首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The pronounced diurnal rhythm in DNA distribution of the hamster check pouch epithelium both in the S fraction and in the (G2+ M) fraction was compared with previous studies of the changes in tritiated thymidine labelling index and mitotic activity. the DNA distributions were obtained by flow cytometry after ultrasonic disaggregation of the isolated epithelium into a suspension of single nuclei. the DNA distributions were analysed with the computer program of J. Fried (1976) and by planimetry. the S fraction was higher than the autoradiographic labelling index during the whole 24 hr period. Only the computer fitted S fraction and the labelling index had the same difference between maximal and minimal values, and maxima at the same time of day. the DNA distributions showed a diurnal release of G1 cells into S phase proceeding through (G2+ M) phase and returning to G1 phase within a 24 hr period.  相似文献   

2.
Synchronization of the human promyelocytic cell line HL 60 by thymidine   总被引:2,自引:0,他引:2  
Cultures of the promyelocytic cell line HL 60 were synchronized with thymidine. A concentration of 0.05 mM thymidine and an exposure time of 24 hr was found optimal for blocking about 90% of the cells in S phase. Following release from the thymidine block the cell cultures were followed intermittently over 40 hr for fluctuation in cell numbers, labelling with radioactive thymidine and nuclear DNA distributions. Mathematical evaluation of the results revealed a cycling time of 18.6 hr and a duration of specific cell phases of 8.6 hr, 7.1 hr and 2.9 hr for G1, S and G2 + M, respectively. The doubling time was 26 hr and the growth fraction was estimated as 1.  相似文献   

3.
The partially synchronized cell system of the hamster cheek pouch epithelium shows a characteristic diurnal rhythm of cell proliferation. Bolus injections of methotrexate (Mtx) in both lethal (10 g/m2) and non-lethal (2 g/m2) doses were found to inhibit cell-cycle progression primarily by impairing the G1/S transition. The results were obtained by flow cytometric DNA analysis. The inhibitory effect of Mtx manifested itself as a relative decrease of the S fraction (drug-effector phase), and was found to be dependent both on the dose and on the time of the day it was given. A bolus injection of Mtx was given either at 1200 hr (when a minimal number of cells are in S phase) or at 0200 hr (when a maximum number of cells are in S phase). The greatest cumulative decrease in S fraction was seen when the injection was given at 1200 hr. The time between injection and the effect (seen as a decrease in S fraction) was independent of the time of the Mtx injection, but seemed instead to be related to the natural diurnal period of increasing flux from G1 to S phase (at the onset of the dark period). The main effect (the relative decrease in S fraction) was repeated during the following 24-hr period, pointing to a protracted effect of Mtx on G1 cells. G1 cells affected by the initial high Mtx plasma concentration seem to be responsible for the reduced influx into S phase in both the first and second 24-hr period. In earlier toxicological studies, the survival rate of hamsters was dependent on the time of injection and was highest after injection at 1200 hr. Thus maximum cytokinetic effect on epithelial cells was found at the time of the day when there was a minimum lethal effect on the animal.  相似文献   

4.
Cultures of the promyelocytic cell line HL 60 were synchronized with thymidine. A concentration of 0.05 mM thymidine and an exposure time of 24 hr was found optimal for blocking about 90% of the cells in S phase. Following release from the thymidine block the cell cultures were followed intermittently over 40 hr for fluctuation in cell numbers, labelling with radioactive thymidine and nuclear DNA distributions. Mathematical evaluation of the results revealed a cycling time of 18.6 hr and a duration of specific cell phases of 8.6 hr, 7.1 hr and 2.9 hr for G1, S and G2+ M, respectively. the doubling time was 26 hr and the growth fraction was estimated as 1.  相似文献   

5.
The circadian rhythm of hepatic cell proliferation in rats appears on the 20th day of life, when the hypothalamo-adrenal axis is mature enough for circadian activity to occur. From the 20th day to the 30th day of life, the mitotic rhythm is progressively induced by a reduction in nocturnal values, while diurnal rhythms remain unchanged. Mitotic peaks emerge at 10.00 hours. A labelling index wave occurs 8 hr before the corresponding mitotic wave, with a peak at 02.00 hours and a minimum in the evening, coincidental with the acrophase of plasma corticosterone level (activity phase). Labelled mitoses curves and metaphase accumulation after colchicine injection show that the duration of the S, G2 and M phases remain approximately constant and that the circadian variation is due to a variation in the rate of cells that enter these successive phases. During the synchronization period (from day 20 to 30), the growth fraction decreases progressively. Adrenalectomy at this time is followed by a higher cell proliferation and all rhythms disappear after 2 days. Corticosterone injected before the triggering of the rhythmic activity in 17-day-old rats immediately reduces the labelling index, while the mitotic index is decreased 10 hr later; this delay is equal to the S + G2 duration. The results are discussed. They favour the hypothesis that the circadian variation of corticosterone is responsible for the induction of a circadian variation in developmental cell proliferation by inhibition of the G1-S transition when it is higher in the evening.  相似文献   

