首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Park J  Lee MS  Yoo SM  Jeong KW  Lee D  Choe J  Seo T 《Journal of virology》2007,81(22):12680-12684
Kaposi's sarcoma-associated herpesvirus (KSHV) is the etiological agent of Kaposi's sarcoma. The open reading frame (K9) of KSHV encodes viral interferon regulatory factor 1 (vIRF1), which functions as a repressor of interferon-mediated signal transduction. The amino-terminal region of vIRF1 displays significant homology to the DNA-binding domain of cellular interferon regulatory factors, supporting the theory that the protein interacts with specific DNA sequences. Here, we identify the consensus sequence of vIRF1-binding sites from a pool of random oligonucleotides. Moreover, our data show that vIRF1 interacts with the K3:viral dihydrofolate reductase:viral interleukin 6 promoter region in the KSHV genome.  相似文献   

3.
4.
5.
6.
7.
8.
Interferon (IFN) signal transduction involves interferon regulatory factors (IRF). Kaposi's sarcoma-associated herpesvirus (KSHV) encodes four IRF homologues: viral IRF 1 (vIRF-1) to vIRF-4. Previous functional studies revealed that the first exon of vIRF-2 inhibited alpha/beta interferon (IFN-alpha/beta) signaling. We now show that full-length vIRF-2 protein, translated from two spliced exons, inhibited both IFN-alpha- and IFN-lambda-driven transactivation of a reporter promoter containing the interferon stimulated response element (ISRE). Transactivation of the ISRE promoter by IRF-1 was negatively regulated by vIRF-2 protein as well. Transactivation of a full-length IFN-beta reporter promoter by either IRF-3 or IRF-1, but not IRF-7, was also inhibited by vIRF-2 protein. Thus, vIRF-2 protein is an interferon induction antagonist that acts pleiotropically, presumably facilitating KSHV infection and dissemination in vivo.  相似文献   

9.
BACKGROUND: Kaposi's sarcoma-associated herpesvirus (KSHV) encodes a 442 amino acid polypeptide-designated viral interferon regulatory factor (vIRF) that displays homology to members of the interferon regulatory factor (IRF) family that bind to consensus interferon sequences and transactivate cellular genes that can modulate growth inhibition. Studies were conducted to determine whether vIRF affects the growth suppression mediated by interferon-alpha (IFN-alpha) in a human B lymphocyte cell line. MATERIALS AND METHODS: The human B lymphocyte cell line Daudi, which is sensitive to the antiproliferative effects of IFN-alpha, was stably transfected to express vIRF, and the proliferative response of vIRF expressing cells to IFN-alpha was compared with controls. The effect of vIRF on IRF- 1 transactivation was analyzed by co-transfection of an IFN-alpha-responsive chloramphenicol acetyltransferase reporter and expression plasmids encoding IRF-1 and vIRF. Electrophoretic mobility shift assays were conducted to determine whether vIRF interferes with the DNA binding activity of IRF-1. RESULTS: Daudi human B lymphocyte cells expressing vIRF were resistant to the antiproliferative effects of IFN-alpha, whereas wild-type Daudi or Daudi cells transformed with vector DNA were growth inhibited by IFN-alpha. The activation of an interferon-responsive reporter by IFN-alpha or IRF-1 was repressed by expression of vIRF. IRF-1 DNA binding activity was unaffected by vIRF, and vIRF alone did not bind to the interferon consensus sequence. CONCLUSIONS: These studies revealed that vIRF functions to inhibit interferon-mediated growth control of a human B lymphocyte cell line by targeting IRF-1 transactivation of interferon-inducible genes. Since KSHV is a B lymphotropic herpesvirus associated with two forms of B lymphocyte neoplasms, these effects of vIRF likely contribute to B cell oncogenesis associated with KSHV infection.  相似文献   

10.
11.
12.
13.
14.
Joo CH  Shin YC  Gack M  Wu L  Levy D  Jung JU 《Journal of virology》2007,81(15):8282-8292
Upon viral infection, the major defense mounted by the host immune system is activation of the interferon (IFN)-mediated antiviral pathway that is mediated by IFN regulatory factors (IRFs). In order to complete their life cycle, viruses must modulate the host IFN-mediated immune response. Kaposi's sarcoma-associated herpesvirus (KSHV), a human tumor-inducing herpesvirus, has developed a unique mechanism for antagonizing cellular IFN-mediated antiviral activity by incorporating viral homologs of the cellular IRFs, called vIRFs. Here, we report a novel immune evasion mechanism of KSHV vIRF3 to block cellular IRF7-mediated innate immunity in response to viral infection. KSHV vIRF3 specifically interacts with either the DNA binding domain or the central IRF association domain of IRF7, and this interaction leads to the inhibition of IRF7 DNA binding activity and, therefore, suppression of alpha interferon (IFN-alpha) production and IFN-mediated immunity. Remarkably, the central 40 amino acids of vIRF3, containing the double alpha helix motifs, are sufficient not only for binding to IRF7, but also for inhibiting IRF7 DNA binding activity. Consequently, the expression of the double alpha helix motif-containing peptide effectively suppresses IRF7-mediated IFN-alpha production. This demonstrates a remarkably efficient means of viral avoidance of host antiviral activity.  相似文献   

