首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
In order to perform their functions as photosynthetic organs, leaves must cope with excess heat and potentially damaging ultraviolet radiation. Possible increases in the UV-B portion of the solar spectrum may place an additional burden on leaves, and this could be particularly important for young expanding leaves with poorly developed UV-B defense mechanisms. We evaluated the effects of supplemental UV-B radiation on leaf expansion and the development of photosynthetic capacity and pigments in sweetgum (Liquidambar styraciflua L.) seedlings. Seedlings were grown in the field under either ambient or ambient plus 3 or 5.0 kJ of biologically effective supplemental UV-B radiation. Although final leaf size was unaffected, the rate of leaf elongation and accumulation of leaf area was slower in leaves exposed to the lower supplemental UV-B irradiance. In contrast, chlorophyll accumulation and the development of photosynthetic capacity was more rapid in plants exposed to the higher, compared to the lower supplemental UV-B irradiance. The accumulation of anthocyanins and other putative flavonoids or UV-absorbing compounds was scarcely affected by exposure to supplemental UV-B radiation. These results suggest that the UV-B portion of the solar spectrum may, in the absence of gross affects on biomass, exert subtle influences on leaf ontogeny and the development of photosynthetic pigments and capacity in sweetgum.  相似文献   

2.
Exclusion of UV (280–380 nm) radiation from the solar spectrum can be an important tool to assess the impact of ambient UV radiation on plant growth and performance of crop plants. The effect of exclusion of UV-B and UV-A from solar radiation on the growth and photosynthetic components in soybean (Glycine max) leaves were investigated. Exclusion of solar UV-B and UV-B/A radiation, enhanced the fresh weight, dry weight, leaf area as well as induced a dramatic increase in plant height, which reflected a net increase in biomass. Dry weight increase per unit leaf area was quite significant upon both UV-B and UV-B/A exclusion from the solar spectrum. However, no changes in chlorophyll a and b contents were observed by exclusion of solar UV radiation but the content of carotenoids was significantly (34–46%) lowered. Analysis of chlorophyll (Chl) fluorescence transient parameters of leaf segments suggested no change in the F v/F m value due to UV-B or UV-B/A exclusion. Only a small reduction in photo-oxidized signal I (P700+)/unit Chl was noted. Interestingly the total soluble protein content per unit leaf area increased by 18% in UV-B/A and 40% in UV-B excluded samples, suggesting a unique upregulation of biosynthesis and accumulation of biomass. Solar UV radiation thus seems to primarily affect the photomorphogenic regulatory system that leads to an enhanced growth of leaves and an enhanced rate of net photosynthesis in soybean, a crop plant of economic importance. The presence of ultra-violet components in sunlight seems to arrest carbon sequestration in plants. An erratum to this article can be found at  相似文献   

3.
It has been suggested that field experiments which increase UV-B irradiation by a fixed amount irrespective of ambient light conditions (‘square-wave’), may overestimate the response of photosynthesis to UV-B irradiation. In this study, pea (Pisum sativum L.) plants were grown in the field and subjected to a modulated 30% increase in ambient UK summer UV-B radiation (weighted with an erythemal action spectrum) and a mild drought treatment. UV-A and ambient UV control treatments were also studied. There were no significant effects of the UV-B treatment on the in situ CO2 assimilation rate throughout the day or on the light-saturated steady-state photosynthesis. This was confirmed by an absence of UV-B effects on the major components contributing to CO2 assimilation; photosystem II electron transport, ribulose 1,5-bisphosphate regeneration, ribulose 1,5-bisphosphate carboxylase/oxygenase carboxylation, and stomatal conductance. In addition to the absence of an effect on photosynthetic activities, UV-B had no significant impact on plant biomass, leaf area or partitioning. UV-B exposure increased leaf flavonoid content. The UV-A treatment had no observable effect on photosynthesis or productivity. Mild drought resulted in reduced biomass, a change in partitioning away from shoots to roots whilst maintaining leaf area, but had no observable effect on photosynthetic competence. No UV-B and drought treatment interactions were observed on photosynthesis or plant biomass. In conclusion, a 30% increase in UV-B had no effects on photosynthetic performance or productivity in well-watered or droughted pea plants in the field.  相似文献   

