首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Acharya  Sudipta  Cui  Laizhong  Pan  Yi 《BMC bioinformatics》2020,21(13):1-15
Background

High-dimensional flow cytometry and mass cytometry allow systemic-level characterization of more than 10 protein profiles at single-cell resolution and provide a much broader landscape in many biological applications, such as disease diagnosis and prediction of clinical outcome. When associating clinical information with cytometry data, traditional approaches require two distinct steps for identification of cell populations and statistical test to determine whether the difference between two population proportions is significant. These two-step approaches can lead to information loss and analysis bias.

Results

We propose a novel statistical framework, called LAMBDA (Latent Allocation Model with Bayesian Data Analysis), for simultaneous identification of unknown cell populations and discovery of associations between these populations and clinical information. LAMBDA uses specified probabilistic models designed for modeling the different distribution information for flow or mass cytometry data, respectively. We use a zero-inflated distribution for the mass cytometry data based the characteristics of the data. A simulation study confirms the usefulness of this model by evaluating the accuracy of the estimated parameters. We also demonstrate that LAMBDA can identify associations between cell populations and their clinical outcomes by analyzing real data. LAMBDA is implemented in R and is available from GitHub (https://github.com/abikoushi/lambda).

  相似文献   

2.
This paper presents an attribute clustering method which is able to group genes based on their interdependence so as to mine meaningful patterns from the gene expression data. It can be used for gene grouping, selection, and classification. The partitioning of a relational table into attribute subgroups allows a small number of attributes within or across the groups to be selected for analysis. By clustering attributes, the search dimension of a data mining algorithm is reduced. The reduction of search dimension is especially important to data mining in gene expression data because such data typically consist of a huge number of genes (attributes) and a small number of gene expression profiles (tuples). Most data mining algorithms are typically developed and optimized to scale to the number of tuples instead of the number of attributes. The situation becomes even worse when the number of attributes overwhelms the number of tuples, in which case, the likelihood of reporting patterns that are actually irrelevant due to chances becomes rather high. It is for the aforementioned reasons that gene grouping and selection are important preprocessing steps for many data mining algorithms to be effective when applied to gene expression data. This paper defines the problem of attribute clustering and introduces a methodology to solving it. Our proposed method groups interdependent attributes into clusters by optimizing a criterion function derived from an information measure that reflects the interdependence between attributes. By applying our algorithm to gene expression data, meaningful clusters of genes are discovered. The grouping of genes based on attribute interdependence within group helps to capture different aspects of gene association patterns in each group. Significant genes selected from each group then contain useful information for gene expression classification and identification. To evaluate the performance of the proposed approach, we applied it to two well-known gene expression data sets and compared our results with those obtained by other methods. Our experiments show that the proposed method is able to find the meaningful clusters of genes. By selecting a subset of genes which have high multiple-interdependence with others within clusters, significant classification information can be obtained. Thus, a small pool of selected genes can be used to build classifiers with very high classification rate. From the pool, gene expressions of different categories can be identified.  相似文献   

3.
Yunsong Qi  Xibei Yang 《Genomics》2013,101(1):38-48
An important application of gene expression data is to classify samples in a variety of diagnostic fields. However, high dimensionality and a small number of noisy samples pose significant challenges to existing classification methods. Focused on the problems of overfitting and sensitivity to noise of the dataset in the classification of microarray data, we propose an interval-valued analysis method based on a rough set technique to select discriminative genes and to use these genes to classify tissue samples of microarray data. We first select a small subset of genes based on interval-valued rough set by considering the preference-ordered domains of the gene expression data, and then classify test samples into certain classes with a term of similar degree. Experiments show that the proposed method is able to reach high prediction accuracies with a small number of selected genes and its performance is robust to noise.  相似文献   

