首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 7 毫秒
1.
Summary Sequences homologous to chloroplast (ct)DNA have been found in nuclear DNA in five species of the Chenopodiaceae, extending the earlier observations of promiscuous DNA in Spinacia oleracea (Timmis and Scott 1983). Using the 7.7 kbp spinach ctDNA Pst I fragment as a hybridization probe, several separately located homologies to ctDNA were resolved in the nuclear DNA of Beta vulgaris, Chenopodium quinoa, and Enchylaena tomentosa. In Chenopodium album and Atriplex cinerea the major region of homology was to a nuclear Eco RI fragment (6 kbp) indistinguishable from that in ctDNA. These homologies may therefore involve larger tracts of ctDNA because the same restriction sites are apparently retained in the nucleus. This suggests that in these latter two species there is a contrasting, more homogeneous arrangement of ctDNA transpositions in the nucleus.  相似文献   

2.
K K Kidwell  T C Osborn 《Génome》1993,36(5):906-912
Repeated DNA sequences of alfalfa (Medicago sativa L.) somaclonal variants were analyzed to determine if changes in copy number had occurred during tissue culture. DNA clones containing highly repeated nuclear sequences from the diploid line HG2 (2x = 16) were slot blotted and probed with labeled DNAs from HG2 and several somaclones of HG2. Two DNA clones that differed visually in hybridization intensity among the plant DNAs and one clone that had constant hybridization intensity were selected and used as probes on Southern blots and slot blots containing equal quantities of DNAs from HG2 and 15 régénérants. Statistically significant differences were detected in the copy number of two anonymous DNA sequences initially selected as variable and in the copy number of sequences homologous to pea ribosomal DNA. Based on Southern blot analysis, these sequences appeared to be arranged as tandem repeats. The cloned sequence initially selected as stable did not vary significantly in copy number and it appeared to be arranged as a dispersed repeat. Both increases and decreases in copy number of repeated sequences were observed in plants from successive regeneration cycles. Results from this study indicate that specific repeated nuclear DNA sequences have changed copy number in plants regenerated from tissue culture.  相似文献   

3.
Subterranean rodents of the genus Ctenomys are an interesting system to assess the effects of habitat instability on the genetic structure of populations. The perrensi group is a complex of three species (C. roigi, C. perrensi and C. dorbignyi) and several forms of uncertain taxonomic status, distributed in the vicinity of the Iberá wetland in Argentina. Because of limited availability of suitable dry habitat, Ctenomys populations are distributed patchily around a vast mosaic of marshes, swamps and lagoons and become connected or isolated over time, depending particularly on the precipitation regime. Genetic variation at 16 microsatellite loci in 169 individuals collected in the area revealed eight clusters of populations which are thought to be evolutionary units, but which do not fit previous species limits. We interpret this lack of congruence between taxonomy and genetic structure as the result of a dynamic population structure. Where populations become connected, hybridization is possible. Where populations become isolated, rapid genetic divergence may occur. In the perrensi group, it appears that both of these factors disrupt the association between different genetic and morphological characters. The study of multiple characters is crucial to the understanding of the recent evolutionary history for dynamic systems such as this. © 2010 The Linnean Society of London, Biological Journal of the Linnean Society, 2010, 100 , 368–383.  相似文献   

4.
In Tetrahymena, the DNA of the macronucleus exists as very large (100 to 4,000-kb) linear molecules that are randomly partitioned to the daughter cells during cell division. This genetic system leads directly to an assortment of alleles such that all loci become homozygous during vegetative growth. Apparently, there is a copy number control mechanism operative that adjusts the number of each macronuclear DNA molecule so that macronuclear DNA molecules (with their loci) are not lost and aneuploid death is a rare event. In comparing Southern analyses of the DNA from various species of Tetrahymena using histone H4 genes as a probe, we find different band intensities in many species. These differences in band intensities primarily reflect differences in the copy number of macronuclear DNA molecules. The variation in copy number of macronuclear DNA molecules in some species is greater than an order of magnitude. These observations are consistent with a developmental control mechanism that operates by increasing the macronuclear copy number of specific DNA molecules (and the genes located on these molecules) to provide the relatively high gene copy number required for highly expressed proteins.  相似文献   

