首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
1. Large-scale habitat loss is frequently identified with loss of biodiversity, but examples of the direct effect of habitat alterations on changes in vital rates remain rare. Quantifying and understanding the relationship between habitat composition and changes in vital rates, however, is essential for the development of effective conservation strategies. 2. It has been suggested that the decline of woodland caribou Rangifer tarandus caribou populations in North America is precipitated by timber harvesting that creates landscapes of early seral forests. Such habitat changes have altered the predator-prey system resulting in asymmetric predation, where predators are maintained by alternative prey (i.e. apparent competition). However, a direct link between habitat condition and caribou population declines has not been documented. 3. We estimated survival probabilities for the threatened arboreal lichen-feeding ecotype of woodland caribou in British Columbia, Canada, at two different spatial scales. At the broader scale, observed variation in adult female survival rates among 10 distinct populations (range = 0.67-0.93) was best explained by variation in the amount of early seral stands within population ranges and population density. At the finer scale, home ranges of caribou killed by predators had lower proportions of old forest and more mid-aged forest as compared with multi-annual home ranges where caribou were alive. 4. These results are consistent with predictions from the apparent competition hypothesis and quantify direct fitness consequences for caribou following habitat alterations. We conclude that apparent competition can cause rapid population declines and even extinction where changes in species composition occur following large scale habitat change.  相似文献   

2.
Forest logging has contributed to the decline of several woodland caribou populations by causing the fragmentation of mature coniferous stands. Such habitat alterations could be worsened by spruce budworm (SBW) outbreaks. Using 6201 vegetation plots from provincial inventories conducted after the last SBW outbreak (1968–1992) in boreal forests of Québec (Canada), we investigated the influence of SBW‐caused tree defoliation and mortality on understory vegetation layers relevant to woodland caribou and its main predators. We found a positive association between severe outbreaks and the cover of most groups of understory plant species, especially in stands that were dominated by balsam fir before the outbreak, where a high canopy openness particularly benefited relatively fast‐growing deciduous plants. Such increases in early successional vegetation could provide high‐quality forage for moose, which is likely to promote higher wolf densities and increase predation pressure on caribou. SBW outbreaks may thus negatively affect woodland caribou by increasing predation risk, the main factor limiting caribou populations in managed forests. For the near future, we recommend updating the criteria used to define critical caribou habitat to consider the potential impacts of spruce budworm defoliation.  相似文献   

3.
Logging negatively affects the threatened forest-dwelling caribou (Rangifer tarandus caribou) through its positive effects on large predator populations. As recruitment is a key component of caribou population growth rate, we assessed calving rates of females and calf survival rates during the most critical period for calf survival, the calving period. We also identified causes of calf mortality and investigated the influence of predation risk, food availability, and human disturbance on habitat selection of females during the calving period at both the home-range and forest stand scales. We hypothesized that caribou should display habitat selection patterns to reduce predation risk at both scales. Using telemetry, we followed 22 females and their calves from 2004 to 2007 in a highly managed study area in Québec, Canada. Most females (78.5 ± 0.05 [SE]) gave birth each year, but only 46.3 ± 8.0% of the calves survived during the first 50 days following birth, and 57.3 ± 14.9% of them died from black bear (Ursus americanus) predation. At the home-range scale, caribou selected calving areas located at upper slope positions and avoided high road density areas. Surprisingly, they also selected the forested habitat type having the lowest lateral cover (mixed and deciduous stands) while avoiding the highest cover (regenerating conifer stands). At the forest stand scale, caribou selected areas located at relatively high elevations and with a lower basal area of black spruce trees. The selection of upper slope positions likely favored spatial segregation between calving females and wolves (Canis lupus) but not black bear. Our results suggest that calving females used areas from which they could visually detect approaching predators. While wolf avoidance appeared to be effective in a highly managed landscape, caribou did not appear to have adjusted their predator avoidance strategy to the recent increase in black bear abundance, who have benefited from increased food abundance. This situation requires focused attention from wildlife managers as logging activities are progressing towards the north within the core of forest-dwelling caribou range. © 2011 The Wildlife Society.  相似文献   

