首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The hypothesis tested was that there are significant transient changes in the cardiovascular variables after rapid onset and release of mild lower body negative pressure (LBNP, -20 mmHg), even in experimental situations where there is no detectable change in steady-state values. Twelve subjects participated in the study. Heart rate, stroke volume (SV), cardiac output, mean arterial pressure (MAP), total peripheral resistance (TPR), acral and nonacral skin blood flow, and blood flow velocity in the brachial artery were continuously recorded during the pre-LBNP period (0-120 s), during LBNP (120-420 s), and during the post-LBNP period (420-600 s). The main finding was that MAP is transiently but strongly affected by rapid changes in LBNP as small as -20 mmHg. There was also a characteristic asymmetry in cardiovascular responses to the onset and release of LBNP, particularly in the responses in SV. The transient changes in MAP indicate that the neural responses that affect TPR are not fast enough to compensate for the rapid changes in LBNP. In this case, the arterial baroreceptors will be activated as well as the low-pressure baroreceptors that sense central venous pressure. This must be taken into consideration in future discussions of the results of LBNP protocols.  相似文献   

2.
The aim of this study was to assess carotid baroreflex responses during graded lower body negative pressure (LBNP). In 12 healthy subjects (age 29+/-4 years) we applied sinusoidal neck suction (0 to -30 mmHg) at 0.1 Hz to examine the sympathetic modulation of the heart and blood vessels and at 0.2 Hz to assess the effect of parasympathetic stimulation on the heart. Responses to neck suction were determined as the change in spectral power of RR-interval and blood pressure from baseline values. Measurements were carried out during progressive applications (0 to -50 mmHg) of LBNP. Responses to 0.1 and 0.2 Hz carotid baroreceptor stimulations during low levels of LBNP (-10 mmHg) were not significantly different from those measured during baseline. At higher levels of LBNP, blood pressure responses to 0.1 Hz neck suction were significantly enhanced, but with no significant change in the RR-interval response. LBNP at all levels had no effect on the RR-interval response to 0.2 Hz neck suction. The unchanged responses of RR-interval and blood pressure to neck suction during low level LBNP at -10 mmHg suggest no effect of cardiopulmonary receptor unloading on the carotid arterial baroreflex, since this LBNP level is considered to stimulate cardiopulmonary but not arterial baroreflexes. Enhanced blood pressure responses to neck suction during higher levels of LBNP are not necessarily the result of a reflex interaction but may serve to protect the circulation from fluctuations in blood pressure while standing.  相似文献   

3.
To investigate the interaction of thermal reflexes and baroreflexes in the control of the peripheral veins, we studied in supine humans the effects of lower body negative pressure (LBNP) and neck suction (NS) on forearm veins at ambient temperatures (Ta) of 18, 28, and 37 degrees C. Forearm venous volume (FVV)-venous pressure (FVP) relations (forearm venous capacitance) on six subjects showed an increase from 18 through 28 to 37 degrees C (P less than 0.001). Heart rate increased (P less than 0.001) and forearm venous capacitance decreased (P less than 0.001) in proportion to the level of LBNP applied from 20 to 50 Torr at all Ta. At 50 Torr LBNP, FVV at 30 cmH2O, FVP decreased from control values of 2.5, 3.8, and 4.4 to 1.6, 2.7, and 3.4 ml/100 ml at 18, 28, and 37 degrees C, respectively. We also studied venomotor responses using the occluded limb technique. Although LBNP caused venoconstriction, NS applied either alone or during LBNP produced no change in venomotor tone. Therefore we concluded that carotid baroreceptors play little role in reflex venomotor adjustments. Since changes in mean arterial and pulse pressures during LBNP did not account for the observed venomotor responses, we concluded that low-pressure baroreceptors initiate significant venoconstrictor reflexes over a wide range of Ta.  相似文献   

