首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Heat stress results in cardiac dysfunction and even cardiac failure. To elucidate the cellular and molecular mechanism of cardiomyocyte injury induced by heat stress, the changes of structure and function in cardiac mitochondria of heat-exposed Wistar rats and its role in cardiomyocyte injury were investigated. Heat stress induced apoptosis and necrosis of cardiomyocytes in a time- and dose-dependent fashion. In the mitochondria of heat-stressed cardiomyocytes, the respiratory control rate and oxidative phosphorylation efficiency (P:O) were decreased gradually with the rise of rectal temperature. The Ca2+ -adenosine triphosphatase activity and Ca2+ content were also reduced. Exposing isolated mitochondria to the heat stress induced special internal environmental states including Ca2+ overload, oxidative stress, and altered mitochondrial membrane permeability transition (MPT). In vivo, the heat stress-induced mitochondrial MPT alteration was also found. The changes of mitochondrial MPT resulted in the release of cytochrome c from mitochondria into the cytosol, and in turn, caspase-3 was activated. Transfection of bcl-2 caused Bcl-2 overexpression in cardiomyocyte, which protected the mitochondria and reduced the heat stress-induced cardiomyocyte injury. In conclusion, it appears that the destruction of mitochondrial structure and function not only resulted in the impairment of physiological function of cardiomyocytes under heat stress but may also further lead to severe cellular injury and even cell death. These findings underline the contribution of mitochondria to the injury process in cardiomyocytes under heat stress.  相似文献   

2.
Mechanism of alloxan-induced calcium release from rat liver mitochondria   总被引:9,自引:0,他引:9  
The objective of the present work was to investigate the mechanism of alloxan-induced Ca2+ release from rat liver mitochondria. Transport of Ca2+, oxidation and hydrolysis of mitochondrial pyridine nucleotides, changes in the mitochondrial membrane potential, and oxygen consumption by mitochondria were investigated. Alloxan does not inhibit the uptake of Ca2+ but stimulates the release of Ca2+ from liver mitochondria, which is accompanied by oxidation and hydrolysis of pyridine nucleotides. Oxidation of mitochondrial pyridine nucleotides by alloxan is not mediated by glutathione peroxidase and glutathione reductase and may occur largely nonenzymatically. Measurements of the mitochondrial membrane potential in combination with inhibitors of Ca2+ reuptake indicate that Ca2+ release takes place from intact liver mitochondria via a distinct pathway. Limited redox cycling of alloxan by mitochondria is indicated by measurements of the membrane potential and O2 consumption in the presence of cyanide. It is concluded that alloxan can cause Ca2+ release from intact rat liver mitochondria. Redox cycling of alloxan is not significantly involved in the Ca2+ release mechanism. Oxidation and hydrolysis of pyridine nucleotides, possibly in conjunction with oxidation of critical sulfhydryl groups, seem to be key events in the alloxan-induced Ca2+ release. Disturbance of cellular Ca2+ homeostasis may partly explain alloxan toxicity.  相似文献   

3.
Transient elevations of intracellular Ca2+ play a signalling role in such complex cellular functions as contraction, secretion, fertilization, proliferation, metabolism, heartbeat and memory. However, prolonged elevation of Ca2+ above about 10 microM is deleterious to a cell and can activate apoptosis. In muscle, there is a narrow window of Ca2+ dysregulation in which abnormalities in Ca2+ regulatory proteins can lead to disease, rather than apoptosis. Key proteins in the regulation of muscle Ca2+ are the voltage-dependent, dihydropyridine-sensitive, L-type Ca2+ channels located in the transverse tubule and Ca2+ release channels in the junctional terminal cisternae of the sarcoplasmic reticulum. Abnormalities in these proteins play a key role in malignant hyperthermia (MH), a toxic response to anesthetics, and in central core disease (CCD), a muscle myopathy. Sarco(endo)plasmic reticulum Ca2+ ATPases (SERCAs) return sarcoplasmic Ca2+ to the lumen of the sarcoplasmic reticulum. Loss of SERCA1a Ca2+ pump function is one cause of exercise-induced impairment of the relaxation of skeletal muscle, in Brody disease. Phospholamban expressed in cardiac muscle and sarcolipin expressed in skeletal muscle regulate SERCA activity. Studies with knockout and transgenic mice show that gain of inhibitory function of phospholamban alters cardiac contractility and could be a causal feature in some cardiomyopathies. Calsequestrin, calreticulin, and a series of other acidic, lumenal, Ca2+ binding proteins provide a buffer for Ca2+ stored in the sarcoplasmic reticulum. Overexpression of cardiac calsequestrin leads to cardiomyopathy and ablation of calreticulin alters cardiac development.  相似文献   