4.
Population increases of primary prey can negatively impact alternate prey populations via demographic and behavioural responses of a shared predator through apparent competition. Seasonal variation in prey selection patterns by predators also can affect secondary and incidental prey by reducing spatial separation. Global warming and landscape changes in Alberta's bitumen sands have resulted in prey enrichment, which is changing the large mammal predator–prey system and causing declines in woodland caribou Rangifer tarandus caribou populations. We assessed seasonal patterns of prey use and spatial selection by wolves Canis lupus in two woodland caribou ranges in northeastern Alberta, Canada, that have undergone prey enrichment following recent white‐tailed deer Odocoileus virginianus invasion. We determined whether risk of predation for caribou (incidental prey) and the proportion of wolf‐caused‐caribou mortalities varied with season. We found that wolves showed seasonal variation in primary prey use, with deer and beaver Castor canadensis being the most common prey items in wolf diet in winter and summer, respectively. These seasonal dietary patterns were reflected in seasonal wolf spatial resource selection and resulted in contrasting spatial relationships between wolves and caribou. During winter, wolf selection for areas used by deer maintained strong spatial separation between wolves and caribou, whereas wolf selection for areas used by beaver in summer increased the overlap with caribou. Changing patterns in wolf resource selection were reflected by caribou mortality patterns, with 76.2% of 42 adult female caribou mortalities occurring in summer. Understanding seasonal patterns of predation following prey enrichment in a multiprey system is essential when assessing the effect of predation on an incidental prey species. Our results support the conclusion that wolves are proximately responsible for woodland caribou population declines throughout much of their range.  相似文献   

5.
Species recovery is often impeded by inadequate knowledge on mechanisms of community interactions that cause and exacerbate species endangerment. Caribou and wild reindeer Rangifer tarandus are declining in many regions of their circumpolar range likely because of human‐induced landscape changes. In general, their niche specialization enables Rangifer to survive in nutrient‐poor habitats spatially separated from other ungulates and their shared predators. Research has indicated that shifts in primary prey distribution following human landscape alteration may result in spatial overlap with Rangifer. We studied overlap relationships of woodland caribou R. t. caribou and moose Alces alces, quantified by their differential use of environmental resources, and evaluated the role of human landscape alteration in spatial separation in south‐western Canada. Anthropogenic conversion of old‐growth forests to early seral stands is hypothesized to decrease the spatial separation between caribou and moose, the dominant prey for wolves Canis lupus, contributing to increased caribou mortality. Redundancy analysis (RDA) was first used to examine coarse scale resource separation across our study area. Second, at a finer spatial scale, we used logistic regression to compare resource‐ and spatial separation of sympatric pairs of 17 moose and 17 caribou. Finally, we tested if the frequency of predator‐caused caribou mortalities was higher in regions with higher moose resource use. Although environmental resource separation was strong at the coarser scale, we observed substantial spatial overlap (>50%) at the finer scale. In summer we reported a significant positive relationship between spatial overlap of moose and caribou and the degree of human landscape alteration. Most importantly, locations of caribou mortalities corresponded with areas of high resource use by moose in summer. Thus, consistent with the spatial separation hypothesis, our research suggests that early successional forest stages may decrease spatial separation between caribou and moose, resulting in increased mortality risk for threatened caribou.  相似文献   

6.
Although prey species typically respond to the most limiting factors at coarse spatiotemporal scales while addressing biological requirements at finer scales, such behaviour may become challenging for species inhabiting human altered landscapes. We investigated how woodland caribou, a threatened species inhabiting North-American boreal forests, modified their fine-scale movements when confronted with forest management features (i.e. clearcuts and roads). We used GPS telemetry data collected between 2004 and 2010 on 49 female caribou in a managed area in Québec, Canada. Movements were studied using a use – availability design contrasting observed steps (i.e. line connecting two consecutive locations) with random steps (i.e. proxy of immediate habitat availability). Although caribou mostly avoided disturbances, individuals nonetheless modulated their fine-scale response to disturbances on a daily and annual basis, potentially compromising between risk avoidance in periods of higher vulnerability (i.e. calving, early and late winter) during the day and foraging activities in periods of higher energy requirements (i.e. spring, summer and rut) during dusk/dawn and at night. The local context in which females moved was shown to influence their decision to cross clearcut edges and roads. Indeed, although females typically avoided crossing clearcut edges and roads at low densities, crossing rates were found to rapidly increase in greater disturbance densities. In some instance, however, females were less likely to cross edges and roads as densities increased. Females may then be trapped and forced to use disturbed habitats, known to be associated with higher predation risk. We believe that further increases in anthropogenic disturbances could exacerbate such behavioural responses and ultimately lead to population level consequences.  相似文献   