4.
The application of lower body negative pressure (LBNP) is very useful method for simulation of +Gz stress and for evaluation of orthostatic reaction. The different physiological changes that occur during LBNP test and +Gz acceleration test are similar. Lategola and Trent found that supine LBNP exposure at the level of -50 mmHg may be equivalent to +2Gz in producing the changes of heart rate (HR). Polese and coworkers compared hemodynamic changes occurring during upright and supine LBNP at the levels to -70 mmHg with identical measurements made during accelerations to +2Gz, +3Gz, and +4Gz in the same subjects. They noted for example that HR changes during upright LBNP exceeded HR supine levels. Peak values of HR during +3Gz and +4Gz significantly exceeded HR levels during both kinds of LBNP, but HR values at +2Gz were equivalent to those at -40 mmHg of upright and -70 mmHg of supine LBNP. So, the present study was undertaken to evaluate adaptating responses to LBNP stimulus at the level of -60 mmHg, regulatory mechanisms of the circulatory system (central and peripheral) and to look for the possibility of +Gz tolerance prediction based on the changes of some hemodynamic parameters during LBNP.  相似文献   

5.
Postural tachycardia syndrome (POTS) is characterized by excessive increases in heart rate (HR) without hypotension during orthostasis. The relationship between the tachycardia and anxiety is uncertain. Therefore, we tested whether the HR response to orthostatic stress in POTS is primarily related to psychological factors. POTS patients (n = 14) and healthy controls (n = 10) underwent graded venous pooling with lower body negative pressure (LBNP) to -40 mmHg while wearing deflated antishock trousers. "Sham" venous pooling was performed by 1) trouser inflation to 5 mmHg during LBNP and 2) vacuum pump activation without LBNP. HR responses to mental stress were also measured in both groups, and a questionnaire was used to measure psychological parameters. During LBNP, HR in POTS patients increased 39 +/- 5 beats/min vs. 19 +/- 3 beats/min in control subjects at -40 mmHg (P < 0.01). LBNP with trouser inflation markedly blunted the HR responses in the patients (9 +/- 2 beats/min) and controls (2 +/- 1 beats/min), and there was no HR increase during vacuum application without LBNP in either group. HR responses during mental stress were not different in the patients and controls (18 +/- 2 vs. 19 +/- 1 beats/min; P > 0.6). Anxiety, somatic vigilance, and catastrophic cognitions were significantly higher in the patients (P < 0.05), but they were not related to the HR responses during LBNP or mental stress (P > 0.1). These results suggest that the HR response to orthostatic stress in POTS patients is not caused by anxiety but that it is a physiological response that maintains arterial pressure during venous pooling.  相似文献   

6.
Bed rest reduces orthostatic tolerance. Despite decades of study, the cause of this phenomenon remains unclear. In this report we examined hemodynamic and sympathetic nerve responses to graded lower body negative pressure (LBNP) before and after 24 h of bed rest. LBNP allows for baroreceptor disengagement in a graded fashion. We measured heart rate (HR), cardiac output (HR x stroke volume obtained by echo Doppler), and muscle sympathetic nerve activity (MSNA) during a progressive and graded LBNP paradigm. Negative pressure was increased by 10 mmHg every 3 min until presyncope or completion of -60 mmHg. After bed rest, LBNP tolerance was reduced in 11 of 13 subjects (P <.023), HR was greater (P <.002), cardiac output was unchanged, and the ability to augment MSNA at high levels of LBNP was reduced (rate of rise for 30- to 60-mmHg LBNP before bed rest 0.073 bursts x min(-1) x mmHg(-1); after bed rest 0.035 bursts x min(-1) x mmHg(-1); P < 0.016). These findings suggest that 24 h of bed rest reduces sympathetic nerve responses to LBNP.  相似文献   