4.
The pharmacology of thiazolidinediones (TZDs) seems to be driven not only by activation of peroxisome proliferator-activated receptor-γ (PPARγ), but also by PPARγ-independent effects on mitochondrial function and cellular fuel handling. This study portrayed such actions of the novel hydrophilic TZD compound BLX-1002 and compared them to those of conventional TZDs. Mitochondrial function and fuel handling were examined in disrupted rat muscle mitochondria, intact rat liver mitochondria, and specimens of rat skeletal muscle. BLX-1002 was superior to most other TZDs as an inhibitor of respiratory complex 1 in disrupted mitochondria, but had less effect than any other TZD on oxygen consumption by intact mitochondria and on fuel metabolism by intact tissue. The latter finding was obviously related to the hydrophilic properties of BLX-1002, because high potentials of individual TZDs to shift muscle fuel metabolism from the aerobic into the anaerobic pathway were associated with high ClogP values indicative of high lipophilicity and low hydrophilicity (e.g., % increase in lactate release induced by 10 μmol/l of respective compound: BLX-1002, ClogP 0.39, +10 ± 8%, not significant; pioglitazone, ClogP 3.53, +68 ± 12%, P < 0.001; troglitazone, ClogP 5.58, +157 ± 14%, P < 0.001). The observed specific properties of BLX-1002 could result from relatively strong direct affinity to an unknown mitochondrial target, but limited access to this target. Results suggest 1) that impairment of mitochondrial function and increased anaerobic fuel metabolism are unlikely to account for PPARγ-independent glucose lowering by BLX-1002, and 2) that higher lipophilicity of an individual TZD is associated with stronger acceleration of anaerobic glycolysis.  相似文献   

5.
Calcium uptake in mitochondria from different skeletal muscle types   总被引:5,自引:0,他引:5  
The kinetics of calcium (Ca2+) uptake have been studied in mitochondria isolated from the different types of skeletal muscle. These studies demonstrate that the Ca2+ uptake properties of skeletal mitochondria are similar to those from liver and cardiac mitochondria. The Ca2+ carriers apparently have a high affinity for Ca2+ (Michaelis constants in the microM range). The relationship between Ca2+ uptake and initial Ca2+ concentration (10(-5) to 10(-7) M) is sigmoid in all mitochondria from the different skeletal muscle types suggesting that the uptake process is cooperative. Hill plots reveal coefficients of approximately 2 for mitochondria from fast-twitch muscle and 3.5 for slow-twitch muscle, adding further evidence to the concept that the uptake process is cooperative. An analysis of the potential role of mitochondria in the sequestration of Ca2+ during muscular contraction demonstrated that mitochondria from slow-twitch muscle of both rats and rabbits can potentially account for 100% of the relaxation rate at a low frequency of stimulation (5 Hz). In fast-twitch muscle, the mitochondria appear unable to play a significant role in muscle relaxation, particularly at stimulation frequencies that are considered in the normal physiological range. In summary, it appears that Ca2+ uptake by mitochondria from slow-twitch skeletal muscle has kinetic characteristics which make it important as a potential regulator of Ca2+ within the muscle cell under normal physiological conditions.  相似文献   

6.
心肌细胞发育过程中胞浆内钙稳态的调控   总被引:1,自引:1,他引:0  
Fu JD  Yang HT 《生理学报》2006,58(2):95-103
Ca^2+信号是细胞和各器官生长发育、行使其生理功能的基础,维持心肌细胞的钙稳态是保持正常心脏功能的先决条件。作为在胚胎发育过程中最早出现并行使功能的器官,胚胎期心脏的形态结构发生了明显的变化,泵血功能不断增强,以适应不断增强的机体的生理需求。从胚胎到成年,心肌细胞的功能有非常大的改变,各钙离子通道的表达也发生明显变化。因此,发育早期心肌细胞的钙稳态调控与成熟心肌细胞有明显的不同,在发育过程中引起细胞收缩的Ca^2+来源也有明显的变化。随着分子和细胞生物学研究的发展,以及胚胎干细胞体外分化模型的应用,人们对心肌细胞发育过程中钙稳态的调控有了进一步的认识。本文综述了早期心肌细胞发育过程中胞浆内钙稳态的变化,总结了早期心肌细胞钙稳态调控机制的最新研究进展。  相似文献   