7.
Abstract. Spatial and temporal variations in fire frequency in the boreal forest of Wood Buffalo National Park (WBNP) were assessed using forest stand age, fire scar and historical data. I test the hypotheses that (1) fire frequency is higher in jack pine forests and aspen forests than in black spruce forests and white spruce forests, (2) these variations in fire frequency can be related to the mean waterbreak distance (MWD) around a site and (3) fire frequency has changed over the past 300 years. The fire cycles (the time required to burn an area equal in size to the entire study area) in jack pine forests (39 years) and in aspen forests (39 years) were significantly shorter than those in black spruce forests (78 years) and in white spruce forests (96 years). The length of the fire cycle varies inversely with the MWD around a site, and the MWD was significantly higher in jack pine and aspen forests than in black or white spruce forests. It is suggested that covariations between soil type and the MWD influence, respectively, variations in forest dominant and fire frequency. A change in fire frequency at 1860 was apparent in the fire history for all of WBNP, the black spruce dominated stands, and the near and medium MWD classes. The fire cycle estimates for these classes were all significantly shorter during the period 1750 to 1859 (fire cycles = 25–49 years) than they were in the period 1860 to 1989 (fire cycles = 59–89 years). The possible roles of changes in climate and aboriginal burning practices in causing the temporal change in fire frequency are discussed.  相似文献   

8.
Examining ecological processes across spatial scales is crucial as animals select and use resources at different scales. We carried out field surveys in September 2005, March–September 2006, and April 2007, and used ecological niche factor analysis to determine habitat preferences for the giant panda (Ailuropoda melanoleuca) across 4 spatial scales: daily movement, core range, home range, and seasonal elevational migration. We found that giant pandas prefer conifer forest and mixed forest at higher than average elevation (2,157 m) of study area in the 4 scale models. However, we also observed significant scale differences in habitat selection. The strength of habitat preference increased with scale for the 2 disturbed forests (sparse forest and fragmented forest), and decreased with scale for 0–30° gentle slope and south- and north-facing aspect. Furthermore, habitat suitability patterns were scale-dependent. These findings highlight the need to determine species–environment associations across multiple scales for habitat management and species conservation. © 2012 The Wildlife Society.  相似文献   

9.
Habitat selection is a multi‐level, hierarchical process that should be a key component in the balance between food acquisition and predation risk avoidance (food–predation trade‐off). However, to date, studies have not fully elucidated how fine‐ and broad‐scale habitat decisions by individual prey can help balance food versus risk. We studied broad‐scale habitat selection by Newfoundland caribou Rangifer tarandus, focusing on trade‐offs between predation risk versus access to forage during the calving and post‐calving period. We improved traditional measures of habitat availability by incorporating fine‐scale movement patterns of caribou into the availability kernel, thus enabling separation of broad and fine scales of selection. Remote sensing and field surveys served to create a spatio‐temporal model of forage availability, whereas GPS telemetry locations from 66 black bears Ursus americanus and 59 coyotes Canis latrans provided models of predation risk. We then used GPS telemetry locations from 114 female caribou to assess food–predation trade‐offs through the prism of our refined model of caribou habitat availability. We noted that migratory movements of caribou were oriented mainly towards habitats with abundant forage and lower risk of bear and (to a lesser extent) coyote encounter. These findings were generally consistent across caribou herds and would not have been evident had we used traditional methods instead of our refined model when estimating habitat availability. We interpret these findings in the context of stereotypical migratory behaviour observed in Newfoundland caribou, which occurs despite the extirpation of wolves Canis lupus nearly a century ago. We submit that caribou are able to balance food acquisition against predation risk using a complex set of factors involving both finer and broader scale selection. Accordingly, our study provides a strong argument for using refined habitat availability estimates when assessing food–predation trade‐offs.  相似文献   