4.
The aim of the present investigation was to define the role of soluble flavonoids as UV-B protectants in the primary leaf of barley (Hordeum vulgare L.). For this purpose we used a mutant line (Ant 287) from the Carlsberg collection of proanthocyanidin-free barley containing only 7% of total extractable flavonoids in the primary leaf as compared to the mother variety (Hiege 550/75). Seven-day-old leaves from plants grown under high visible light with or without supplementary UV-B radiation were used for the determination of UV-B sensitivity. UV-B-induced changes were assessed from parameters of chlorophyll fluorescence of photosystem II, including initial and maximum fluorescence, apparent quantum yield, and photochemical and non-photochemical quenching. A quartz fibre-optic microprobe was used to evaluate the amount of potentially harmful UV-B (310 nm radiation) penetrating into the leaf as a direct consequence of flavonoid deficiency. Our data indicate an essential role of flavonoids in UV-B protection of barley primary leaves. In leaves of the mutant line grown under supplementary UV-B, an increase in 310nm radiation in the mesophyll and a strong decrease in the quantum yield of photosynthesis were observed as compared to the corresponding mother variety. Primary leaves of liege responded to supplementary UV-B radiation with a 30% increase in the major flavonoid saponarin and a 500% increase in the minor compound lutonarin. This is assumed to be an efficient protective response since no changes in variable chlorophyll fluorescence were apparent. In addition, a further reduction in UV-B penetration into the mesophyll was recorded in these leaves.  相似文献   

5.
We have measured photosynthesis at the cellular, tissue, and whole leaf levels to understand the role of anthocyanin pigments on patterns of light utilization. Profiles of chlorophyll fluorescence through sections of red and green leaves of Quintinia serrata showed that anthocyanins in the mesophyll restricted absorption of green light to the uppermost palisade mesophyll. The distribution was further restricted when anthocyanins were also present in the upper epidermis. Mesophyll cells located beneath a cyanic light-filter assumed the characteristic photosynthetic features of shade-adapted cells. As a result, red leaves showed a 23% reduction in CO2 assimilation under light-saturating conditions, and a lower threshold irradiance for light-saturation, relative to those of green leaves. The photosynthetic characteristics of red leaves are comparable to those of shade-acclimated plants.  相似文献   

6.
Full recovery of the ozone layer is not expected for several decades and consequently, the incoming level of solar ultraviolet-B (UV-B) will only slowly be reduced. Therefore to investigate the structural and photosynthetic responses to changes in solar UV-B we conducted a 5-year UV-B exclusion study in high arctic Greenland. During the growing season, the gas exchange (H?O and CO?) and chlorophyll-a fluorescence were measured in Vaccinium uliginosum. The leaf dry weight, carbon, nitrogen, stable carbon isotope ratio, chlorophyll and carotenoid content were determined from a late season harvest. The net photosynthesis per leaf area was on average 22% higher in 61% reduced UV-B treatment across the season, but per ground area photosynthesis was unchanged. The leaf level increase in photosynthesis was accompanied by increased leaf nitrogen, higher stomatal conductance and F(v)/F(m). There was no change in total leaf biomass, but reduction in total leaf area caused a pronounced reduction of specific leaf area and leaf area index in reduced UV-B. This demonstrates the structural changes to counterbalance the reduced plant carbon uptake seen per leaf area in ambient UV-B as the resulting plant carbon uptake per ground area was not affected. Thus, our understanding of long-term responses to UV-B reduction must take into account both leaf level processes as well as structural changes to understand the apparent robustness of plant carbon uptake per ground area. In this perspective, V. uliginosum seems able to adjust plant carbon uptake to the present amount of solar UV-B radiation in the High Arctic.  相似文献   