7.
Prolonged physical exercise increased the activity of carnitine palmitoyltransferase I in rat heart and skeletal muscle mitochondria, whereas enzyme sensitivity to inhibition by malonyl-CoA remained unchanged. Nevertheless, inhibition of carnitine palmitoyltransferase I activity by small decreases in pH was attenuated in heart and skeletal muscle mitochondria from exercised animals. Liver enzyme did not suffer any alteration by endurance exercise.  相似文献   

8.
Mitochondria were isolated from the heart and skeletal muscle of rats treated with three consecutive daily doses of 100 000 i.u. of calciol (cholecalciferol; 'vitamin D3'). On the fourth day after the last dose, cardiac necrosis developed. At that time mitochondria isolated from heart displayed a 10-fold higher Ca2+ content and a 6-fold lower respiratory rate with pyruvate-plus-malate as substrate as well as with other NAD-dependent substrates. No decrease in respiratory rate with succinate as substrate was observed. EDTA (5 mM) added to the medium during the isolation procedure restored both the high respiratory rate with pyruvate + malate and the low Ca2+ content of the heart mitochondria. The addition of 1 mM-CaCl2 to the medium in which a healthy (control) rat heart had been homogenized caused the same impairment of the mitochondria as did calciol treatment of the animals. No changes of mitochondria isolated from skeletal muscle were observed in rats treated with calciol. It is concluded that the heart mitochondria in vivo fail to accumulate Ca2+ from the cardiac cell overloaded with Ca2+ as the consequence of calciol treatment. Mitochondrial Ca2+ accumulation occurs during the isolation procedure unless an appropriate amount of chelating agent is added to the homogenization medium. The implication of these findings for the biochemical sequence of events in the calciol-induced cardiac necrosis is discussed.  相似文献   

9.
To evaluate the potential role of monocarboxylate transporter-1 (MCT1) in tissue lactate oxidation, isolated rat subsarcolemmal and interfibrillar cardiac and skeletal muscle mitochondria were probed with an antibody to MCT1. Western blots indicated presence of MCT1 in sarcolemmal membranes and in subsarcolemmal and interfibrillar mitochondria. Minimal cross-contamination of mitochondria by cell membrane fragments was verified by probing for the sarcolemmal protein GLUT-1. In agreement, immunolabeling and electron microscopy showed mitochondrial MCT1 in situ. Along with lactic dehydrogenase, the presence of MCT1 in striated muscle mitochondria permits mitochondrial lactate oxidation and facilitates function of the "intracellular lactate shuttle."  相似文献   

10.
It has been shown that 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase inhibitors (statins) modulate vascular smooth muscle cell functions. In the present study, we investigated the effect of simvastatin on vascular endothelial growth factor (VEGF) release, and the underlying mechanism, in a rat aortic smooth muscle cell line, A10 cells. Administration of simvastatin increased the VEGF level in rat plasma in vivo. In cultured cells, simvastatin significantly stimulated VEGF release in a dose-dependent manner. Simvastatin induced the phosphorylation of p44/p42 MAP kinase but not p38 MAP kinase or SAPK (stress-activated protein kinase)/JNK (c-Jun N-terminal kinase). PD98059 and U-0126, inhibitors of the upstream kinase that activates p44/p42 MAP kinase, significantly reduced the simvastatin-induced VEGF release in a dose-dependent manner. The phosphorylation of p44/p42 MAP kinase induced by simvastatin was reduced by PD98059 or U-0126. Moreover, a bolus injection of PD98059 truly suppressed the simvastatin-increased VEGF level in rat plasma in vivo. These results strongly suggest that p44/p42 MAP kinase plays a role at least partly in the simvastatin-stimulated VEGF release in vascular smooth muscle cells.  相似文献   