10.
Habitat selection can be considered as a hierarchical process in which animals satisfy their habitat requirements at different ecological scales. Theory predicts that spatial and temporal scales should co‐vary in most ecological processes and that the most limiting factors should drive habitat selection at coarse ecological scales, but be less influential at finer scales. Using detailed location data on roe deer Capreolus capreolus inhabiting the Bavarian Forest National Park, Germany, we investigated habitat selection at several spatial and temporal scales. We tested 1) whether time‐varying patterns were governed by factors reported as having the largest effects on fitness, 2) whether the trade‐off between forage and predation risks differed among spatial and temporal scales and 3) if spatial and temporal scales are positively associated. We analysed the variation in habitat selection within the landscape and within home ranges at monthly intervals, with respect to land‐cover type and proxys of food and cover over seasonal and diurnal temporal scales. The fine‐scale temporal variation follows a nycthemeral cycle linked to diurnal variation in human disturbance. The large‐scale variation matches seasonal plant phenology, suggesting food resources being a greater limiting factor than lynx predation risk. The trade‐off between selection for food and cover was similar on seasonal and diurnal scale. Habitat selection at the different scales may be the consequence of the temporal variation and predictability of the limiting factors as much as its association with fitness. The landscape of fear might have less importance at the studied scale of habitat selection than generally accepted because of the predator hunting strategy. Finally, seasonal variation in habitat selection was similar at the large and small spatial scales, which may arise because of the marked philopatry of roe deer. The difference is supposed to be greater for wider ranging herbivores.  相似文献   

11.
Abstract: Studies of space use and habitat selection of endangered species are useful for identifying factors that influence fitness of individuals and viability of populations. However, there is a lack of published information regarding these behaviors for the federally threatened Louisiana black bear (Ursus americanus luteolus). We documented space use and habitat selection for 28 female black bears in 2 subpopulations of the Tensas River Basin population in northeast Louisiana, USA. The Tensas subpopulation inhabits a relatively large (>300-km2) contiguous area of bottomland hardwood forest, whereas the Deltic subpopulation exists mainly in 2 small (<7-km2) forested patches surrounded by an agricultural matrix. Females on Deltic maintained smaller seasonal and annual home ranges than females on Tensas (all P < 0.04), except for females with cubs during spring. On Tensas, females with cubs maintained smaller home ranges than females without cubs during spring (P = 0.01), but we did not detect this difference on Deltic or in other seasons. Females on Tensas and Deltic exhibited differences in habitat selection when establishing home ranges and within home ranges (P < 0.001). Deltic females selected mature bottomland hardwood forests and avoided agricultural habitats at both spatial scales. Tensas females selected a mixture of swamps, mature and regenerating forests, and exhibited variation in selection across scale, season, and reproductive status. We suggest that differences in space use and habitat selection between Tensas and Deltic are at least partially due to habitat differences at the landscape (i.e., amount of forested habitat) and patch (i.e., food availability) scales. Our results contribute to the understanding of factors that influence space use and habitat selection by black bears and provide specific information on habitat types selected by Louisiana black bears to agencies involved in habitat protection and restoration for this threatened subspecies.  相似文献   