4.
To solve the class imbalance problem in the classification of pre-miRNAs with the ab initio method, we developed a novel sample selection method according to the characteristics of pre-miRNAs. Real/pseudo pre-miRNAs are clustered based on their stem similarity and their distribution in high dimensional sample space, respectively. The training samples are selected according to the sample density of each cluster. Experimental results are validated by the cross-validation and other testing datasets composed of human real/pseudo pre-miRNAs. When compared with the previous method, microPred, our classifier miRNAPred is nearly 12% more accurate. The selected training samples also could be used to train other SVM classifiers, such as triplet-SVM, MiPred, miPred, and microPred, to improve their classification performance. The sample selection algorithm is useful for constructing a more efficient classifier for the classification of real pre-miRNAs and pseudo hairpin sequences.  相似文献   

5.
Bø T  Jonassen I 《Genome biology》2002,3(4):research00-11
Methods for extracting useful information from the datasets produced by microarray experiments are at present of much interest. Here we present new methods for finding gene sets that are well suited for distinguishing experiment classes, such as healthy versus diseased tissues. Our methods are based on evaluating genes in pairs and evaluating how well a pair in combination distinguishes two experiment classes. We tested the ability of our pair-based methods to select gene sets that generalize the differences between experiment classes and compared the performance relative to two standard methods. To assess the ability to generalize class differences, we studied how well the gene sets we select are suited for learning a classifier. We show that the gene sets selected by our methods outperform the standard methods, in some cases by a large margin, in terms of cross-validation prediction accuracy of the learned classifier. We show that on two public datasets, accurate diagnoses can be made using only 15-30 genes. Our results have implications for how to select marker genes and how many gene measurements are needed for diagnostic purposes. When looking for differential expression between experiment classes, it may not be sufficient to look at each gene in a separate universe. Evaluating combinations of genes reveals interesting information that will not be discovered otherwise. Our results show that class prediction can be improved by taking advantage of this extra information.  相似文献   

6.

Background  

Using DNA microarrays, we have developed two novel models for tumor classification and target gene prediction. First, gene expression profiles are summarized by optimally selected Self-Organizing Maps (SOMs), followed by tumor sample classification by Fuzzy C-means clustering. Then, the prediction of marker genes is accomplished by either manual feature selection (visualizing the weighted/mean SOM component plane) or automatic feature selection (by pair-wise Fisher's linear discriminant).  相似文献   

7.

Background  

Like microarray-based investigations, high-throughput proteomics techniques require machine learning algorithms to identify biomarkers that are informative for biological classification problems. Feature selection and classification algorithms need to be robust to noise and outliers in the data.  相似文献   

8.
A random forest method has been selected to perform both gene selection and classification of the microarray data. In this embedded method, the selection of smallest possible sets of genes with lowest error rates is the key factor in achieving highest classification accuracy. Hence, improved gene selection method using random forest has been proposed to obtain the smallest subset of genes as well as biggest subset of genes prior to classification. The option for biggest subset selection is done to assist researchers who intend to use the informative genes for further research. Enhanced random forest gene selection has performed better in terms of selecting the smallest subset as well as biggest subset of informative genes with lowest out of bag error rates through gene selection. Furthermore, the classification performed on the selected subset of genes using random forest has lead to lower prediction error rates compared to existing method and other similar available methods.  相似文献   

9.
MOTIVATION: Extracting useful information from expression levels of thousands of genes generated with microarray technology needs a variety of analytical techniques. Mathematical programming approaches for classification analysis outperform parametric methods when the data depart from assumptions underlying these methods. Therefore, a mathematical programming approach is developed for gene selection and tissue classification using gene expression profiles. RESULTS: A new mixed integer programming model is formulated for this purpose. The mixed integer programming model simultaneously selects genes and constructs a classification model to classify two groups of tissue samples as accurately as possible. Very encouraging results were obtained with two data sets from the literature as examples. These results show that the mathematical programming approach can rival or outperform traditional classification methods.  相似文献   