6.
A single injection of d-galactosamine given to rats at different times after partial hepatectomy (PH) changes the pattern of regenerative proliferation. When administered during the pre-replicative phase of regeneration, the onset of DNA synthesis and the increase in labelling index after injection of 3H-thymidine are delayed by about 12 hr. The injection of d-galactosamine at 24 hr after PH inhibits the drop in DNA synthesis occurring normally during the following 12 hr period. This was detected by a high labelling index and by an increased specific activity of DNA. The findings indicate a lengthening of the S phase, while G2 and M remain normal. Two modes of action of d-galactosamine on the cell cycle are discussed.  相似文献   

7.
Abstract. By means of a double-labelling experiment, circadian variations in the kinetic parameters of the S phase of the hamster cheek pouch epithelium were studied. The evaluation of the experiment included a recently developed correction for deviations from the strict pulse interpretation of the labelling technique.
Pronounced circadian variations were found in S phase influx and efflux; the diurnal mean of both was estimated as 0.5%/hr, when based on measurements of all nucleated epithelial cells. Variations in S phase influx seem mainly responsuble for the diurnal variation in cell proliferation, although diurnal variation in DNA synthesis rate, and thus in mean transit time, was also found. The increases in LI and influx were closely correlated and related to the beginning of the dark period.
A circadian variation in cell number was also observed.  相似文献   

8.
A simple stochastic model has been developed to determine the cell cycle kinetics of the isoprenaline stimulated proliferative response in rat acinar cells. The response was measured experimentally, using 3H-TdR labelling of interphase cells and cumulative collections of mitotic cells with vincristine. The rise and fall of the fraction of labelled interphase cells and of metaphase cells is expressed by the product of the proliferative fraction and a difference of probability distributions. The probability statements of the model were formulated and then compared by an iterative fitting procedure to experimental data to obtain estimates of the model parameters. The model when fitted to the combined fraction labelled interphase (FLIW) and fraction metaphase (FMWa) waves gave a mean Gis transit time of 21-2 hr, mean Gis +S transit time of 27-0 hr, and mean Gis + S + G2 transit time of 35-8 hr for a single injection of isoprenaline, where Gis is the initiation to S phase time. When successive injections of isoprenaline were given at intervals of 24 and 28 hr the corresponding values after the third injection were 12-4 hr, 20-8 hr and 25-7 hr respectively. The variance of the Gis phase dropped from 18-1 to 1-3 while the other variances remained unchanged. The estimated proliferative fraction was 0-24 after a single injection of isoprenaline, and 0.31 after three injections of the drug. Independently determined values of the proliferative fraction, obtained from repeated 3H-TdR injections, were 0-21 and 0-36 respectively.  相似文献   

9.
The partially synchronized cell system of the hamster cheek pouch epithelium shows a characteristic diurnal rhythm of cell proliferation. Bolus injections of methotrexate (Mtx) in both lethal (10 g/m2) and non-lethal (2 g/m2) doses were found to inhibit cell-cycle progression primarily by impairing the G1/S transition. the results were obtained by flow cytometric DNA analysis. the inhibitory effect of Mtx manifested itself as a relative decrease of the S fraction (drug-effector phase), and was found to be dependent both on the dose and on the time of the day it was given. A bolus injection of Mtx was given either at 1200 hr (when a minimal number of cells are in S phase) or at 0200 hr (when a maximum number of cells are in S phase). the greatest cumulative decrease in S fraction was seen when the injection was given at 1200 hr. the time between injection and the effect (seen as a decrease in S fraction) was independent of the time of the Mtx injection, but seemed instead to be related to the natural diurnal period of increasing flux from G1 to S phase (at the onset of the dark period). the main effect (the relative decrease in S fraction) was repeated during the following 24-hr period, pointing to a protracted effect of Mtx on G1 cells. G1 cells affected by the initial high Mtx plasma concentration seem to be responsible for the reduced influx into S phase in both the first and second 24-hr period. In earlier toxicological studies, the survival rate of hamsters was dependent on the time of injection and was highest after injection at 1200 hr. Thus maximum cytokinetic effect on epithelial cells was found at the time of the day when there was a minimum lethal effect on the animal.  相似文献   

10.
Cell proliferation in the murine thymus was studied in vivo under normal conditions and from 0 to 24 hr after a single injection of a water-soluble extract from mouse thymus, mouse spleen, and mouse skin. The thymus extract reduced during the first 24 hr the mitiotic activity 40%; the spleen extract had a weaker inhibitory effect. The skin extract had no such effect. The thymus extract and spleen extract inhibited the flux of cells into the S phase 0-8 hr after the injection of the extract. Initial labelling index was also reduced in this period. Eight hours after injection of the thymus or spleen extracts the inhibited cells initiated DNA synthesis. The rate of progression of blast cells through the cell cycle was normal 24 hr after the injection of the extracts. It was deduced from the analysis that the thymus extract inhibits processes triggering G0/G1 cells into DNA synthesis, the inhibition of G2 efflux being of minor importance. Finally a model for the regulation of proliferating thymic blast cells and the emigration of small lymphocytes from the thymus is proposed.  相似文献   

