首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A simple and sensitive high-performance liquid chromatographic (HPLC) method with UV absorbance detection is described for the quantitation of risperidone and its major metabolite 9-hydroxyrisperidone in human plasma, using clozapine as internal standard. After sample alkalinization with 1 ml of NaOH (2 M) the test compounds were extracted from plasma using diisopropyl ether–isoamylalcohol (99:1, v/v). The organic phase was back-extracted with 150 μl potassium phosphate (0.1 M, pH 2.2) and 60 μl of the acid solution was injected into a C18 BDS Hypersil analytical column (3 μm, 100×4.6 mm I.D.). The mobile phase consisted of phosphate buffer (0.05 M, pH 3.7 with 25% H3PO4)–acetonitrile (70:30, v/v), and was delivered at a flow-rate of 1.0 ml/min. The peaks were detected using a UV detector set at 278 nm and the total time for a chromatographic separation was about 4 min. The method was validated for the concentration range 5–100 ng/ml. Mean recoveries were 98.0% for risperidone and 83.5% for 9-hydroxyrisperidone. Intra- and inter-day relative standard deviations were less than 11% for both compounds, while accuracy, expressed as percent error, ranged from 1.6 to 25%. The limit of quantitation was 2 ng/ml for both analytes. The method shows good specificity with respect to commonly prescribed psychotropic drugs, and it has successfully been applied for pharmacokinetic studies and therapeutic drug monitoring.  相似文献   

2.
An isocratic high-performance liquid chromatography (HPLC) method with ultraviolet detection for the simultaneous determination of clozapine and its two major metabolites in human plasma is described. Analytes are concentrated from alkaline plasma by liquid–liquid extraction with n-hexane–isoamyl alcohol (75:25, v/v). The organic phase is back-extracted with 150 μl of 0.1 M dibasic phosphate (pH 2.2 with 25% H3PO4). Triprolidine is used as internal standard. For the chromatographic separation the mobile phase consisted of acetonitrile–0.06 M phosphate buffer, pH 2.7 with 25% phosphoric acid (48:52, v/v). Analytes are eluted at a flow-rate of 1.0 ml/min, separated on a 250×4.60 mm I.D. analytical column packed with 5 μm C6 silica particles, and measured by UV absorbance detection at 254 nm. The separation requires 7 min. Calibration curves for the three analytes are linear within the clinical concentration range. Mean recoveries were 92.7% for clozapine, 82.0% for desmethylclozapine and 70.4% for clozapine N-oxide. C.V. values for intra- and inter-day variabilities were ≤13.8% at concentrations between 50 and 1000 ng/ml. Accuracy, expressed as percentage error, ranged from −19.8 to 2.8%. The method was specific and sensitive with quantitation limits of 2 ng/ml for both clozapine and desmethylclozapine and 5 ng/ml for clozapine N-oxide. Among various psychotropic drugs and their metabolites, only 2-hydroxydesipramine caused significant interference. The method is applicable to pharmacokinetic studies and therapeutic drug monitoring.  相似文献   

3.
An isocratic high-performance liquid chromatographic method with column switching and direct injection has been developed to determine ciprofloxacin in plasma and Mueller–Hinton broth. An on-line dilution of the sample was performed with a loading mobile phase consisting of 173 mM phosphoric acid. The analyte was retained on a LiChrocart 4-4 precolumn filled with a LiChrospher 100 RP18, 5 μm. An electric-actuated system with two six-port valves allowed a clean-up step with a mixture 20 mM phosphate buffer (pH 3.5)–methanol (97: 3, v/v) and the transfer of the analyte by a back-flush mode to a 150×4.6 mm I.D. column packed with a Kromasil C8 5 μm, using a mobile phase of 20 mM phosphate buffer (pH 3.5)–acetonitrile (85:15, v/v). Fluorescence detection allowed a quantification limit of 0.078 μg/ml with a 40-μl sample size. The method was evaluated to determine its usefulness in studying the pharmacokinetic/pharmacodynamic behaviour of ciprofloxacin in an in vitro model.  相似文献   

4.
An improved high-performance liquid chromatographic (HPLC) method utilizing solid-phase extraction (SPE) and midbore chromatography was developed for the determination of ranitidine in human plasma. A mobile phase of 20 mM K2HPO4-acetonitrile-triethylamine (87.9:12.0:0.1, v/v) pH 6.0 was used with a phenyl analytical column and ultraviolet detection (UV). The method demonstrated linearity from 25 to 1000 ng/ml in 500 μl of plasma with a detection limit of 10 ng/ml. The method was utilized in a pharmacokinetic study evaluating the effects of pancreatico-biliary secretions on ranitidine absorption.  相似文献   