5.
6.
Previous studies with wild-type simian virus 40 DNA have shown that the sequence 5'-GAGGC-3' directs the binding of A protein (T antigen). The functional origin of replication contains four recognition pentanucleotides each of which is separated by a single base pair and arranged a two pairs of direct repetitions that are inverted relative to each other. Analysis of A protein binding to a series of nonviable mutants progressively deleting these contact sites leads to the following conclusions: (i) stable binding of subunits of A protein to three origin pentanucleotides is not sufficient for the initiation of DNA replication, (ii) the stability of DNA binding depends on interactions between bound protein subunits, and (iii) a single pentanucleotide is sufficient to bind and orient a subunit of A protein.  相似文献   

7.
Ribosomal DNA in a nuclear satellite of tomato   总被引:3,自引:0,他引:3       下载免费PDF全文
Chilton MD 《Genetics》1975,81(3):469-483
A satellite DNA of buoyant density 1.704 constitutes approximately 5%–6% of nuclear DNA isolated from cherry tomato leaves. Isolated satellite DNA exhibits a multi-component melting profile. Kinetic complexity measurements indicate that 37% of the satellite consists of repeating units of 10 5 daltons, and 48% of it consists of repeating units of 5.5 x 106 daltons. The latter component is identified as DNA coding for ribosomal RNA on the basis of its buoyant density, kinetic complexity, and abundance in nuclear DNA, 3.2% as determined by saturation hybridization measurements. Saturation studies show that the more rapidly reassociating component of the satellite does not code for 5S RNA. The question of genetic linkage between satellite components is not resolved by this study.  相似文献   

8.
Bosco G  Campbell P  Leiva-Neto JT  Markow TA 《Genetics》2007,177(3):1277-1290
The size of eukaryotic genomes can vary by several orders of magnitude, yet genome size does not correlate with the number of genes nor with the size or complexity of the organism. Although "whole"-genome sequences, such as those now available for 12 Drosophila species, provide information about euchromatic DNA content, they cannot give an accurate estimate of genome sizes that include heterochromatin or repetitive DNA content. Moreover, genome sequences typically represent only one strain or isolate of a single species that does not reflect intraspecies variation. To more accurately estimate whole-genome DNA content and compare these estimates to newly assembled genomes, we used flow cytometry to measure the 2C genome values, relative to Drosophila melanogaster. We estimated genome sizes for the 12 sequenced Drosophila species as well as 91 different strains of 38 species of Drosophilidae. Significant differences in intra- and interspecific 2C genome values exist within the Drosophilidae. Furthermore, by measuring polyploid 16C ovarian follicle cell underreplication we estimated the amount of satellite DNA in each of these species. We found a strong correlation between genome size and amount of satellite underreplication. Addition and loss of heterochromatin satellite repeat elements appear to have made major contributions to the large differences in genome size observed in the Drosophilidae.  相似文献   

9.
10.
A major PvuII satellite DNA has been cloned from a South American octodontid rodent of the genus Ctenomys (C. porteousi). The satellite monomer, termed RPCS, is 337 bp in size and 42% G + C. Analysis of the nucleotide sequence demonstrates that RPCS is not composed of a series of shorter repeats. RPCS-related sequences were found in 11 of 12 Ctenomys species analyzed by hybridization under high-stringency conditions. The only negative species, C. opimus, was reactive under low-stringency conditions. RPCS-related sequences were not found under high- or low-stringency conditions in Calomys musculinus and Mus musculus. However, under low-stringency conditions, RPCS-related sequences were found in the octodontid Octodontomys gliroides, which is thought to have diverged from the genus Ctenomys more than 10 Myr ago. The pattern of periodicities observed, by restriction analysis, between Ctenomys species in the satellite array can be mainly accounted for by a rolling-circle amplification mechanism but cannot be solely accounted for by unequal crossing-over.  相似文献   

11.
A species-specific satellite DNA (Lb-MspISAT) was isolated from the North African rodent Lemniscomys barbarus. This DNA is highly homogeneous in the sequence of different repeats and shows no internal repetitions. Filter and in situ hybridizations demonstrated that it is tandemly repeated at the centromeres of all chromosomes of the complement. A 19-bp CENP-B-like motif was found in Lb-MspISAT which conserves 12 of the 17-bp of the human CENP-B box, but only 5 of the 9-bp of the canonical sequence that is necessary to bind the CENP-B protein. Compared with the human CENP-B box, nucleotide substitutions and insertions increase the palindromic structure of this motif. The possibilities that it may be involved in centromeric function or in homogenization of the Lb-MspISAT sequence are discussed.  相似文献   