7.
Recent data indicate that bilateral carotid sinus denervation in patients results in a chronic impairment in the rapid reflex control of blood pressure during orthostasis. These findings are inconsistent with previous human experimental investigations indicating a minimal role for the carotid baroreceptor-cardiac reflex in blood pressure control. Therefore, we reexamined arterial baroreflex [carotid (CBR) and aortic baroreflex (ABR)] control of heart rate (HR) using newly developed methodologies. In 10 healthy men, 27 +/- 1 yr old, an abrupt decrease in mean arterial pressure (MAP) was induced nonpharmacologically by releasing a unilateral arterial thigh cuff (300 Torr) after 9 min of resting leg ischemia under two conditions: 1) ABR and CBR deactivation (control) and 2) ABR deactivation. Under control conditions, cuff release decreased MAP by 13 +/- 1 mmHg, whereas HR increased 11 +/- 2 beats/min. During ABR deactivation, neck suction was gradually applied to maintain carotid sinus transmural pressure during the initial 20 s after cuff release (suction). This attenuated the increase in HR (6 +/- 1 beats/min) and caused a greater decrease in MAP (18 +/- 2 mmHg, P < 0.05). Furthermore, estimated cardiac baroreflex responsiveness (DeltaHR/DeltaMAP) was significantly reduced during suction compared with control conditions. These findings suggest that the carotid baroreceptors contribute more importantly to the reflex control of HR than previously reported in healthy individuals.  相似文献   

8.
During prolonged, static carotid baroreceptor stimulation by neck suction (NS) in seated humans, heart rate (HR) decreases acutely and thereafter gradually increases. This increase has been explained by carotid baroreceptor adaptation and/or buffering by aortic reflexes. During a posture change from seated to supine (Sup) with similar carotid stimulation, however, the decrease in HR is sustained. To investigate whether this discrepancy is caused by changes in central blood volume, we compared (n = 10 subjects) the effects of 10 min of seated NS (adjusted to simulate carotid stimulation of a posture change), a posture change from seated to Sup, and the same posture change with left atrial (LA) diameter maintained unchanged by lower body negative pressure (Sup + LBNP). During Sup, the prompt decreases in HR and mean arterial pressure (MAP) were sustained. HR decreased similarly within 30 s of NS (65 +/- 2 to 59 +/- 2 beats/min) and Sup + LBNP (65 +/- 2 to 58 +/- 2 beats/min) and thereafter gradually increased to values of seated. MAP decreased similarly within 5 min during Sup + LBNP and NS (by 7 +/- 1 to 9 +/- 1 mmHg) and thereafter tended to increase toward values of seated subjects. Arterial pulse pressure was increased the most by Sup, less so by Sup + LBNP, and was unchanged by NS. LA diameter was only increased by Sup. In conclusion, static carotid baroreceptor stimulation per se causes the acute (<30 s) decrease in HR during a posture change from seated to Sup, whereas the central volume expansion (increased LA diameter and/or arterial pulse pressure) is pivotal to sustain this decrease. Thus the effects of central volume expansion override adaptation of the carotid baroreceptors and/or buffering of aortic reflexes.  相似文献   

9.
Recent studies indicate that nonhypotensive orthostatic stress in humans causes reflex vasoconstriction in the forearm but not in the calf. We used microelectrode recordings of muscle sympathetic nerve activity (MSNA) from the peroneal nerve in conscious humans to determine if unloading of cardiac baroreceptors during nonhypotensive lower body negative pressure (LBNP) increases sympathetic discharge to the leg muscles. LBNP from -5 to -15 mmHg had no effect on arterial pressure or heart rate but caused graded decreases in central venous pressure and corresponding large increases in peroneal MSNA. Total MSNA (burst frequency X mean burst amplitude) increased by 61 +/- 22% (P less than 0.05 vs. control) during LBNP at only -5 mmHg and rose progressively to a value that was 149 +/- 29% greater than control during LBNP at -15 mmHg (P less than 0.05). The major new conclusion is that nonhypotensive LBNP is a potent stimulus to muscle sympathetic outflow in the leg as well as the arm. During orthostatic stress in humans, the cardiac baroreflex appears to trigger a mass sympathetic discharge to the skeletal muscles in all of the extremities.  相似文献   