5.
A high-performance liquid chromatographic method with electrochemical detection has been developed for the simultaneous determination of epirubicin, 13-S-dihydroepirubicin, doxorubicin and 13-S-dihydrodoxorubicin in human plasma. An aliquot of 200 μl plasma, spiked with internal standard, was extracted by solid-phase extraction using polymeric adsorbent columns. Chromatography was performed using a C18 reversed-phase column with a mobile phase consisting of water–acetonitrile (71:29, v/v) containing 0.05 M Na2HPO4 and 0.05% v/v triethylamine adjusted to pH 4.6 with citric acid. Linearity of the method was obtained in the concentration range of 1–500 ng/ml for all the analytes. Analytical recoveries of the analytes ranged from 89 to 93%. The assay can be used for the simultaneous determination of the four analytes, or for epirubicin and its metabolite or doxorubicin and its metabolite, using the other parent drug as an internal standard. The method was applied to analyze human plasma samples from patients treated with epirubicin using doxorubicin as an internal standard.  相似文献   

6.
Protein synthesis is cyclic during pupal diapause in Sarcophaga crassipalpis. These cycles are in phase with infradian MO2 cycles, which have a periodicity of about 4 days at 25°C. Mean incorporation of [35S]methionine by diapausing pupae was 5.4% during the 2 days of highest MO2 but dropped to 1.7% during the 2 days of low MO2. Diapausing pupae treated with a juvenile hormone analog prior to pupariation had a constant high MO2 similar to peak values observed in untreated pupae, and such pupae consistently incorporated [35S]methionine at a high rate (7.7%). [35S]Methionine incorporation by nondiapausing pupae and pharate adults was eightfold higher than the peak rates observed during diapause. Autoradiography of in vivo labeled proteins indicated quantitative and qualitative changes in the synthesis of proteins by diapausing pupae during different phases of the MO2 cycle. Brains from diapausing pupae labeled in vitro showed higher incorporation at the peak of the MO2 cycle than at the nadir of the cycle, but no such differences were detected for integument, fat body, or fat body supernatant. Theses differences in tissue response indicate that control of protein synthesis during diapause is not cell autonomous, but is a function of the metabolism of the intact organism.  相似文献   

7.
The present study is the first to simultaneously and continuously measure oxygen consumption (MO2) and gastrointestinal blood flow (qgi) in fish. In addition, while it is the first to compare the effects of three isoenergetic diets on qgi in fish, no significant differences among diets were found for postprandial MO2, qgi or heart rate (fH) in rainbow trout, Oncorhynchus mykiss. Postprandial qgi, fH and MO2 were significantly elevated above baseline levels by 4 h. Postprandial qgi peaked at 136% above baseline after 11 h, fH peaked at 110% above baseline after 14 h and MO2 peaked at 96% above baseline after 27 h. Moreover, postprandial MO2 remained significantly elevated above baseline longer than qgi (for 41 h and 30 h, respectively), perhaps because most of the increase in MO2 associated with feeding is due to protein handling, a process that continues following the absorption of nutrients which is thought to be the primary reason for the elevation of qgi. In addition to the positive relationships found between postprandial MO2 and qgi and between postprandial MO2 and fH, we discovered a novel relationship between postprandial qgi and fH.  相似文献   

8.
A single-solvent extraction step high-performance liquid chromatographic method is described for quantitating cocaine and its three metabolites in rat serum microsamples (50 μl). The separation used a 2.1-mm I.D. reversed-phase Brownlee C18 column with an isocratic mobile phase consisting of methanol–acetonitrile–25.8 mM sodium acetate buffer, pH 2.2, containing 1.29·10−4M tetrabutylammonium phosphate (12.5:10:77.5, v/v/v). The detection limit was 2.5 ng/ml for all the compounds using an ultraviolet detector operated at 235 nm. The method was used to study the pharmacokinetics of cocaine after an intravenous (i.v.) bolus dose (4 mg/kg).  相似文献   

9.
Ropinirole, 4-[2-(dipropylamino)ethyl]-1,3-dihydro-2H-indol-2-one, is a potent anti-Parkinson’s disease drug developed by SmithKline Beecham Pharmaceuticals. Capillary liquid chromatography (CLC) was used for the separation and quantification of ropinirole and its five related impurities, potentially formed during its synthesis. A simultaneous optimization of three mobile phase parameters, i.e., pH, buffer concentration and acetonitrile content was performed employing an experimental design approach which proved a powerful tool in method development. The retention factors of the investigated substances in different mobile phases were determined. Baseline resolution of the six substances on a C18 reversed stationary phase was attained using a mobile phase with an optimized composition [acetonitrile–8.7 mM 2-(N-morpholino)ethanesulfonic acid adjusted to pH 6.0 (55:45, v/v)]. It was shown that CLC, operated in the isocratic mode under the mobile phase flow-rate of 4 μl/min, can determine the level of these impurities, down to a level of 0.06% of the main component within 25 min.  相似文献   