12.
Analyses of populations of NIH/3T3 cells for mitochondrial DNA under various conditions were made by use of an improved procedure. Cells were examined at different cell densities, at different stages of cell growth, and after the cells had been incubated with a carcinogen reported to affect mitochondrial DNA replication, benzo[a]pyrene-epoxide. In addition, the analysis was performed on three tumorigenic NIH/3T3 cell lines and one mouse bladder epithelial cell line and its tumorigenic derivative. Small variations of mitochondrial DNA under these various conditions were detected easily and revealed a linear relationship between mitochondrial DNA and total cell DNA.  相似文献   

13.
The cloning and sequencing of a tandemly arrayed repetitive DNA sequence from the sea cucumber Holothuria tubulosa has been recently described (Sainz, J., Azorín, F. and Cornudella, L. 1989. Gene 80, 57-64). We have now searched the genomes of several echinoderm species for the presence of homologous repetitive elements. A close but not identical repeated sequence has been identified in a related holothuroid, H. polii. The monomeric repeat unit is 391 bp long and has a base composition of 66.8% A and T residues, lined up in tracts of 4 nt or larger. The monomeric sequence lacks any internal subrepeat organization although it displays a substantial degree of internal redundancy in the form of inverted and direct repeats. The repeated element accounts for 0.34% of the genome which corresponds to a repetition frequency of about 0.5 x 10(5) copies per haploid complement. The intra- and interspecific homologies among monomers of the satellite DNA as derived from sequence analyses are very high, averaging 97%. The results suggest that the homogeneity of the highly reiterated DNA sequence may be attributed to evolutionary conservative trends.  相似文献   

14.
Binding of 5-bromouracil-containing S/MAR DNA to the nuclear matrix.   总被引:2,自引:0,他引:2  
Substitution of thymine with 5-bromouracil in DNA is known to change interaction between DNA and proteins, thereby inducing various biological phenomena. We hypothesize that A/T-rich scaffold/nuclear matrix attachment region (S/MAR) sequences are involved in the effects of 5-bromodeoxyuridine. We examined an interaction between DNA containing an intronic S/MAR sequence of the immunoglobulin heavy chain gene and nuclear halos prepared from HeLa cells. Upon substitution with 5-bromouracil, the S/MAR DNA bound more tightly to the nuclear halos. The multi-functional nuclear matrix protein YY1 was also found to bind more strongly to 5-bromouracil-substituted DNA containing its recognition motif. These results are consistent with the above hypothesis.  相似文献   

15.
The role of the mitochondria in disease, general health and aging has drawn much attention over the years. Several attempts have been made to describe how the numbers of mitochondria correlate with age, although with inconclusive results. In this study, the relative quantity of mitochondrial DNA compared to nuclear DNA, i.e. the mitochondrial DNA copy number, was measured by PCR technology and used as a proxy for the content of mitochondria copies. In 1,067 Danish twins and singletons (18–93 years of age), with the majority being elderly individuals, the estimated mean mitochondrial DNA copy number in peripheral blood cells was similar for those 18–48 years of age [mean relative mtDNA content: 61.0; 95 % CI (52.1; 69.9)], but declined by ?0.54 mtDNA 95 % CI (?0.63; ?0.45) every year for those older than approximately 50 years of age. However, the longitudinal, yearly decline within an individual was more than twice as steep as observed in the cross-sectional analysis [decline of mtDNA content: ?1.27; 95 % CI (?1.71; ?0.82)]. Subjects with low mitochondrial DNA copy number had poorer outcomes in terms of cognitive performance, physical strength, self-rated health, and higher all-cause mortality than subjects with high mitochondrial DNA copy number, also when age was controlled for. The copy number mortality association can contribute to the smaller decline in a cross-sectional sample of the population compared to the individual, longitudinal decline. This study suggests that high mitochondrial DNA copy number in blood is associated with better health and survival among elderly.  相似文献   