12.
Many animal species exhibit broad-scale latitudinal or longitudinal gradients in their response to biotic and abiotic components of their habitat. Although knowing the underlying mechanism of these patterns can be critical to the development of sound measures for the preservation or recovery of endangered species, few studies have yet identified which processes drive the existence of geographical gradients in habitat selection. Using extensive spatial data of broad latitudinal and longitudinal extent, we tested three hypotheses that could explain the presence of geographical gradients in landscape selection of the endangered boreal woodland caribou (Rangifer tarandus caribou) during winter in Eastern Canadian boreal forests: 1) climate-driven selection, which postulates that geographic gradients are surrogates for climatic gradients; 2) road-driven selection, which proposes that boreal caribou adjust their selection for certain habitat classes as a function of proximity to roads; and 3) an additive effect of both roads and climate. Our data strongly supported road-driven selection over climate influences. Thus, direct human alteration of landscapes drives boreal caribou distribution and should likely remain so until the climate changes sufficiently from present conditions. Boreal caribou avoided logged areas two-fold more strongly than burnt areas. Limiting the spread of road networks and accounting for the uneven impact of logging compared to wildfire should therefore be integral parts of any habitat management plan and conservation measures within the range of the endangered boreal caribou. The use of hierarchical spatial models allowed us to explore the distribution of spatially-structured errors in our models, which in turn provided valuable insights for generating alternative hypotheses about processes responsible for boreal caribou distribution.  相似文献   

13.
Climate warming and drying is associated with increased wildfire disturbance and the emergence of megafires in North American boreal forests. Changes to the fire regime are expected to strongly increase combustion emissions of carbon (C) which could alter regional C balance and positively feedback to climate warming. In order to accurately estimate C emissions and thereby better predict future climate feedbacks, there is a need to understand the major sources of heterogeneity that impact C emissions at different scales. Here, we examined 211 field plots in boreal forests dominated by black spruce (Picea mariana) or jack pine (Pinus banksiana) of the Northwest Territories (NWT), Canada after an unprecedentedly large area burned in 2014. We assessed both aboveground and soil organic layer (SOL) combustion, with the goal of determining the major drivers in total C emissions, as well as to develop a high spatial resolution model to scale emissions in a relatively understudied region of the boreal forest. On average, 3.35 kg C m?2 was combusted and almost 90% of this was from SOL combustion. Our results indicate that black spruce stands located at landscape positions with intermediate drainage contribute the most to C emissions. Indices associated with fire weather and date of burn did not impact emissions, which we attribute to the extreme fire weather over a short period of time. Using these results, we estimated a total of 94.3 Tg C emitted from 2.85 Mha of burned area across the entire 2014 NWT fire complex, which offsets almost 50% of mean annual net ecosystem production in terrestrial ecosystems of Canada. Our study also highlights the need for fine‐scale estimates of burned area that represent small water bodies and regionally specific calibrations of combustion that account for spatial heterogeneity in order to accurately model emissions at the continental scale.  相似文献   

14.
Behavioural strategies may have important fitness, ecological and evolutionary consequences. In woodland caribou, human disturbances are associated with higher predation risk. Between 2004 and 2011, we investigated if habitat selection strategies of female caribou towards disturbances influenced their calf’s survival in managed boreal forest with varying intensities of human disturbances. Calf survival was 53 % and 43 % after 30 and 90 days following birth, respectively, and 52 % of calves that died were killed by black bear. The probability that a female lose its calf to predation was not influenced by habitat composition of her annual home range, but decreased with an increase in proportion of open lichen woodland within her calving home range. At the local scale, females that did not lose their calf displayed stronger avoidance of high road density areas than females that lost their calf to predation. Further, females that lost their calf to predation and that had a low proportion of ≤5-year-old cutovers within their calving home range were mostly observed in areas where these young cutovers were locally absent. Also, females that lost their calf to predation and that had a high proportion of ≤5-year-old cutovers within their calving home range were mostly observed in areas with a high local density of ≤5-year-old cutovers. Our study demonstrates that we have to account for human-induced disturbances at both local and regional scales in order to further enhance effective caribou management plans. We demonstrate that disturbances not only impact spatial distribution of individuals, but also their reproductive success.  相似文献   