10.
A single-solvent extraction step high-performance liquid chromatographic method is described for quantitating zolpidem in rat serum microsamples (50 μl). The separation used a 2.1 mm I.D. reversed-phase OD-5-100 C18 column, 5 μm particle size with an isocratic mobile phase consisting of methanol–acetonitrile–26 mM sodium acetate buffer (adjusted to pH 2.0 with 40% phosphoric acid) containing 0.26 mM tetrabutylammonium phosphate (13:10:77, v/v/v). The detection limit was 3 ng/ml for zolpidem using an ultraviolet detector operated at 240 nm. The recovery was greater than 87% with analysis performed in 12 min. The method is simple, rapid, and applicable to pharmacokinetic studies of zolpidem after administering two intravenous bolus doses (1 and 4 mg/kg) in rats.  相似文献   

11.
A specific, accurate, precise and reproducible assay for the quantitation of a novel indolylpiperazine anti-migraine agent (I) in plasma from various animal species is described. The method involves addition of internal standard (I.S.) and 1.0 M sodium carbonate to the plasma sample, vortex-mixing and extraction with ethylene dichloride. The organic layer is then back-extracted in a buffer consisting of 0.1 M tetramethylammonium hydroxide (TMAH), pH 3.0 and 0.1 M (NH4)2HPO4, pH 3.0, in water. The aqueous layer is injected on to a Zorbax cyano analytical column with a mobile phase consisting of acetonitrile, methanol and water (15:5:80, v/v/v) with 0.01 M TMAH, pH 3.0 and 0.01 M (NH4)2HPO4, pH 3.0. The eluate is monitored by electrochemical detection at 0.9 V (guard cell), 0.5 V (detector 1) and 0.8 V (detector 2). The retention times of I and I.S. were 7 and 10 min, respectively. In drug-free control plasma, there were no interfering peaks seen at the retention times of I or I.S. The standard curve was linear over the concentration range of 5–500 ng/ml in rat, monkey, mouse and rabbit plasma. The lower limit of quantitation in all four matrices was 5.0 ng/ml. Within- and between-assay variability of quality control samples was less than 9% relative standard deviation and the predicted concentration of the quality control samples deviated by less than 15% from the nominal concentration. The stability of I was established for up to 36 h in the autosampler tray, up to 10 months in plasma at −20°C and up to 2 h in plasma at room temperature. The assay is validated for determination of I in plasma.  相似文献   

12.
A selective HPLC method is described for the determination of cefpodoxime levels in plasma and sinus mucosa. Sample preparation included solid-phase extraction with a C8 cartridge. Cefpodoxime and cefaclor (internal standard) were eluted with methanol and analyzed on an optimised system consisting of a C18 stationary phase and a ternary mobile phase (0.05 M acetate buffer pH 3.8—methanol—acetonitrile, 87:10:3, v/v) monitored at 235 nm. Linearity and both between- and within-day reproducibility were assessed for plasma and sinus mucosa samples. Inter-assay coefficients of variation were lower than 13.6% (n = 10) for plasma (0.2 μg/ml) and lower than 12.4% (n = 5) for sinus mucosa (0.25 μg/g). The quantification limit was 0.05 μg/ml for plasma and 0.13 μg/g for tissue. The method was used to study the diffusion of cefpodoxime in sinus mucosa.  相似文献   

13.
This study describes a sensitive HPLC–electrochemical detection method for the analysis of ceftazidime, a third-generation cephalosporin, in human plasma. The extraction procedure involved protein precipitation with 30% trichloroacetic acid. The separation was achieved on a reversed-phase column (250×4.6 mm I.D., 5 μm) packed with C18 Kromasil with isocratic elution and a mobile phase consisting of acetonitrile–25 mM KH2PO4–Na2HPO4 buffer, pH 7.4 (10:90, v/v). The proposed analytical method is selective, reproducible and reliable. The assay has a precision of 0.2–15.1% (C.V.) in the range of 5–200 μg ml−1. (corresponding to 0.5 to 20 ng of ceftazidime injected onto the column), and is optimised for assaying 50 μl of plasma. The extraction recovery from plasma was approximately 100%. The method was highly specific for ceftazidime and there was no interference from either commonly administered drugs or endogenous compounds. This assay was used to measure ceftazidime in elderly patients for therapeutic drug monitoring.  相似文献   