7.
UV-B increases the harvest index of bean (Phaseolus vulgaris L.)   总被引:2,自引:1,他引:1  
The effects of small changes in natural UV-B on the photosynthesis, pigmentation, flowering and yield of bean plants (Phaseolus vulgaris L. var. Label) were studied. To obtain a relatively natural growth environment, the plants were grown in small, half-open greenhouses of UV-transmitting Plexiglas of different thickness (3 and 5 mm), resulting in an 8% difference in the weighted UV-B reaching the plants. Although the UV-B doses used did not significantly influence photosynthesis on a leaf area basis during vegetative growth, important changes in biomass allocation were noted. A UV-B-O induced reduction in leaf area during the period of vegetative growth resulted in decreased dry weight after 57 d. During the flowering and pod-filling stages (57–79.d after planting), however, plants grown at high UV-B retained their photosynthetic capacity longer: maximal photosynthesis, chlorophyll and N content of the leaves were higher under the higher UV-B dose at a plant age of 79 d. Combined with an increased allocation under the higher UV-B dose of both N and biomass to the pods, this resulted in a small increase in yield and an important increase in harvest index with increased UV-B.  相似文献   

8.
以青藏高原矮嵩草草甸的主要伴随种美丽风毛菊为材料,通过滤除太阳辐射光谱中UV-B成分的模拟试验,研究了强太阳UV-B辐射对高山植物光合作用、光合色素和紫外吸收物质的影响.结果表明:与对照相比,弱UV-B处理能促使美丽风毛菊叶片净光合速率增加和提高稳态PSⅡ光化学效率;对照中叶片厚度的相对增加能弥补单位叶面积光合色素的光氧化损失,是高山植物对强UV B辐射的一种适应方式.短期滤除UV-B辐射处理时紫外吸收物质含量几乎没有变化,说明高山植物叶表皮层中该类物质受环境波动的影响较小.强UV-B环境下光合色素的相对增加是一种表象,而青藏高原强太阳UV-B辐射对高山植物美丽风毛菊的光合生理过程仍具有潜在的负影响.  相似文献   

9.
The effects of drought on the photosynthetic characteristics of three Mediterranean plants (olive, Olea europea L.; rosemary, Rosmarinus officinalis L.; lavender, Lavandula stoechas L.) exposed to elevated UV-B irradiation in a glasshouse were investigated over a period of weeks. Drought conditions were imposed on 2-year-old plants by withholding water. During the onset of water stress, analyses of the response of net carbon assimilation of leaves to their intercellular CO2 concentration were used to examine the potential limitations imposed by stomata, carboxylation velocity and capacity for regeneration of ribulose 1,5-bisphosphate on photosynthesis. Measurements of chlorophyll fluorescence were used to determine changes in the efficiency of light utilization for electron transport, the occurrence of photoinhibition of photosystem II photochemistry and the possibility of stomatal patchiness across leaves. The first stages of water stress produced decreases in the light-saturated rate of CO2 assimilation which were accompanied by decreases in the maximum carboxylation velocity and the capacity for regeneration of ribulose 1,5-bisphosphate in the absence of any significant photodamage to photosystem II. Leaves of rosemary and lavender were more sensitive than those of olive during the first stages of the drought treatment and also exhibited increases in stomatal limitation. With increasing water stress, significant decreases in the maximum quantum efficiency of photosystem II photochemistry occurred in lavender and rosemary, and stomatal limitation was increased in olive. No indication of any heterogeneity of photosynthesis was found in any leaves. Drought treatment significantly decreased leaf area in all species, an important factor in drought-induced decreases in photosynthetic productivity. Exposure of plants to elevated UV-B radiation (0.47 W m(-2)) prior to and during the drought treatment had no significant effects on the growth or photosynthetic activities of the plants. Consequently, it is predicted that increasing UV-B due to future stratospheric ozone depletion is unlikely to have any significant impact on the photosynthetic productivity of olive, lavender and rosemary in the field.  相似文献   