15.
It is widely believed that spatial scale affects habitat selection, and should influence management options, especially for species with wide geographic distribution or large territories. Eurasian badger habitat selection has been well studied throughout most of its European distribution range, but never at multiple spatial scales. We used compositional analysis to assess habitat selection of Eurasian badgers in southern Portugal at four spatial scales (1, 4, 25, and 100 km2). We assessed habitat use from setts, latrines and footprints presence, and road kills. Oak woodlands with understorey were selected at all scales, being the most preferred habitat at 3 scales (1, 4, and 100 km2). Pastures were most selected at the scale of the 25 km2 cell, but their use was not significantly different from oak woodland with understorey. Shrubs and pastures were also secondly important at the majority of scales. Contrary to findings at northern latitudes, deciduous forests decreased in importance as cell size increased. In the highly humanized and fragmented landscape of southern Portugal, Eurasian badgers are selecting the matrix of oak woodlands interspersed with patches of pastures, shrubs and riparian vegetation. In these oak woodlands, scale does not have a marked effect. Management for badgers should provide, for at least, 30% of oak woodland cover at all scales. Our study illustrates the across-scale importance of maintaining the historically human altered, sustainable and unique landscape and land use system – the montado.  相似文献   

16.
Previous studies of the effects of fur trapping on marten populations have not considered habitat variation and how trappers use available habitat. We investigated the behavior of fur trappers with respect to roads, waterways, and the forest habitats on trap lines, using registered trap lines in northern Ontario as a study system. The objectives of this study were to 1) develop models for predicting trap location based on access and habitat features, 2) determine whether trappers target the same habitat preferred by American marten, and 3) investigate effects of spatial resolution on predictive models, using a geographic information system (GIS) for coarse resolution variables and direct forest mensuration for fine resolution variables. Distance to roads and water were by far the most influential factors in logistic models for predicting trap presence, accounting for 51.2–61.7% of the observed deviance. At a coarse spatial resolution, trappers selected sites that were close to vehicular access, and in older mixed wood forest stands. Similarly, at a coarse resolution, marten selected old stands, but dominated by coniferous trees. At a finer spatial resolution, trappers selected sites with high basal area of trees, pronounced proportion of black spruce, high canopy cover, and high density of coarse woody debris, consistent with previous studies on marten habitat selection at a fine resolution. Although coarse resolution models are easily applicable because of the wide availability of GIS land cover data, fine resolution models had greater predictive power when considering habitat variables. By quantifying trapper behaviors, these results suggest that the effectiveness of marten sanctuaries used in forest management depend not only on the age and species composition of forest stands left unlogged, but also on the degree to which they are accessible to trappers. © 2012 The Wildlife Society.  相似文献   

17.
The ideal free distribution assumes that animals select habitats that are beneficial to their fitness. When the needs of dependent offspring differ from those of the parent, ideal habitat selection patterns could vary with the presence or absence of offspring. We test whether habitat selection depends on reproductive state due to top‐down or bottom‐up influences on the fitness of woodland caribou (Rangifer tarandus caribou), a threatened, wide‐ranging herbivore. We combined established methods of fitting resource and step selection functions derived from locations of collared animals in Ontario with newer techniques, including identifying calf status from video collar footage and seasonal habitat selection analysis through latent selection difference functions. We found that females with calves avoided predation risk and proximity to roads more strongly than females without calves within their seasonal ranges. At the local scale, females with calves avoided predation more strongly than females without calves. Females with calves increased predation avoidance but not selection for food availability upon calving, whereas females without calves increased selection for food availability across the same season. These behavioral responses suggest that habitat selection by woodland caribou is influenced by reproductive state, such that females with calves at heel use habitat selection to offset the increased vulnerability of their offspring to predation risk.  相似文献   