10.
Generally, women demonstrate smaller autonomic and cardiovascular reactions to stress, compared with men. The mechanism of this sex-dependent difference is unknown, although reduced baroreflex sensitivity may be involved. Recently, we identified a cortical network associated with autonomic cardiovascular responses to baroreceptor unloading in men. The current investigation examined whether differences in the neural activity patterns within this network were related to sex-related physiological responses to lower body negative pressure (LBNP, 5, 15, and 35 mmHg). Forebrain activity in healthy men and women (n = 8 each) was measured using functional magnetic resonance imaging with blood oxygen level-dependent (BOLD) contrast. Stroke volume (SV), heart rate (HR), and muscle sympathetic nerve activity (MSNA) were collected on a separate day. Men had larger decreases in SV than women (P < 0.01) during 35 mmHg LBNP only. At 35 mmHg LBNP, HR increased more in males then females (9 +/- 1 beats/min vs. 4 +/- 1 beats/min, P < 0.05). Compared with women, increases in total MSNA were similar at 15 mmHg LBNP but greater during 35 mmHg LBNP in men [1,067 +/- 123 vs. 658 +/- 103 arbitrary units (au), P < 0.05]. BOLD signal changes (P < 0.005, uncorrected) were identified within discrete forebrain regions associated with these sex-specific HR and MSNA responses. Men had larger increases in BOLD signal within the right insula and dorsal anterior cingulate cortex than women. Furthermore, men demonstrated greater BOLD signal reductions in the right amygdala, left insula, ventral anterior cingulate, and ventral medial prefrontal cortex vs. women. The greater changes in forebrain activity in men vs. women may have contributed to the elevated HR and sympathetic responses observed in men during 35 mmHg LBNP.  相似文献   

11.
The cortical regions representing peripheral autonomic reactions in humans are poorly understood. This study examined whether changes in forebrain activity were associated with the altered physiological responses to lower body negative pressure (LBNP) following a single bout of dynamic exercise (POST-EX). We hypothesized that, compared with the nonexercised condition (NO-EX), POST-EX would elicit greater reductions in stroke volume (SV) and larger increases in heart rate (HR) and muscle sympathetic nerve activity (MSNA) during LBNP (5, 15, and 35 mmHg). Forebrain neural activity (n = 11) was measured using blood oxygen level-dependent (BOLD) functional magnetic resonance imaging. HR, SV, arterial blood pressure (ABP), and MSNA were collected separately. Compared with NO-EX, baseline ABP was reduced, whereas HR and total vascular conductance (TVC) were elevated in POST-EX (P < 0.05). In both conditions, 5 mmHg LBNP did not elicit a change (from baseline) in any physiological parameter. Compared with NO-EX, 35 mmHg LBNP-mediated decreases in SV and TVC produced greater increases in HR and MSNA during POST-EX (P < 0.05). The right posterior insula and dorsal anterior cingulate cortex demonstrated a larger decrease in BOLD at 5 mmHg LBNP but greater BOLD increase at 15 and 35 mmHg LBNP POST-EX vs. NO-EX (P < 0.005). Conversely, the thalamus and ventral medial prefrontal cortex displayed the opposite BOLD activity pattern (i.e., larger increase at 5 mmHg LBNP but greater decrease at 15 and 35 mmHg LBNP POST-EX vs. NO-EX). Our findings suggest that discrete forebrain regions may be involved with the generation of baroreflex-mediated sympathetic and cardiovascular responses elicited by moderate LBNP.  相似文献   

12.
We studied the effect of chronically denervating aortic baroreceptors (ABR; n = 6) or carotid baroreceptors (CBR; n = 7) on mean arterial pressure (MAP) and heart rate (HR) responses to hemorrhage in the dog. Neither denervation had a significant effect on basal MAP, the variability (standard deviation) of MAP, or resting HR. However, the breakpoint of MAP (defined as the volume of blood removed when MAP fell more than 10% below control and declined monotonically thereafter) was significantly reduced in dogs with only ABR functional (12.4 +/- 1.4 ml/kg) compared with the volume in the intact condition (18.9 +/- 1.8 ml/kg). In contrast, there was no difference in the breakpoint or the MAP at any time during hemorrhage in dogs with both CBR functional compared with their intact responses. In a different group of dogs (n = 6), responses were determined with both CBR operating and again after unilateral denervation, leaving only one CBR (1CBR) functional. Basal MAP and the variability of MAP were not altered in dogs with only 1CBR functional, but the breakpoint (11.7 +/- 1.4 ml/kg) during hemorrhage was significantly different compared with responses with two CBR (21.2 +/- 2.3 ml/kg), and MAP fell to much lower levels. These results indicate that the CBR can compensate fully for loss of ABR during hemorrhage but not vice versa; and bilateral CBR inputs are required for normal responses to hemorrhage.  相似文献   