10.
在中国科学院海北高寒草甸生态系统实验站的综合观测场, 于植物生长季的不同月份进行短期增补UV-B辐射的模拟试验, 研究了高山植物美丽风毛菊(Saussurea superba)的PSII光化学效率、光合色素和UV-B吸收物质对增强UV-B辐射的响应。结果表明, 尽管差异不显著, 暗适应3 min的PSII最大光化学量子效率在不同月份均有降低的趋势, 说明增强UV-B辐射能加剧光合机构的光抑制。不同月份短期增补UV-B辐射均引起光下PSII实际光化学量子效率和光化学猝灭系数的降低, 以及非光化学猝灭系数的增高, 表明增强UV-B辐射能降低叶片的光能捕获效率, 促进非光化学能量耗散过程。增补UV-B辐射后, 叶片光合色素的含量略有降低趋势, 可能与短时间内光合色素形成过程受抑制和光氧化程度的加剧, 以及叶片厚度的略微降低有关。UV-B吸收物质的含量在不同月份没有一致和较为显著的变化, 说明高原强UV-B环境下生存的美丽风毛菊叶表皮层中由类黄酮和衍生多酚类组成的内部紫外屏蔽物质相对稳定, 倾向于较少受增补UV-B辐射的影响。  相似文献   

11.
In temperate regions, evergreen species are exposed to large seasonal changes in air temperature and irradiance. They change photosynthetic characteristics of leaves responding to such environmental changes. Recent studies have suggested that photosynthetic acclimation is strongly constrained by leaf anatomy such as leaf thickness, mesophyll and chloroplast surface facing the intercellular space, and the chloroplast volume. We studied how these parameters of leaf anatomy are related with photosynthetic seasonal acclimation. We evaluated differential effects of winter and summer irradiance on leaf anatomy and photosynthesis. Using a broad-leaved evergreen Aucuba japonica , we performed a transfer experiment in which irradiance regimes were changed at the beginning of autumn and of spring. We found that a vacant space on mesophyll surface in summer enabled chloroplast volume to increase in winter. The leaf nitrogen and Rubisco content were higher in winter than in summer. They were correlated significantly with chloroplast volume and with chloroplast surface area facing the intercellular space. Thus, summer leaves were thicker than needed to accommodate mesophyll surface chloroplasts at this time of year but this allowed for increases in mesophyll surface chloroplasts in the winter. It appears that summer leaf anatomical characteristics help facilitate photosynthetic acclimation to winter conditions. Photosynthetic capacity and photosynthetic nitrogen use efficiency were lower in winter than in summer but it appears that these reductions were partially compensated by higher Rubisco contents and mesophyll surface chloroplast area in winter foliage.  相似文献   

12.
In a field experiment with rice (Oryza sativa L. cv. Saket 4) grown under ambient and supplemental ultraviolet-B (UV-B) radiation at 20 % ozone depletion, differences in gas exchange, concentrations of photosynthetic pigments, anthocyanins and flavonoids, biomass accumulation, catalase and peroxidase activities, and contents of ascorbic acid and phenol were determined. Decline in photosynthesis was associated with reductions in stomatal conductance and concentrations of photosynthetic pigments. Enhanced UV-B radiation (eUV-B) increased the contents of flavonoid and phenolic compounds in leaves. Peroxidase activity increased and catalase activity was always lower at eUV-B. The total plant biomass decreased at eUV-B.  相似文献   

13.
In a field experiment with rice (Oryza sativa L. cv. Saket 4) grown under ambient and supplemental ultraviolet-B (UV-B) radiation at 20 % ozone depletion, differences in gas exchange, concentrations of photosynthetic pigments, anthocyanins and flavonoids, biomass accumulation, catalase and peroxidase activities, and contents of ascorbic acid and phenol were determined. Decline in photosynthesis was associated with reductions in stomatal conductance and concentrations of photosynthetic pigments. Enhanced UV-B radiation (eUV-B) increased the contents of flavonoid and phenolic compounds in leaves. Peroxidase activity increased and catalase activity was always lower at eUV-B. The total plant biomass decreased at eUV-B.  相似文献   