18.
Conservation strategies for populations of woodland caribou Rangifer tarandus caribou frequently emphasize the importance of predator–prey relationships and the availability of lichen-rich late seral forests, yet the importance of summer diet and forage availability to woodland caribou survival is poorly understood. In a recent article, Wittmer et al. (Can J Zool 83:407–418, 2005b) concluded that woodland caribou in British Columbia were declining as a consequence of increased predation that was facilitated by habitat alteration. Their conclusion is consistent with the findings of other authors who have suggested that predation is the most important proximal factor limiting woodland caribou populations (Bergerud and Elliot in Can J Zool 64:1515–1529, 1986; Edmonds in Can J Zool 66:817–826, 1988; Rettie and Messier in Can J Zool 76:251–259, 1998; Hayes et al. in Wildl Monogr 152:1–35, 2003). Wittmer et al. (Can J Zool 83:407–418, 2005b) presented three alternative, contrasting hypotheses for caribou decline that differed in terms of predicted differences in instantaneous rates of increase, pregnancy rates, causes of mortality, and seasonal vulnerability to mortality (Table 1, p 258). These authors rejected the hypotheses that food or an interaction between food and predation was responsible for observed declines in caribou populations; however, the use of pregnancy rate, mortality season and cause of mortality to contrast the alternative hypotheses is problematic. We argue here that the data employed in their study were insufficient to properly evaluate a predation-sensitive foraging hypothesis for caribou decline. Empirical data on seasonal forage availability and quality and plane of nutrition of caribou would be required to test the competing hypotheses. We suggest that methodological limitations in studies of woodland caribou population dynamics prohibit proper evaluation of the mechanism of caribou population declines and fail to elucidate potential interactions between top-down and bottom-up effects on populations. An erratum to this article can be found at  相似文献   

19.
Canada's federal recovery strategy for boreal woodland caribou (Rangifer tarandus caribou) classifies areas burned by forest fire as disturbed habitat. This assignment of fire as a disturbance has potential economic and social implications across Canada, and influences plans and actions to achieve caribou conservation and recovery. Previous researchers have reported caribou avoid burned habitat, but these studies did not typically consider unburned residual patches within fire perimeters. Additionally, the implications of burned habitat on individual caribou survival is unclear. We examined resource selection by boreal woodland caribou of burns, and unburned residual patches, using global positioning system (GPS) locations for 201 caribou across 6 caribou populations in Alberta, Canada. We also examined if burned habitat affected the survival of adult female caribou. Caribou avoided burns and unburned residual patches. Increased use of burned habitats, however, did not lower the survival of adult caribou. Collectively, these results provide evidence to support current assertions that burns, and the embedded unburned residual patches are not preferred caribou habitat and increase our understanding of the implications of forest fire for caribou vital rates. Our investigation offers important information about the role of forest fire in caribou ecology and enhances the identification of disturbed habitat under recovery strategy guidelines to effectively address caribou population declines. © 2021 The Wildlife Society.  相似文献   

20.
Anthropogenic landscape change (i.e., disturbance) is recognized as an important factor in the decline and extirpation of wildlife populations. Understanding and monitoring the relationship between wildlife distribution and disturbance is necessary for effective conservation planning. Many studies consider disturbance as a covariate explaining wildlife behavior. However, we propose that there are several advantages to considering the spatial relationship between disturbance and wildlife directly using utilization distributions (UDs), including objective assessment of the spatially explicit overlap between wildlife and disturbance, and the ability to track trends in this relationship over time. Here, we examined how central mountain woodland caribou (Rangifer tarandus caribou) distribution changed over time in relation to (i) anthropogenic disturbance, baseline range (defined using telemetry data from 1998 to 2005), and alpine habitat; and (ii) interannual climate variation (North Pacific Index; NPI). We developed seasonal UDs for caribou in west‐central Alberta and east‐central British Columbia, Canada, monitored with GPS collars between 1998 and 2013. We mapped the cumulative annual density of disturbance features within caribou range and used indices of overlap to determine the spatial relationship and trend between caribou UDs, anthropogenic disturbance, baseline range, alpine habitat, and the NPI. Anthropogenic disturbance increased over time, but the overlap between caribou UDs and disturbance did not. Caribou use of alpine habitat during spring, fall, and late winter increased over time, concurrent with a decrease in use of baseline range. Overlap between caribou UDs and disturbance increased during spring and fall following relatively cold, snowy winters (high NPI), but overall, climate did not explain changes in caribou distribution over time. We provide evidence supporting the hypothesis that caribou populations adjust their spatial distribution in relation to anthropogenic landscape change. Our findings could have implications for population persistence if distributional shifts result in greater use of alpine habitat during winter. Monitoring long‐term changes in the distribution of populations is a valuable component of conservation planning for species at risk in disturbed landscapes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号