10.
11.
MOTIVATION: The standard L(2)-norm support vector machine (SVM) is a widely used tool for microarray classification. Previous studies have demonstrated its superior performance in terms of classification accuracy. However, a major limitation of the SVM is that it cannot automatically select relevant genes for the classification. The L(1)-norm SVM is a variant of the standard L(2)-norm SVM, that constrains the L(1)-norm of the fitted coefficients. Due to the singularity of the L(1)-norm, the L(1)-norm SVM has the property of automatically selecting relevant genes. On the other hand, the L(1)-norm SVM has two drawbacks: (1) the number of selected genes is upper bounded by the size of the training data; (2) when there are several highly correlated genes, the L(1)-norm SVM tends to pick only a few of them, and remove the rest. RESULTS: We propose a hybrid huberized support vector machine (HHSVM). The HHSVM combines the huberized hinge loss function and the elastic-net penalty. By doing so, the HHSVM performs automatic gene selection in a way similar to the L(1)-norm SVM. In addition, the HHSVM encourages highly correlated genes to be selected (or removed) together. We also develop an efficient algorithm to compute the entire solution path of the HHSVM. Numerical results indicate that the HHSVM tends to provide better variable selection results than the L(1)-norm SVM, especially when variables are highly correlated. AVAILABILITY: R code are available at http://www.stat.lsa.umich.edu/~jizhu/code/hhsvm/.  相似文献   

12.
《Genomics》2020,112(1):114-126
Gene expression data are expected to make a great contribution in the producing of efficient cancer diagnosis and prognosis. Gene expression data are coded by large measured genes, and only of a few number of them carry precious information for different classes of samples. Recently, several researchers proposed gene selection methods based on metaheuristic algorithms for analysing and interpreting gene expression data. However, due to large number of selected genes with limited number of patient's samples and complex interaction between genes, many gene selection methods experienced challenges in order to approach the most relevant and reliable genes. Hence, in this paper, a hybrid filter/wrapper, called rMRMR-MBA is proposed for gene selection problem. In this method, robust Minimum Redundancy Maximum Relevancy (rMRMR) as filter to select the most promising genes and an modified bat algorithm (MBA) as search engine in wrapper approach is proposed to identify a small set of informative genes. The performance of the proposed method has been evaluated using ten gene expression datasets. For performance evaluation, MBA is evaluated by studying the convergence behaviour of MBA with and without TRIZ optimisation operators. For comparative evaluation, the results of the proposed rMRMR-MBA were compared against ten state-of-arts methods using the same datasets. The comparative study demonstrates that the proposed method produced better results in terms of classification accuracy and number of selected genes in two out of ten datasets and competitive results on the remaining datasets. In a nutshell, the proposed method is able to produce very promising results with high classification accuracy which can be considered a promising contribution for gene selection domain.  相似文献   

13.
Because of high dimensionality, machine learning algorithms typically rely on feature selection techniques in order to perform effective classification in microarray gene expression data sets. However, the large number of features compared to the number of samples makes the task of feature selection computationally hard and prone to errors. This paper interprets feature selection as a task of stochastic optimization, where the goal is to select among an exponential number of alternative gene subsets the one expected to return the highest generalization in classification. Blocking is an experimental design strategy which produces similar experimental conditions to compare alternative stochastic configurations in order to be confident that observed differences in accuracy are due to actual differences rather than to fluctuations and noise effects. We propose an original blocking strategy for improving feature selection which aggregates in a paired way the validation outcomes of several learning algorithms to assess a gene subset and compare it to others. This is a novelty with respect to conventional wrappers, which commonly adopt a sole learning algorithm to evaluate the relevance of a given set of variables. The rationale of the approach is that, by increasing the amount of experimental conditions under which we validate a feature subset, we can lessen the problems related to the scarcity of samples and consequently come up with a better selection. The paper shows that the blocking strategy significantly improves the performance of a conventional forward selection for a set of 16 publicly available cancer expression data sets. The experiments involve six different classifiers and show that improvements take place independent of the classification algorithm used after the selection step. Two further validations based on available biological annotation support the claim that blocking strategies in feature selection may improve the accuracy and the quality of the solution. The first validation is based on retrieving PubMEd abstracts associated to the selected genes and matching them to regular expressions describing the biological phenomenon underlying the expression data sets. The biological validation that follows is based on the use of the Bioconductor package GoStats in order to perform Gene Ontology statistical analysis.  相似文献   