14.
The objectives of this study were to determine the effects of UV-B radiation and atmospheric carbon dioxide concentrations ([CO(2)]) on leaf senescence of cotton by measuring leaf photosynthesis and chlorophyll content and to identify changes in leaf hyperspectral reflectance occurring due to senescence and UV-B radiation. Plants were grown in controlled-environment growth chambers at two [CO(2)] (360 and 720 micro mol mol(-1)) and three levels of UV-B radiation (0, 7.7 and 15.1 kJ m(-2) day(-1)). Photosynthesis, chlorophyll, carotenoids and phenolic compounds along with leaf hyperspectral reflectance were measured on three leaves aged 12, 21 and 30 days in each of the treatments. No interaction was detected between [CO(2)] and UV-B for any of the measured parameters. Significant interactions were observed between UV-B and leaf age for photosynthesis and stomatal conductance. Elevated [CO(2)] enhanced leaf photosynthesis by 32%. On exposure to 0, 7.7 and 15.1 kJ of UV-B, the photosynthetic rates of 30-day-old leaves compared with 12-day-old leaves were reduced by 52, 76 and 86%, respectively. Chlorophyll pigments were not affected by leaf age at UV-B radiation of 0 and 7.7 kJ, but UV-B of 15.1 kJ reduced the chlorophylls by 20, 60 and 80% in 12, 21 and 30-day-old leaves, respectively. The hyperspectral reflectance between 726 and 1142 nm showed interaction for UV-B radiation and leaf age. In cotton, leaf photosynthesis can be used as an indicator of leaf senescence, as it is more sensitive than photosynthetic pigments on exposure to UV-B radiation. This study revealed that, cotton leaves senesced early on exposure to UV-B radiation as indicated by leaf photosynthesis, and leaf hyperspectral reflectance can be used to detect changes caused by UV-B and leaf ageing.  相似文献   

15.
Ambient ultraviolet-B (UV-B) radiation potentially impacts the photosynthetic performance of high Arctic plants. We conducted an UV-B exclusion experiment in a dwarf shrub heath in NE Greenland (74°N), with open control, filter control, UV-B filtering and UV-AB filtering, all in combination with leaf angle control. Two sites with natural leaf positions had ground angles of 0° (‘level site’) and 45° (‘sloping site’), while at a third site the leaves were fixed in an angle of 45° to homogenize the irradiance dose (‘fixed leaf angle site’). The photosynthetic performance of the leaves was characterized by simultaneous gas exchange and chlorophyll fluorescence measurements and the PSII performance through the growing season was investigated with fluorescence measurements. Leaf harvest towards the end of the growing season was done to determine the specific leaf area and the content of carbon, nitrogen and UV-B absorbing compounds. Compared to a 60% reduced UV-B irradiance, the ambient solar UV-B reduced net photosynthesis in Salix arctica leaves fixed in the 45° position which exposed leaves to maximum natural irradiance. Also a reduced Calvin Cycle capacity was found, i.e. the maximum rate of electron transport (Jmax) and the maximum carboxylation rate of Rubisco (Vcmax), and the PSII performance showed a decreased quantum yield and increased energy dissipation. A parallel response pattern and reduced PSII performance at all three sites indicate that these responses take place in all leaves across position in the vegetation. These findings add to the evidence that the ambient solar UV-B currently is a significant stress factor for plants in high Arctic Greenland.  相似文献   