13.
The purpose of this study was to test the general hypothesis that sympathoinhibitory cardiopulmonary baroreflexes modulate sympathetic outflow during voluntary exercise in humans. Direct (microneurographic) measurements of postganglionic sympathetic nerve activity to noncontracting muscle (MSNA) were made from the right peroneal nerve in the leg, and arterial pressure (AP) and heart rate (HR) were recorded in 10 healthy subjects before (control) and for 2.5 min during each of five interventions: 1) lower-body negative pressure at -10 mmHg (LBNP) alone, 2 and 3) isometric handgrip exercise at 15 and 30% of maximal voluntary contraction (MVC) alone, and 4 and 5) handgrip at 15 and 30% MVC performed during LBNP. During LBNP alone, which should have reduced cardiopulmonary baroreflex sympathoinhibition, AP and HR did not change from control, but MSNA increased 93 +/- 24% (P less than 0.05). Handgrip elicited contraction intensity-dependent increases in AP and HR (P less than 0.05), but MSNA increased above control only at the 30% MVC level (165 +/- 30%, P less than 0.05). The HR, AP, and MSNA responses to either level of handgrip performed during LBNP were not different from the algebraic sums of the corresponding responses to handgrip and LBNP performed separately (P greater than 0.05). Since there was no facilitation of the MSNA response to handgrip when performed during LBNP compared with algebraic sums of the separate responses, our results do not support the hypothesis that cardiopulmonary baroreflexes modulate (inhibit) sympathetic outflow during exercise in humans.  相似文献   

14.
This study was designed to investigate the interaction between carotid sinus baroreceptors and cardiopulmonary receptors in the reflex control of renal nerve activity (RNA) during positive end-expiratory pressure (PEEP) in anesthetized dogs. PEEP at two different levels (10 and 20 cmH2O) was applied to the following groups: animals with neuraxis intact (I group, n = 12); vagal and aortic nerve denervated animals with carotid sinus nerves intact (V group, n = 6); carotid sinus denervated animals with vagal and aortic nerves intact (SD group, n = 6); and carotid sinus denervated animals also having severed vagal and aortic nerves (SAV group, n = 12). Mean blood pressure (MBP), central venous pressure, and mean airway pressure were also simultaneously measured. In the I group, no significant alterations in RNA occurred during PEEP at both levels, even when MBP fell significantly. Although the drop in MBP in the SD group was similar to that in the I group, RNA decreased significantly 10 s after intervention at both PEEP levels, followed by a recovery of RNA toward the control level. In contrast, a significant increase in RNA, which continued until the end of PEEP, appeared in the V group immediately after each intervention. In the SAV group, RNA responses to PEEP, which were observed in the other groups, were abolished. These results provide evidence that during PEEP, renal nerve activity is modified by an interaction between carotid sinus baroreceptors and cardiopulmonary receptors; excitatory effects occur via carotid sinus nerves and inhibitory effects occur via vagal afferents.  相似文献   

15.
In order to determine the relative role of low- and high-pressure reflexes, respectively, on forearm sympathetic nerve activity (fSNA), 10 normal male subjects underwent a 4-step (5 min each) graded lower body negative pressure (LBNP) from -10 to -50 mmHg. Central venous pressure (CVP) and stroke volume gradually decreased (p<0.05), and arterial pulse pressure (PP) abruptly decreased at LBNP of -50 mmHg. Mean arterial pressure (MAP) remained unchanged. Forearm venous plasma norepinephrine concentration (fvNE) increased significantly at LBNP of -35 mmHg (p<0.05) and with a further sharp increase during LBNP of -50 mmHg (p<0.05). High degrees of intra-individual correlations were observed between changes in Log [fvNE] and CVP (r-values from -0.78 to -0.96, p<0.01). We conclude that low-pressure reflexes are the major determinants of fSNA during non-hypotensive gravitational stress (MAP and PP unchanged). When the gravitational stress is more pronounced, a decrease in PP further augments fSNA through inhibition of high-pressure arterial baroreflexes.  相似文献   