16.
Mito-metagenomics (MMG) is becoming an alternative to amplicon metabarcoding for the assessment of biodiversity in complex biological samples using high-throughput sequencing. Whereas MMG overcomes the biases introduced by the PCR step in the generation of amplicons, it is not yet a technique free of shortcomings. First, as the reads are obtained from shotgun sequencing, a very low proportion of reads map into the mitogenomes, so a high sequencing effort is needed. Second, as the number of mitogenomes per cell can vary among species, the relative species abundance (RSA) in a mixture could be wrongly estimated. Here, we challenge the MMG method to estimate the RSA using artificial libraries of 17 insect species whose complete genomes are available on public repositories. With fresh specimens of these species, we created single-species libraries to calibrate the bioinformatic pipeline and mixed-species libraries to estimate the RSA. Our results showed that the MMG approach confidently recovers the species list of the mixtures, even when they contain congeneric species. The method was also able to estimate the abundance of a species across different samples (within-species estimation) but failed to estimate the RSA within a single sample (across-species estimation) unless a correction factor accounting for the variable number of mitogenomes per cell was used. To estimate this correction factor, we used the proportion of reads mapping into mitogenomes in the single-species libraries and the lengths of the whole genomes and mitogenomes.  相似文献   

17.
Deletions in mitochondrial DNA (mtDNA) accumulate with age in humans without overt mitochondriopathies, but relatively limited attention has been devoted to the measurement of the total number of mtDNA molecules per cell during ageing. We have developed a precise assay that determines mtDNA levels relative to nuclear DNA using a PCR-based procedure. Quantification was performed by reference to a single recombinant plasmid standard containing a copy of each target DNA sequence (mitochondrial and nuclear). Copy number of mtDNA was determined by amplifying a short region of the cytochrome b gene (although other regions of mtDNA were demonstrably useful). Nuclear DNA content was determined by amplification of a segment of the single copy β-globin gene. The copy number of mtDNA per diploid nuclear genome in myocardium was 6970 ± 920, significantly higher than that in skeletal muscle, 3650 ± 620 (P = 0.006). In both human skeletal muscle and myocardium, there was no significant change in mtDNA copy number with age (from neonates to subjects older than 80 years). This PCR-based assay not only enables accurate determination of mtDNA relative to nuclear DNA but also has the potential to quantify accurately any DNA sequence in relation to any other.  相似文献   

18.
Neuroblastoma tumor cells show complex combinations of genetic aberrations, and to date many different methods have been used for their detection. To apply genome-wide techniques, such as Multiplex Ligation-dependent Probe Amplification (MLPA), in routine diagnosis their validation is appropriate and necessary. DNA copy number alterations in 129 cases of neuroblastic tumors were detected using MPLA, and the results validated by Fluorescence In Situ Hybridization (FISH) (MYCN gene, 1p36, 11q and 17q). Kappa index values showed very good concordance between the two techniques in detecting homogeneous MYCN amplification (1); 11q deletion (0.908) and 17q gain (0.922). The validation results showed that MLPA is a highly efficient technique for diagnosis based on the genetic aberrations in relevant regions in neuroblastoma, showing a high concordance with FISH.  相似文献   

19.
20.
The recent application of genome-wide, single nucleotide polymorphism (SNP) microarrays to investigate DNA copy number aberrations in cancer has provided unparalleled sensitivity for identifying genomic changes. In some instances the complexity of these changes makes them difficult to interpret, particularly when tumour samples are contaminated with normal (stromal) tissue. Current automated scoring algorithms require considerable manual data checking and correction, especially when assessing uncultured tumour specimens. To address these limitations we have developed a visual tool to aid in the analysis of DNA copy number data. Simulated DNA Copy Number (SiDCoN) is a spreadsheet-based application designed to simulate the appearance of B-allele and logR plots for all known types of tumour DNA copy number changes, in the presence or absence of stromal contamination. The system allows the user to determine the level of stromal contamination, as well as specify up to 3 different DNA copy number aberrations for up to 5000 data points (representing individual SNPs). This allows users great flexibility to assess simple or complex DNA copy number combinations. We demonstrate how this utility can be used to estimate the level of stromal contamination within tumour samples and its application in deciphering the complex heterogeneous copy number changes we have observed in a series of tumours. We believe this tool will prove useful to others working in the area, both as a training tool, and to aid in the interpretation of complex copy number changes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号