11.
To evaluate the presence of components of a putative Intracellular Lactate Shuttle (ILS) in neurons, we attempted to determine if monocarboxylate (e.g. lactate) transporter isoforms (MCT1 and -2) and lactate dehydrogenase (LDH) are coexpressed in neuronal mitochondria of rat brains. Immunohistochemical analyses of rat brain cross-sections showed MCT1, MCT2, and LDH to colocalize with the mitochondrial inner membrane marker cytochrome oxidase (COX) in cortical, hippocampal, and thalamic neurons. Immunoblotting after immunoprecipitation (IP) of mitochondria from brain homogenates supported the histochemical observations by demonstrating that COX coprecipitated MCT1, MCT2, and LDH. Additionally, using primary cultures from rat cortex and hippocampus as well as immunohistochemistry and immunocoprecipitation techniques, we demonstrated that MCT2 and LDH are coexpressed in mitochondria of cultured neurons. These findings can be interpreted to mean that, as in skeletal muscle, neurons contain a mitochondrial lactate oxidation complex (mLOC) that has the potential to facilitate both intracellular and cell-cell lactate shuttles in brain.  相似文献   

12.
An ATPase inhibitor protein was isolated from mitochondria of rat skeletal muscle by alkaline extraction and then was purified, It differed in definitive ways from the ATPase inhibitor protein isolated previously by Ca2+-stripping of submitochondrial particles of rat skeletal muscle. The two ATPase inhibitor proteins were shown to be present together in intact mitochondria.  相似文献   

13.
We measured production of reactive oxygen species by intact mitochondria from rat skeletal muscle, heart, and liver under various experimental conditions. By using different substrates and inhibitors, we determined the sites of production (which complexes in the electron transport chain produced superoxide). By measuring hydrogen peroxide production in the absence and presence of exogenous superoxide dismutase, we established the topology of superoxide production (on which side of the mitochondrial inner membrane superoxide was produced). Mitochondria did not release measurable amounts of superoxide or hydrogen peroxide when respiring on complex I or complex II substrates. Mitochondria from skeletal muscle or heart generated significant amounts of superoxide from complex I when respiring on palmitoyl carnitine. They produced superoxide at considerable rates in the presence of various inhibitors of the electron transport chain. Complex I (and perhaps the fatty acid oxidation electron transfer flavoprotein and its oxidoreductase) released superoxide on the matrix side of the inner membrane, whereas center o of complex III released superoxide on the cytoplasmic side. These results do not support the idea that mitochondria produce considerable amounts of reactive oxygen species under physiological conditions. Our upper estimate of the proportion of electron flow giving rise to hydrogen peroxide with palmitoyl carnitine as substrate (0.15%) is more than an order of magnitude lower than commonly cited values. We observed no difference in the rate of hydrogen peroxide production between rat and pigeon heart mitochondria respiring on complex I substrates. However, when complex I was fully reduced using rotenone, rat mitochondria released significantly more hydrogen peroxide than pigeon mitochondria. This difference was solely due to an elevated concentration of complex I in rat compared with pigeon heart mitochondria.  相似文献   

14.
Functionally intact mitochondria, substantially free of contamination, were isolated from rabbit gastrocnemius muscle after protease digestion and their Ca2+-handling properties examined. When judged by their capacity to retain large Ca2+ loads and the magnitude of basal and Na+-stimulated Ca2+ effluxes, the most suitable isolation method was digestion of finely minced muscle in buffered isoosmotic KCl with low levels (0.4 mg/g) of trypsin or the bacterial protease nagarse, followed by differential centrifugation. Polytron disruption of skeletal muscle in both sucrose- and KCl-based media released mitochondria deficient in cytochrome c. Use of the divalent ion chelator EDTA rather than EGTA in the isolation medium sharply reduced Ca2+-dependent respiratory control and tolerance of the mitochondria to Ca2+ loads, probably by removing Mg2+ essential to membrane integrity. ADP-dependent respiratory control was not altered in mitochondria prepared in an EDTA-containing isolation medium. Purification of mitochondria on a Percoll density gradient did not improve their Ca2+-handling ability despite removal of minor contaminants. Mitochondria prepared by the protease method could accumulate micromole loads of Ca2+/mg while maintaining a low basal Ca2+ efflux. Addition of BSA to the assay medium slightly improved Ca2+ retention but was not essential either during isolation or assay. Ca2+-dependent state 3 respiration was maximal at pH 6.5-7.0 while respiratory control and Ca2+/O were optimal at pH 7.0-7.5. Neither Pi nor oxaloacetate induced Ca2+ release from loaded mitochondria when monitored for 30 min after ruthenium red addition. Na+-stimulated Ca2+ efflux had sigmoidal kinetics with a Hill coefficient of 3. Since skeletal muscle mitochondria can be isolated and assayed in simple media, functional deficiencies of mitochondria from diseased muscle are unlikely to be masked.  相似文献   