16.
Mild lower-body negative pressure (LBNP) has been utilized to selectively unload cardiopulmonary baroreceptors, but there is evidence that arterial baroreceptors can be transiently unloaded after the onset of mild LBNP. In this paper, a black box mathematical model for the prediction of diastolic blood pressure (DBP) variability from multiple inputs (systolic blood pressure, R-R interval duration, and central venous pressure) was applied to interpret the dynamics of blood pressure maintenance under the challenge of LBNP and in long-duration, head-down bed rest (HDBR). Hemodynamic recordings from seven participants in the WISE (Women's International Space Simulation for Exploration) Study collected during an experiment of incremental LBNP (-10 mmHg, -20 mmHg, -30 mmHg) were analyzed before and on day 50 of a 60-day-long HDBR campaign. Autoregressive spectral analysis focused on low-frequency (LF, ~0.1 Hz) oscillations of DBP, which are related to fluctuations in vascular resistance due to sympathetic and baroreflex regulation of vasomotor tone. The arterial baroreflex-related component explained 49 ± 13% of LF variability of DBP in spontaneous conditions, and 89 ± 9% (P < 0.05) on day 50 of HDBR, while the cardiopulmonary baroreflex component explained 17 ± 9% and 12 ± 4%, respectively. The arterial baroreflex-related variability was significantly increased in bed rest also for LBNP equal to -20 and -30 mmHg. The proposed technique provided a model interpretation of the proportional effect of arterial baroreflex vs. cardiopulmonary baroreflex-mediated components of blood pressure control and showed that arterial baroreflex was the main player in the mediation of DBP variability. Data during bed rest suggested that cardiopulmonary baroreflex-related effects are blunted and that blood pressure maintenance in the presence of an orthostatic stimulus relies mostly on arterial control.  相似文献   

17.
Acute alcohol consumption is reported to decrease mean arterial pressure (MAP) during orthostatic challenge, a response that may contribute to alcohol-mediated syncope. Muscle sympathetic nerve activity (MSNA) increases during orthostatic stress to help maintain MAP, yet the effects of alcohol on MSNA responses during orthostatic stress have not been determined. We hypothesized that alcohol ingestion would blunt arterial blood pressure and MSNA responses to lower body negative pressure (LBNP). MAP, MSNA, and heart rate (HR) were recorded during progressive LBNP (-5, -10, -15, -20, -30, and -40 mmHg; 3 min/stage) in 30 subjects (age 24 ± 1 yr). After an initial progressive LBNP (pretreatment), subjects consumed either alcohol (0.8 g ethanol/kg body mass; n = 15) or placebo (n = 15), and progressive LBNP was repeated (posttreatment). Alcohol increased resting HR (59 ± 2 to 65 ± 2 beats/min, P < 0.05), MSNA (13 ± 3 to 19 ± 4 bursts/min, P < 0.05), and MSNA burst latency (1,313 ± 16 to 1,350 ± 17 ms, P < 0.05) compared with placebo (group × treatment interactions, P < 0.05). During progressive LBNP, a pronounced decrease in MAP was observed after alcohol but not placebo (group × time × treatment, P < 0.05). In contrast, MSNA and HR increased during all LBNP protocols, but there were no differences between trials or groups. However, alcohol altered MSNA burst latency response to progressive LBNP. In conclusion, the lack of MSNA adjustment to a larger drop in arterial blood pressure during progressive LBNP, coupled with altered sympathetic burst latency responses, suggests that alcohol blunts MSNA responses to orthostatic stress.  相似文献   

18.
We tested the hypothesis that hypotension occurred in older adults at the onset of orthostatic challenge as a result of vagal dysfunction. Responses of heart rate (HR) and mean arterial pressure (MAP) were compared between 10 healthy older and younger adults during onset and sustained lower body negative pressure (LBNP). A younger group was also assessed after blockade of the parasympathetic nervous system with the use of atropine or glycopyrrolate and after blockade of the beta(1)-adrenoceptor by use of metoprolol. Baseline HR (older vs. younger: 59 +/- 4 vs. 54 +/- 1 beats/min) and MAP (83 +/- 2 vs. 89 +/- 3 mmHg) were not significantly different between the groups. During -40 Torr, significant tachycardia occurred at the first HR response in the younger subjects without hypotension, whereas significant hypotension [change in MAP (DeltaMAP) -7 +/- 2 mmHg] was observed in the elderly without tachycardia. After the parasympathetic blockade, tachycardiac responses of younger subjects were diminished and associated with a significant hypotension at the onset of LBNP. However, MAP was not affected after the cardiac sympathetic blockade. We concluded that the elderly experienced orthostatic hypotension at the onset of orthostatic challenge because of a diminished HR response. However, an augmented vasoconstriction helped with the maintenance of their blood pressure during sustained LBNP.  相似文献   