15.
Interferons (IFNs) and retinoids are potent biological response modifiers. The IFN-beta and all-trans-retinoic acid combination, but not these single agents individually, induces death in several tumor cell lines. To elucidate the molecular basis for these actions, we have employed an antisense knockout approach to identify the gene products that mediate cell death and isolated several genes associated with retinoid-IFN-induced mortality (GRIMs). One of the GRIM cDNAs, GRIM-12, was identical to human thioredoxin reductase (TR). To define the functional relevance of TR to cell death and to define its mechanism of death-modulating functions, we generated mutants of TR and studied their influence on the IFN/RA-induced death regulatory functions of caspases. Wild-type TR activates cell death that was inhibited in the presence of caspase inhibitors or catalytically inactive caspases. A mutant TR, lacking the active site cysteines, inhibits the cell death induced by caspase 8. IFN/all-trans-retinoic acid-induced cytochrome c release from the mitochondrion was promoted in the presence of wild type and was inhibited in the presence of mutant TR. We find that TR modulates the activity of caspase 8 to promote death. This effect is in part caused by the stimulation of death receptor gene expression. These studies identify a new mechanism of cell death regulation by the IFN/all-trans-retinoic acid combination involving redox enzymes.  相似文献   

16.
Li Q  Means R  Lang S  Jung JU 《Journal of virology》2007,81(5):2117-2127
Upon viral infection, the major defense mounted by the host immune system is activation of the interferon (IFN)-mediated antiviral pathway. In order to complete their life cycles, viruses must modulate the host IFN-mediated immune response. The K3 and K5 proteins of a human tumor-inducing herpesvirus, Kaposi's sarcoma-associated herpesvirus (KSHV), have been shown to downregulate the surface expression of host immune modulatory receptors by increasing their endocytosis rates, which leads to suppression of cell-mediated immunity. In this report, we demonstrate that K3 and K5 both specifically target gamma interferon receptor 1 (IFN-gammaR1) and induce its ubiquitination, endocytosis, and degradation, resulting in downregulation of IFN-gammaR1 surface expression and, thereby, inhibition of IFN-gamma action. Mutational analysis indicated that K5 appeared to downregulate IFN-gammaR1 more strongly than K3 and that the amino-terminal ring finger motif and the carboxyl-terminal region of K5 were necessary for IFN-gammaR1 downregulation. These results suggest that KSHV K3 and K5 suppress both cytokine-mediated and cell-mediated immunity, which ensures efficient viral avoidance of host immune controls.  相似文献   

17.
18.
Chen W  Dittmer DP 《Journal of virology》2011,85(18):9495-9505
The latency-associated nuclear antigen (LANA) is central to the maintenance of Kaposi's sarcoma-associated herpesvirus (KSHV) and to the survival of KSHV-carrying tumor cells. In an effort to identify interaction partners of LANA, we purified authentic high-molecular-weight complexes of LANA by conventional chromatography followed by immunoprecipitation from the BC-3 cell line. This is the first analysis of LANA-interacting partners that is not based on forced ectopic expression of LANA. Subsequent tandem mass spectrometry (MS/MS) analysis identified many of the known LANA-interacting proteins. We confirmed LANA's interactions with histones. Three classes of proteins survived our stringent four-step purification procedure (size, heparin, anion, and immunoaffinity chromatography): two heat shock proteins (Hsp70 and Hsp96 precursor), signal recognition particle 72 (SRP72), and 10 different ribosomal proteins. These proteins are likely involved in structural interactions within LANA high-molecular-weight complexes. Here, we show that ribosomal protein S6 (RPS6) interacts with LANA. This interaction is mediated by the N-terminal domain of LANA and does not require DNA or RNA. Depletion of RPS6 from primary effusion lymphoma (PEL) cells dramatically decreases the half-life of full-length LANA. The fact that RPS6 has a well-established nuclear function beyond its role in ribosome assembly suggests that RPS6 (and by extension other ribosomal proteins) contributes to the extraordinary stability of LANA.  相似文献   

19.
20.
The Kaposi's sarcoma-associated herpesvirus (KSHV) is the causative agent of Kaposi's sarcoma (KS), and the induction of an invasive cellular phenotype by KSHV following de novo infection is an important pathogenic component mediating tumor progression. The metastasis suppressor gene known as Nm23-H1 regulates tumor cell invasiveness, but whether KSHV itself regulates Nm23-H1 expression or subcellular localization, and whether this impacts cell invasiveness, has not been established. We found that KSHV increases expression and nuclear translocation of Nm23-H1 and that nuclear translocation of Nm23-H1 is regulated by the KSHV-encoded latency-associated nuclear antigen (LANA). Moreover, activation of the Ras-BRaf-MAPK (mitogen-activated protein kinase) signal transduction pathway, secretion of promigratory factors associated with this pathway, and cell invasiveness are dependent on KSHV regulation of Nm23-H1. Finally, induction of cytoplasmic overexpression of Nm23-H1 using a pharmacologic inhibitor of DNA methylation reduced KSHV-associated Ras-BRaf-MAPK pathway activation and suppressed KSHV-induced invasiveness. These data provide the first evidence for KSHV regulation of Nm23-H1 as a mechanism for KSHV induction of an invasive cellular phenotype and support the potential utility of targeting Nm23-H1 as a therapeutic approach for the treatment of KS.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号