygen evolution and affects the advancement of the S states of the Mn4O5Ca cluster. This inhibition was due to the release of the extrinsic polypeptides and the disorganization of the Mn4O5Ca cluster associated with the oxygen evolving complex (OEC) of PSII. This fact was accompanied by a significant decline of maximum quantum yield of PSII (Fv/Fm) together with a strong damping of the chlorophyll a fluorescence induction. The energy transfer from light harvesting antenna to reaction centers of PSII was impaired following the alteration of the light harvesting complex of photosystem II (LHCII). The latter result was revealed by the drop of chlorophyll fluorescence emission spectra at low temperature (77 K), increase of F0 and confirmed by the native green gel electrophoresis. FTIR measurements indicated that the interaction of Al 3+ with the intrinsic and extrinsic polypeptides of PSII induces major alterations of the protein secondary structure leading to conformational changes. This was reflected by a major reduction of α-helix with an increase of β-sheet and random coil structures in Al 3+-PSII complexes. These structural changes are closely related with the functional alteration of PSII activity revealed by the inhibition of the electron transport chain of PSII.  相似文献   

17.
本文研究了高温与不同光强结合处理对‘赤霞珠’葡萄叶片PSII活性及恢复的影响。结果表明,高温黑暗处理(40℃,0μmaol·m-2.s-1)导致叶片PSII最大光化学效率(Fv/Fm)、反应中心吸收的光能用于电子传递的量子产额(ψEo)与单位反应中心光能的传递(ETo/RC)降低明显,且无恢复趋势,K点相对荧光(Vk)、单位反应中心光能的吸收(ABS/RC)与捕获(TRo/RC)显著升高。高温弱光处理(40℃,200μmol·m-2.s-1)后的叶片PSII活性明显恢复,ETo/RC降低明显,TRo/RC无显著变化。高温强光(40℃,1600μmol·m-2.S-1)处理导致单位面积有活性反应中心数量(RC/CSm)抑制程度最大,恢复程度较低。实验结果说明,高温处理下黑暗对葡萄PSII功能活性及恢复均会造成抑制,而弱光可以显著缓解高温对葡萄叶片的胁迫作用,并促进PSII的恢复,强光导致胁迫下的PSII功能抑制最明显。  相似文献   

18.
Lee CI  Lakshmi KV  Brudvig GW 《Biochemistry》2007,46(11):3211-3223
Photosynthetic oxygen evolution in photosystem II (PSII) takes place in the oxygen-evolving complex (OEC) that is comprised of a tetranuclear manganese cluster (Mn4), a redox-active tyrosine residue (YZ), and Ca2+ and Cl- cofactors. The OEC is successively oxidized by the absorption of 4 quanta of light that results in the oxidation of water and the release of O2. Ca2+ is an essential cofactor in the water-oxidation reaction, as its depletion causes the loss of the oxygen-evolution activity in PSII. In recent X-ray crystal structures, Ca2+ has been revealed to be associated with the Mn4 cluster of PSII. Although several mechanisms have been proposed for the water-oxidation reaction of PSII, the role of Ca2+ in oxygen evolution remains unclear. In this study, we probe the role of Ca2+ in oxygen evolution by monitoring the S1 to S2 state transition in PSII membranes and PSII core complexes upon inhibition of oxygen evolution by Dy3+, Cu2+, and Cd2+ ions. By using a cation-exchange procedure in which Ca2+ is not removed prior to addition of the studied cations, we achieve a high degree of reversible inhibition of PSII membranes and PSII core complexes by Dy3+, Cu2+, and Cd2+ ions. EPR spectroscopy is used to quantitate the number of bound Dy3+ and Cu2+ ions per PSII center and to determine the proximity of Dy3+ to other paramagnetic centers in PSII. We observe, for the first time, the S2 state multiline electron paramagnetic resonance (EPR) signal in Dy3+- and Cd2+-inhibited PSII and conclude that the Ca2+ cofactor is not specifically required for the S1 to S2 state transition of PSII. This observation provides direct support for the proposal that Ca2+ plays a structural role in the early S-state transitions, which can be fulfilled by other cations of similar ionic radius, and that the functional role of Ca2+ to activate water in the O-O bond-forming reaction that occurs in the final step of the S state cycle can only be fulfilled by Ca2+ and Sr2+, which have similar Lewis acidities.  相似文献   

19.
Anacystis nidulans exhibits a total loss of photosystem II (PSII) activity upon incubation in a nutrient medium deficient in Ca2+ and Na+ and containing a divalent cation chelator. This loss of activity is light-dependent, which corresponds to an energy requirement. Likewise, Ca2+ efflux takes place only in cells incubated in light. The loss of PSII activity is reversible by addition of submillimolar amounts of either Ca2+ or Na+ to the external medium but not by the addition of any other cation. Restoration of lost PSII activity also requires light. Light saturation curves for partially depleted cells demonstrate both lower maximum O2 evolution rates and decreased relative quantum yields when compared to control cells. Partial electron transport reactions isolate the site of the Ca2+/Na+ effect to the reaction center itself or immediately on its oxidizing side and exclude the water-splitting complex. O2 flash yields decline during cation depletion, indicating a decrease in the number of functional PSII reaction centers, but the maximum turnover rate for still functional reaction centers does not decline. Thus, PSII of A. nidulans exhibits an all-or-none cation requirement, satisfied only by Ca2+ or Na+.  相似文献   

20.
The photosynthetic activity of the green alga Scenedesmus quadricauda was investigated during synchronous growth in light/dark cycles. The rate of O2 evolution increased 2-fold during the first 3 to 4 h of the light period, remained high for the next 3 to 4 h, and then declined during the last half of the light period. During cell division, which occurred at the beginning of the dark period, the ability of the cells to evolve O2 was at a minimum. To determine if photosystem II (PSII) controls the photosynthetic capacity of the cells during the cell cycle we measured PSII activity and heterogeneity. Measurements of electron-transport activity revealed two populations of PSII, active centers that contribute to carbon reduction and inactive centers that do not. Measurements of PSII antenna sizes also revealed two populations, PSIIα and PSIIβ, which differ from one another by their antenna size. During the early light period the photosynthetic capacity of the cells doubled, the O2-evolving capacity of PSII was nearly constant, the proportion of PSIIβ centers decreased to nearly zero, and the proportion of inactive PSII centers remained constant. During the period of minimum photosynthetic activity 30% of the PSII centers were insensitive to the inhibitor 3-(3,4-dichlorophenyl)-1,1-dimethylurea, which may be related to reorganization of the thylakoid membrane. We conclude from these results that PSII does not limit the photosynthetic activity of the cells during the first half of the light period. However, the decline in photosynthetic activity observed during the last half of the light period can be accounted for by limited PSII activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号