16.
The increase in ultraviolet-B (UV-B; 0.290-0.320 [mu]m) radiation received by plants due to stratospheric ozone depletion heightens the importance of understanding UV-B tolerance. Photosynthetic tissue is believed to be protected from UV-B radiation by UV-B-absorbing compounds (e.g. flavonoids). Although synthesis of flavonoids is induced by UV-B radiation, its protective role on photosynthetic pigments has not been clearly demonstrated. This results in part from the design of UV-B experiments in which experimental UV-A irradiance has not been carefully controlled, since blue/UV-A radiation is involved in the biosynthesis of the photosynthetic pigments. The relationship of flavonoids to photosynthetic performance, photosynthetic pigments, and growth measures was examined in an experiment where UV-A control groups were included at two biologically effective daily UV-B irradiances, 14.1 and 10.7 kJ m-2. Normal, chlorophyll-deficient, and flavonoid-deficient pigment isolines of two soybean (Glycine max) cultivars that produced different flavonol glycosides (Harosoy produced kaempferol, Clark produced quercetin and kaempferol) were examined. Plants with higher levels of total flavonoids, not specific flavonol glycosides, were more UV-B tolerant as determined by growth, pigment, and gas-exchange variables. Regression analyses indicated no direct relationship between photosynthesis and leaf levels of UV-B-absorbing compounds. UV-B radiation increased photosynthetic pigment content, along with UV-B-absorbing compounds, but only the former (especially carotenoids) was related to total biomass (r2 = 0.61, linear) and to photosynthetic efficiency (negative, exponential relationship, r2 = 0.82). A reduction in photosynthesis was associated primarily with a stomatal limitation rather than photosystem II damage. This study suggests that both carotenoids and flavonoids may be involved in plant UV-B photoprotection, but only carotenoids are directly linked to photoprotection of photosynthetic function. These results additionally show the importance of UV-A control in UV-B experiments conducted using artificial lamps and filters.  相似文献   

17.
Sisson WB 《Plant physiology》1981,67(1):120-124
Net photosynthesis, growth, and ultraviolet (UV) radiation absorbance were determined for the first leaf of Cucurbita pepo L. exposed to two levels of UV-B irradiation and a UV-B radiation-free control treatment. Absorbance by extracted flavonoid pigments and other UV-B radiation-absorbing compounds from the first leaves increased with time and level of UV-B radiation impinging on leaf surfaces. Although absorbance of UV-B radiation by extracted pigments increased substantially, UV-B radiation attenuation apparently was insufficient to protect completely the photosynthetic apparatus or leaf growth processes. Leaf expansion was repressed by daily exposure to 1365 Joules per meter per day of biologically effective UV-B radiation but not by exposure to 660 Joules per meter per day. Photosynthesis measured through ontogenesis of the first leaf was depressed by both UV-B radiation treatments. Repression of photosynthesis by UV-B radiation was especially evident during the ontogenetic period of maximum photosynthetic activity.  相似文献   

18.
We compared photosynthetic and UV-B-absorbing pigment concentrations, gas-exchange rates and photosystem II (PSII) electron transport rates in leaves of pea (Pisum sativum mutant Argenteum) grown without UV-B or under an enhanced UV-B treatment (18 kJ m?2 biologically effective daily dose) in a greenhouse. We also compared the distribution of chlorophyll by depth within leaves of each treatment by using image analysis of chlorophyll autofluorescence. Ultraviolet-B treatment elicited putative protective responses such as an 80% increase in UV-B-absorbing compound concentrations (leaf-area basis), and a slight increase in mesophyll thickness (178 in controls compared to 191 μm in UV-B-treated leaves). However, photosynthetic rates of UV-B-treated leaves were only 80% of those of controls. This was paralleled by reductions in leaf conductance to water vapor (50% of controls) and intercellular CO2 concentrations, suggesting that stomatal limitations were at least partly responsible for lower photosynthetic rates under the UV-B treatment. Total chlorophyll concentrations (leaf-area basis) in UV-B-treated leaves were only 70% of controls, and there was a shift in the relative distribution of chlorophyll with depth in UV-B-treated leaves. In control leaves chlorophyll concentrations were highest near the adaxial surface of the upper palisade, dropped with depth and then increased slightly in the bottom of the spongy mesophyll nearest the abaxial surface. In contrast, in UV-B-treated leaves chlorophyll concentrations were lowest at the adaxial surface of the upper palisade and increased with depth through the leaf. The most notable treatment difference in chlorophyll concentrations was in the upper palisade near the adaxial surface of leaves, where we estimate that chlorophyll concentrations in each 1-μm-thick paradermal layer were about 50% lower in UV-B-treated leaves than in controls. We found reduced electron transport capacity in UV-B-treated leaves, based on lower maximum fluorescence (Fm), variable to maximum fluorescence ratios (F,/Fm) and quantum yield of PSII electron transport (Y). However, the above were assessed from fluorometer measurements on the adaxial leaf surface and may reflect the markedly lower chlorophyll concentrations in the upper palisade of UV-B-treated leaves.  相似文献   