14.
15.
Discrimination of disease patients based on gene expression data is a crucial problem in clinical area. An important issue to solve this problem is to find a discriminative subset of genes from thousands of genes on a microarray or DNA chip. Aiming at finding informative genes for disease classification on microarray, we present a gene selection method based on the forward variable (gene) selection method (FSM) and show, using typical public microarray datasets, that our method can extract a small set of genes being crucial for discriminating different classes with a very high accuracy almost closed to perfect classification.  相似文献   

16.
Ensemble clustering methods have become increasingly important to ease the task of choosing the most appropriate cluster algorithm for a particular data analysis problem. The consensus clustering (CC) algorithm is a recognized ensemble clustering method that uses an artificial intelligence technique to optimize a fitness function. We formally prove the existence of a subspace of the search space for CC, which contains all solutions of maximal fitness and suggests two greedy algorithms to search this subspace. We evaluate the algorithms on two gene expression data sets and one synthetic data set, and compare the result with the results of other ensemble clustering approaches.  相似文献   

17.

Background  

Accurate diagnosis of cancer subtypes remains a challenging problem. Building classifiers based on gene expression data is a promising approach; yet the selection of non-redundant but relevant genes is difficult.  相似文献   

18.
Bondell HD  Reich BJ 《Biometrics》2008,64(1):115-123
Summary .   Variable selection can be challenging, particularly in situations with a large number of predictors with possibly high correlations, such as gene expression data. In this article, a new method called the OSCAR (octagonal shrinkage and clustering algorithm for regression) is proposed to simultaneously select variables while grouping them into predictive clusters. In addition to improving prediction accuracy and interpretation, these resulting groups can then be investigated further to discover what contributes to the group having a similar behavior. The technique is based on penalized least squares with a geometrically intuitive penalty function that shrinks some coefficients to exactly zero. Additionally, this penalty yields exact equality of some coefficients, encouraging correlated predictors that have a similar effect on the response to form predictive clusters represented by a single coefficient. The proposed procedure is shown to compare favorably to the existing shrinkage and variable selection techniques in terms of both prediction error and model complexity, while yielding the additional grouping information.  相似文献   

19.
MOTIVATION: Modern machine learning methods based on matrix decomposition techniques, like independent component analysis (ICA) or non-negative matrix factorization (NMF), provide new and efficient analysis tools which are currently explored to analyze gene expression profiles. These exploratory feature extraction techniques yield expression modes (ICA) or metagenes (NMF). These extracted features are considered indicative of underlying regulatory processes. They can as well be applied to the classification of gene expression datasets by grouping samples into different categories for diagnostic purposes or group genes into functional categories for further investigation of related metabolic pathways and regulatory networks. RESULTS: In this study we focus on unsupervised matrix factorization techniques and apply ICA and sparse NMF to microarray datasets. The latter monitor the gene expression levels of human peripheral blood cells during differentiation from monocytes to macrophages. We show that these tools are able to identify relevant signatures in the deduced component matrices and extract informative sets of marker genes from these gene expression profiles. The methods rely on the joint discriminative power of a set of marker genes rather than on single marker genes. With these sets of marker genes, corroborated by leave-one-out or random forest cross-validation, the datasets could easily be classified into related diagnostic categories. The latter correspond to either monocytes versus macrophages or healthy vs Niemann Pick C disease patients.  相似文献   

20.
Xie B  Pan W  Shen X 《Biometrics》2008,64(3):921-930
Summary .   Penalized model-based clustering has been proposed for high-dimensional but small sample-sized data, such as arising from genomic studies; in particular, it can be used for variable selection. A new regularization scheme is proposed to group together multiple parameters of the same variable across clusters, which is shown both analytically and numerically to be more effective than the conventional L 1 penalty for variable selection. In addition, we develop a strategy to combine this grouping scheme with grouping structured variables. Simulation studies and applications to microarray gene expression data for cancer subtype discovery demonstrate the advantage of the new proposal over several existing approaches.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号