15.
Ca2+ ions play a pivotal role in a wide array of cellular processes ranging from fertilization to cell death. In skeletal muscle, a mechanical interaction between plasma membrane dihydropyridine receptors (DHPRs, L-type Ca2+ channels) and Ca2+ release channels (ryanodine receptors, RyR1s) of the sarcoplasmic reticulum orchestrates a complex, bi-directional Ca2+ signaling process that converts electrical impulses in the sarcolemma into myoplasmic Ca2+ transients during excitation-contraction coupling. Mutations in the genes that encode the two proteins that coordinate this electrochemical conversion process (the DHPR and RyR1) result in a variety of skeletal muscle disorders including malignant hyperthermia (MH), central core disease (CCD), multiminicore disease, nemaline rod myopathy, and hypokalemic periodic paralysis. Although RyR1 and DHPR disease mutations are thought to alter excitability and Ca2+ homeostasis in skeletal muscle, only recently has research begun to probe the molecular mechanisms by which these genetic defects lead to distinct clinical and histopathological manifestations. This review focuses on recent advances in determining the impact of MH and CCD mutations in RyR1 on muscle Ca2+ signaling and how these effects contribute to disease-specific aspects of these disorders.  相似文献   

16.
For the study of Ca2+ handling by mitochondria of an insulin secretory tissue, a method for the isolation of functionally intact insulinoma mitochondria is described. The mitochondria had a respiratory control ratio of 6.3 +/- 0.3 with succinate as a substrate. The regulation of extramitochondrial [Ca2+]o concentration by suspensions of insulinoma mitochondria was studied using Ca2+-selective minielectrodes. The mitochondria were found to maintain an ambient free Ca2+ concentration of about 0.3 and 0.9 microM in the absence or presence of Mg2+ (1 mM), respectively. The addition of Na+ resulted in a dose-dependent (half-maximal 4 mM Na+) increase in steady state [Ca2+]o. Na+ accelerated the ruthenium red-induced Ca2+ efflux, suggesting the existence of a Ca2+/2Na+ antiporter, as described in mitochondria of excitable tissues. Experiments were performed to study the effects of various agents on the steady state extramitochondrial free Ca2+. cAMP, 3-isobutyl-1-methylxanthine, and NADH were found to have no effect, whereas phosphoenolpyruvate induced a net Ca2+ efflux, the kinetic of which suggests deleterious effects on mitochondrial functions. A small decrease in pH (0.1 unit) of the incubation buffer resulted in an increase of the extramitochondrial Ca2+ steady state that was reversible upon restoration of the pH to its initial value. In conclusion, insulinoma mitochondria were able to maintain an extramitochondrial [Ca2+]o steady state in the submicromolar range that was markedly influenced by the ionic composition of the incubation medium. Thus, mitochondria may play a role in the regulation of cellular calcium homeostasis and insulin release.  相似文献   

17.
Statins are widely used to prevent cardiovascular diseases. They are well-tolerated, with side-effects mainly seen in skeletal muscle. How these side-effects are caused is unknown. We compared isolated primary mouse skeletal muscle myocytes, C2C12 myotubes and liver HepG2 cells to detect differences that could uncover why statins are toxic in skeletal muscle but less so in the liver. 10μM simvastatin caused a decrease in mitochondrial respiration in the primary mouse myocytes and C2C12 myotubes, but had no effect in the HepG2 cells. Mitochondrial integrity is maintained by multiple signaling pathways. One of these pathways, Igf-1/Akt signaling, is also heavily implicated in causing statin-induced toxicity by upregulating atrogin-1. We found that phosphorylated Akt was reduced in C2C12 myotubes but not in HepG2 cells. HepG2 mitochondrial respiration became susceptible to simvastatin-treatment after Akt inhibition, and mitochondrial respiration was rescued in Igf-1-treated C2C12 myotubes. These results suggest that disruption of Igf-1/Akt signaling is a causative factor in simvastatin-induced mitochondrial dysfunction in C2C12 myotubes, whereas HepG2 cells are protected by maintaining Igf-1/Akt signaling. We conclude that phosphorylation of Akt is a key indicator of susceptibility to statin-induced toxicity. How statins can disrupt Igf-1/Akt signaling is unknown. Statins reduce geranylgeranylation of small GTPases, such as Rap1. Previous studies implicate Rap1 as a link between cAMP/Epac and Igf-1/Akt signaling. Transient transfection of constitutively active Rap1 into C2C12 myotubes led to a partial rescue of simvastatin-induced inhibition of mitochondrial respiration, providing a novel link between signaling and respiration.  相似文献   