19.
Some have proposed that plant responses to above-ambient or supplemented levels of solar ultraviolet-B radiation (UV-B; 280–315 nm) are typically subtle because targets or receptors in plants become saturated. If true, in solar UV-B filter exclusion experiments we would expect that plant responses would level off or 'saturate' as doses approached ambient levels. To test this so-called 'saturation hypothesis' we examined the response of Gossypium hirsutum (cotton) and Sorghum bicolor (sorghum) to filter exclusions that provided five levels of biologically effective UV-B, ranging from 36 to 91% of ambient solar levels in Arizona, USA. UV-B dose had no effect on biomass production of either species. As UV-B dose increased or approached ambient, individual leaves of S. bicolor were smaller, but plants produced more tillers and leaves. In G. hirsutum , individual leaves as well as total plant leaf area were smaller, but plants produced more branches. Bulk concentrations of soluble UV-B absorbing compounds increased with UV-B dose in both species. Leaf epidermal UV-B transmittance, assessed with the chlorophyll fluorescence technique, declined with increasing UV-B dose, and was well correlated with bulk concentrations of soluble UV-B screening compounds. Bulk concentrations of insoluble or wall-bound UV-B absorbing compounds were not affected by UV-B dose. The intensity of UV-induced blue fluorescence from leaf surfaces was strongly correlated with bulk concentrations of wall-bound UV-B absorbing compounds, and this signal has the potential to provide a rapid, non-invasive method to estimate concentrations of these compounds, which are time-consuming to extract. While both species were responsive to solar UV-B, responses did not appear to become saturated as doses approached ambient levels. Rather, responses required a threshold dose of >70% of solar ambient UV-B levels before they became apparent.  相似文献   

20.
采用滤除自然光谱中UV-B辐射成分的方法, 探讨了高山植物美丽风毛菊(Saussurea superba)光合机构对青藏高原强UV-B辐射的响应和适应特性。结果表明, 强太阳光中的UV-B成分能引起净光合速率的降低。连续16天不同天气下的观测表明, 滤除UV-B处理时3 min暗适应的光化学量子效率有升高的趋势; 晴天下稳态光化学效率的分析也显示滤除UV-B处理的实际光化学量子效率和光化学猝灭系数有升高趋势, 意味着自然光中的UV-B成分可限制美丽风毛菊叶片PSII反应中心的激发能捕获效率。PSII有效光化学量子效率的增加和非光化学猝灭系数的降低进一步表明, UV-B辐射能导致有效光化学效率的降低和非光化学能量耗散的增加。由上可知, 自然强UV-B辐射是限制美丽风毛菊叶片光合作用的一个因素。滤除UV-B辐射处理对光合色素含量的影响较小, 无论以叶面积还是叶鲜重为基础的滤除UV-B处理仅有微弱的增加趋势, 说明强UV-B辐射具有加速光合色素的光氧化进程, 促进细胞成熟和叶片衰亡的潜在作用。同样UV-B吸收物质的含量也几乎没有变化, 表明强太阳辐射环境下生活的高山植物美丽风毛菊叶表皮层中已具有较多的紫外线屏蔽物质, 足以抵御目前环境中强太阳UV-B辐射可能引起的伤害, 较少受UV-B辐射波动的影响。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号