14.
The difficulty in finding positive electrode materials for sodium‐ion (Na‐ion) batteries with a large specific energy has slowed down their commercialization. Layered transition metal (M) oxides NaxMO2 with a two‐layer oxygen stacking (P2, 0.6 ≤ x ≤ 0.75), are promising candidates. However, the high average metal oxidation state needed during synthesis means that P2 NaxMO2 cathodes often require the introduction of high‐valent cations (Mn4+, Ti4+, Sn5+, or Te6+), limiting the cathode's performance. Using a combination of first‐principles calculations and experiments, the feasibility of P2 cathodes containing only electrochemically active nickel and cobalt cations is investigated. It is found that P2 NaxNiyCo1–yO2 materials with x = 0.66, 0.75, and 0 ≤ y ≤ 0.33 are either thermodynamically stable or metastable yet close to the convex hull at typical P2 synthesis temperatures (≈1000 K). It is demonstrated that a novel P2 compound with y = 0.22 and both Ni3+/4+ and Co3+/4+ can be successfully synthesized. It is studied electrochemically and structurally, using in situ and ex situ X‐ray diffraction. It is demonstrated that the chemical space of P2 layered compounds is not fully explored yet and that ab initio phase diagrams allow the determination of new high‐specific energy positive electrodes to be targeted experimentally.  相似文献   

15.
A quantitative method which avoids derivatisation is described for the determination of lysergide (LSD) levels in urine. Sample preparation included addition of methysergide as an internal standard followed by solid-phase extraction. LSD was analysed on a system consisting of a C18 stationary phase and a mobile phase of 0.1 M acetate buffer pH 8.0-acetonitrile-triethylamine (75:25:0.25, v/v). LSD was detected by electrospray ionisation mass spectrometry with selected ion monitoring. The quantification limit was 0.5 ng/ml and the method was linear up to 10 ng/ml of LSD in urine.  相似文献   

16.
An original method based upon high-performance liquid chromatography coupled to ion spray mass spectrometry (HPLC-ISP-MS) has been developed for the identification and quantification of colchicine (COL) in human blood, plasma or urine. After single-step liquid-liquid extraction by dichloromethane at pH 8.0 using tofisopam (TOF) as an internal standard, solutes are separated on a 5-μm C18 Microbore (Alltech) column (250×1.0 mm, I.D.), using acetonitrile-2 mM NH4COOH, pH 3 buffer (75:25, v/v) as the mobile phase (flow-rate 50 μl/min). Detection is done by a Perkin-Elmer Sciex API-100 mass analyzer equipped with a ISP interface (nebulizing and curtain gas: N2, quality U; main settings: ISP, +4.0 kV; OR, +50 V; Q0, −10 V; Q1, −13 V; electron multiplier, +2.2 kV); MS data are collected as either total ion current (TIC, m/z 100–500 or 380–405), or selected ion monitoring (SIM) at m/z 400 and 383 for COL and TOF, respectively. COL mass spectrum shows a prominent molecular ion [M+H]+ at m/z 400. Increasing OR potential fails to provide a significant fragmentation. Retention times are 2.70 and 4.53 min for COL and TOF, respectively. The quantification method shows a good linearity (r = 0.998) over a concentration range from 5 to 200 ng/ml. The lower limit of detection in SIM mode is 0.6 ng/ml COL, making the method convenient for both clinical and forensic purposes.  相似文献   

17.
Specific features of cytotoxic (against tumor cells), hemolytic, and liposomal (effect on permeability) activities of triterpenoids isolated from sea cucumbers and ginseng roots were studied. It was shown that oleanolic acid, protopanaxatriol, and protopanaxadiol at 5 to 20 g/ml inhibited the growth of tumor cells, while at doses up to 100 g/ml, they did not induce hemolysis or changes in liposome permeability. Monoglucosides of protopanaxadiol, Rh 2, Rg 3, and substance K exerted moderate cytotoxic and membrane activities. The membrane sensitivity to these glucosides was inversely proportional to the membrane content of cholesterol. The cytotoxicity of the protopanaxadiol-active glycosides increased with a decrease of pH of the medium. All studied glycosides did not affect the cell and model lipid membranes. The activity of the oleanolic acid glycoside, ginsenoside Z-R1, depended to a great extent on the pH of the medium. The decrease of pH from 7.4 to 5.6 increased the membranolytic activities by more than one order of magnitude. Glycosides from sea cucumbers, echinosides A and B, holothurins A and B, holotoxin 1, and cucumarioside G 1, had very high cytotoxic and liposomal activities. Addition of cholesterol to cell membranes enhanced the cytotoxic effects of these glycosides. The ginsenosides with two carbohydrate moieties (bisdesmosides), as well as all the panaxatriol glycosides we studied did not exhibit cytotoxic activities against tumor cells or alter the permeability of model lipid and lipid-sterol membranes. The triterpenoids studied were classified into four categories in accordance with their membranotropic activities. A possible protective role of these glycosides in the organism-producent is discussed.  相似文献   