18.
Simvastatin is an inhibitor of HMG-CoA reductase used in the treatment of hypercholesterolemia. In the present study simvastatin-induced contraction was observed in rat aortic thoracic rings, this effect increased when the endothelium was removed and when NO synthase was blocked by L-NOARG (3 x 10(-5) M). The contractile effect of simvastatin on intact aortic rings diminished when cyclo-oxygenase was inhibited with indomethacin (10(-5) M). Also in the presence of endothelium, pretreatment with mevalonate (1 mM), the product of HMG-CoA reductase activity, significantly inhibited the contraction. In other experiments carried out on endothelium-removed preparations and in medium containing the calcium antagonist, diltiazem (10(-5) and 10(-6) M), the contraction dose-response curves were significantly reduced and the same happened in the presence of the inhibitor of sarcoplasmic reticulum Ca-2+-ATPase, cyclopiazonic acid (CPA) (3 x 10(-6) M). The results suggest that simvastatin might increase intracellular calcium concentration. This effect could lead to an activation of NO synthase and cyclooxygenase pathways in endothelial cells and to contraction in vascular smooth muscle cells. This rise in Ca2+ concentration could be due to an inhibition of isoprenoid synthesis prevented by mevalonate.  相似文献   

19.
Treatment of rat liver microsomes with 2,5-di(tert-butyl)-1,4-benzohydroquinone caused a dose-related inhibition (Ki congruent to 1 microM) of ATP-dependent Ca2+ sequestration. This was paralleled by a similar impairment of the microsomal Ca2+-stimulated ATPase activity. In contrast, the hydroquinose failed to induce Ca2+ release from Ca2+-loaded liver mitochondria (supplied with ATP), and inhibited neither the mitochondrial F1F0-ATPase nor the Ca2+-stimulated ATPase activity of the hepatic plasma membrane fraction. The inhibition of microsomal Ca2+ sequestration was not associated with any apparent alteration of membrane permeability or loss of other microsomal enzyme activities or modification of microsomal protein thiols. These findings suggest that 2,5-di(tert-butyl)-1,4-benzohydroquinone is a potent and selective inhibitor of liver microsomal Ca2+ sequestration which may be a useful tool in studies of Ca2+ fluxes in intact cells and tissues.  相似文献   

20.
Our previous studies have shown that the HMG-CoA reductase (HCR) inhibitor (HCRI), simvastatin, kills L6 myoblasts by involving Ca2+ mobilization from the Ca2+ pool in the cells but not by influx from extracellular space. More recently, we found that HCRI induced tyrosine phosphorylation of several cellular proteins, followed by apoptotic cell death of L6 myoblasts. The present study was aimed to elucidate the molecular target(s) of these tyrosine phosphorylations induced by HCRI and demonstrated that simvastatin induces tyrosine phosphorylation of phospholipase C (PLC) gamma1. This tyrosine phosphorylation of PLC-gamma1 caused the increment of the intracellular inositol triphosphate (IP3) levels in L6 myoblasts. Pretreatment of the cells with herbimycin A, a specific inhibitor of protein tyrosine kinase, inhibited a simvastatin-induced increase in IP3 level in the cells as well as tyrosine phosphorylation of PLC-gamma1. Interestingly, pretreatment of the cells with U-73122, a specific inhibitor of PLC, prevented simvastatin-induced cell death. Thus, these results strongly suggest that simvastatin-induced tyrosine phosphorylation of PLC-gamma1 plays, at least in part, an important role for the development of simvastatin-induced cell death.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号