19.
Control of skin blood flow (SkBF) is on the efferent arm of both thermoregulatory and nonthermoregulatory reflexes. To what extent aging may affect the SkBF response when these two reflex systems interact is unknown. To determine the response of aged skin to the unloading of baroreceptors in thermoneutral, cold stress, and heat stress conditions, sequential bouts of nonhypotensive lower body negative pressure (LBNP) were applied at -10, -20, and -30 mmHg in 14 young (18-25 yr) and 14 older (63-78 yr) men. SkBF was measured by laser-Doppler velocimetry (averaged over 2 forearm sites), and data are expressed as percentage of maximal cutaneous vascular conductance (%CVC(max)). Total forearm blood flow was measured by venous occlusion plethysmography, and forearm vascular conductance (FVC) was calculated as the ratio of forearm blood flow to mean arterial pressure. In young men, all three intensities of LBNP in thermoneutrality decreased FVC significantly (P < 0.05), but FVC at -10 mmHg did not change in the older men. There were no significant LBNP effects on %CVC(max). Application of LBNP during cold stress did not significantly change %CVC(max) or FVC in either age group. During heat stress, -10 to -30 mmHg of LBNP decreased FVC significantly (P < 0.05) in both age groups, but these decreases were attenuated in the older men (P < 0.05). %CVC(max) decreased at -30 mmHg in the younger men only. These results suggest that older men have an attenuated skin vasoconstrictor response to the unloading of baroreceptors in heat stress conditions. Furthermore, the forearm vasoconstriction elicited by LBNP in older men reflects that of underlying tissue (i.e., muscle) rather than that of skin, whereas -30 mmHg LBNP also decreases SkBF in young hyperthermic men.  相似文献   

20.
The purpose of this study was to test the hypothesis that repeated exposure to high acceleration (G) would be associated with enhanced functions of specific mechanisms of blood pressure regulation. We measured heart rate (HR), stroke volume (SV), cardiac output (), mean arterial blood pressure, central venous pressure, forearm and leg vascular resistance, catecholamines, and changes in leg volume (%DeltaLV) during various protocols of lower body negative pressure (LBNP), carotid stimulation, and infusions of adrenoreceptor agonists in 10 males after three training sessions on different days over a period of 5-7 days using a human centrifuge (G trained). These responses were compared with the same measurements in 10 males who were matched for height, weight, and fitness but did not undergo G training (controls). Compared with the control group, G-trained subjects demonstrated greater R-R interval response to equal carotid baroreceptor stimulation (7.3 +/- 1.2 vs. 3.9 +/- 0.4 ms/mmHg, P = 0.02), less vasoconstriction to equal low-pressure baroreceptor stimulation (-1.4 +/- 0.2 vs. -2.6 +/- 0.3 U/mmHg, P = 0.01), and higher HR (-1.2 +/- 0.2 vs. -0.5 +/- 0.1 beats. min(-1). mmHg(-1), P = 0.01) and alpha-adrenoreceptor response (32.8 +/- 3.4 vs. 19.5 +/- 4.7 U/mmHg, P = 0.04) to equal dose of phenylephrine. During graded LBNP, G-trained subjects had less decline in and SV, %DeltaLV, and elevation in thoracic impedance. G-trained subjects also had greater total blood (6,497 +/- 496 vs. 5,438 +/- 228 ml, P = 0.07) and erythrocyte (3,110 +/- 364 vs. 2,310 +/- 96 ml, P = 0.06) volumes. These results support the hypothesis that exposure to repeated high G is associated with increased capacities of mechanisms that underlie blood pressure regulation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号