18.
《Inorganica chimica acta》1988,145(1):141-147
Aqueous solutions of dioxouranium(VI) (pH range 0 to 4) give rise to bands at 954 and 938 cm−1 attributable to the v3(MO2) stretching modes of the UO22+ and (UO2)2(OH)22+ cations, respectively. A shoulder at 916 cm−1 is assigned to the v3(MO2) mode of hydrolysed dioxouranium(VI) species of higher nuclearity. Infrared spectro-electrochemical studies using a thin-layer reflection-absorption cell have facilitated the study of the reduction of aqueous solutions of dioxouranium(VI) to yield dioxouranium(V) which may be further reduced to uranium(IV). The electrogeneration of dioxouranium(V) is monitored by following the increase in intensity of a band at 914 cm−1 which is present in the spectra at potentials between −0.2 and −0.8 V. The dioxouranium(V) species is predominantly in the form UO2+, which may be in solution or incorporated into an insoluble phase of uranium oxides which deposit onto the working electrode. The UVO bond length is estimated to be 1.76 Å, 0.03 Å longer than the UVIO bond in aqueous solution. The maximum concentration of UO2+able to be achieved is highly dependent on the pH and is optimum at pH 3.4. Changes in the pH of the solution under study can be monitored by infrared spectroscopy during the course of the reduction by determining the relative concentrations of hydrolysed dioxouranium(VI) species.  相似文献   

19.
Succinate production was studied in Escherichia coli AFP111, which contains mutations in pyruvate formate lyase (pfl), lactate dehydrogenase (ldhA) and the phosphotransferase system glucosephosphotransferase enzyme II (ptsG). Two-phase fermentations using a defined medium at several controlled levels of pH were conducted in which an aerobic cell growth phase was followed by an anaerobic succinate production phase using 100% (v/v) CO2. A pH of 6.4 yielded the highest specific succinate productivity. A metabolic flux analysis at a pH of 6.4 using 13C-labeled glucose showed that 61% of the PEP partitioned to oxaloacetate and 39% partitioned to pyruvate, while 93% of the succinate was formed via the reductive arm of the TCA cycle. The flux distribution at a pH of 6.8 was also analyzed and was not significantly different compared to that at a pH of 6.4. Ca(OH)2 was superior to NaOH or KOH as the base for controlling the pH. By maintaining the pH at 6.4 using 25% (w/v) Ca(OH)2, the process achieved an average succinate productivity of 1.42 g/l h with a yield of 0.61 g/g.  相似文献   

20.
Conventional three phase partitioning (TPP) and ultrasound assisted three phase partitioning (UATPP) were optimized for achieving the maximum extraction and purification of polyphenol oxidase ( PPO) from waste potato peels. Different process parameters such as ammonium sulfate (NH4)2SO4 concentration, crude extract to t‐butanol ratio, time, temperature and pH were studied for conventional TPP. Except agitation speed, the similar parameters were also optimized for UATPP. Further additional parameters were also studied for UATPP viz. irradiation time at different frequencies, duty cycle and, rated power in order to obtain the maximum purification factor and recovery of PPO. The optimized conditions for conventional TPP were (NH4)2SO4 0‐40% (w/v), extract to t‐butanol ratio 1:1 (v/v), time 40 min and pH 7 at 30°C. These conditions provided 6.3 purification factor and 70% recovery of PPO from bottom phase. On the other hand, UATPP gives maximum purification fold of 19.7 with 98.3% recovery under optimized parameters which includes (NH4)2SO4 0‐40% (w/v), crude extract to t‐butanol ratio 1: 1 (v/v) pH 7, irradiation time 5 min with 25 kHz, duty cycle 40% and rated power 150W at 30°C. UATPP delivers higher purification factor and % recovery of PPO along with reduced operation time from 40 min to 5 min when compared with TPP. SDS PAGE showed partial purification of PPO enzyme with UATPP with molecular weight in the range of 26‐36 kDa. Results reveal that UATPP would be an attractive option for the isolation and purification of PPO without need of multiple steps. © 2015 American Institute of Chemical Engineers Biotechnol. Prog., 31:1340–1347, 2015  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号