11.
A prominent circadian rhythm was found in the labelling indices (LI) of the peripheral rat corneal epithelium and of the adjacent conjunctival epithelium, while almost no diurnal variation was found in the central area. Application of a double labelling technique indicated that there are rhythmic pulses of high and low influx of cells into the S phase and similar pulses of efflux of cells from the S phase. Results of the study indicate that there are different cohorts of cycling cells all over the rat corneal epithelium. Cells belonging to a rapidly proliferating cohort are observed in the peripheral cornea. There is a gradual reduction in the fraction of labelled DNA-synthesizing cells towards the centre. The considerably lower fraction of cells taking up tritiated thymidine (3H)TdR in the central cornea may be due to a higher fraction of basal cells having reached higher levels of differentiation. This may result in a shift from the salvage to the de novo pathway. The slowly proliferating cohort seems to have a prolonged S phase duration and displays practically no diurnal variation in the LI. The DNA-synthesizing cells belonging to this latter cohort probably use the salvage pathway for DNA synthesis resulting in uptake of (3H)TdR all over the cornea. The LI is thus not a reliable indicator of cell proliferation in the corneal epithelium, due both to the heterogeneity of the cell proliferation, and in particular due to the lack of labelling of the centrally located DNA-synthesizing cells. To what extent these properties may also be present in other proliferating tissues with different levels of differentiations, may be questioned.  相似文献   

12.
Median S-phase lengths of pinna epidermis and sebaceous glands, and of epithelia from the oesophagus and under surface of the tongue of Albino Swiss S mice were estimated by the percentage labelled mitoses method (PLM). The 18.4 and 18,8 hr for the median length of S-phase for pinna epidermis and sebaceous glands respectively made it possible for these two tissues to be used experimentally for testing tissue specificity in chalone assay experiments. The 10.0 and 11.5 hr for oesophagus ang tongue epithelium respectively made experimental design for chalone assay difficult when pinna epidermis was the target tissue. The results of the Labelling Index measured each hour throughout a 24-hr period showed no distinct single peaked diurnal rhythm for pinna epidermis and sebaceous glands. Instead a circadian rhythm with several small peaks occurred which would be expected if an S-phase of approximately 18 hr was imposed on the diurnal rhythm. This indicates that there may be very little change in the rate of DNA synthesis. The results are given for the assay in vivo of purified epidermal G1 and G2 chalones, and the 72--81% ethanol precipitate of pig skin from which they could be isolated. These experiments were performed over a time period which took into account the diurnal rhythm of activity of the mice as well as the S-phase lengths. Extrapolating the results with time of action of the chalone shows that the G1 chalone acts at the point of entry into DNA synthesis and that the S-phase length was approximately 17 hr for both the pinna epidermis and sebaceous glands. This may be a more correct value since the PLM method overestimates the median S-phase length as it is known that in pinna skin the [3H]TdR is available to the tissues for 2 hr and true flash labelling does not take place. The previous reports that epidermal G1 chalone acts some hours prior to entry into S-phase resulted from experiments on back skin where the S-phase is shorter and there is a pronounced diurnal rhythm which could mask the chalone effect. The epidermal G2 chalone had no effect on DNA synthesis even at different times in the circadian rhythm. Thus the circadian rhythms and S-phase lengths of the test tissues need to be considered when experiments are performed with chalones. Ideally, the target tissues selected for cell line specificity tests should have the same cell kinetics for the easier and more accurate assessment and interpretation of results. When the tissues have markedly different cell kinetics, experimental procedures and results need to be evaluated accordingly. The point of action of G1 chalone can only be assessed if the effect is measured over the peak of incorporation of [3H]TdR into DNA. The results of the effects of skin extracts are analysed in relation to changes in the availability of [3H]TdR for the incorporation into DNA and to the possibility of there being two distinct populations of proliferating cells.  相似文献   

13.
In some cases of acute lymphoblastic leukaemia (ALL) the percentage of cells in G2 + M is higher than anticipated when compared with the percentage in S phase. This increase in G2 + M, as detected by flow cytometry measurement of DNA content, may be due to an accumulation of cells, either in G2 or during the end of S phase; it may also be related to the existence of small tetraploid clones generally ignored by cytogeneticists. In order to identify possible subpopulations of cells with a DNA index greater than or equal to 2.0, we have compared the results of a cytogenetic analysis to the G2 + M values. We have also studied the distribution of S phase cells in 24 cases of ALL by incorporating 5-bromodeoxyuridine, labelling the cells by indirect immunofluorescence, and analysing them by flow cytometry after propidium iodide staining. The distribution of cells during S phase was quantified: no accumulation of cells was ever observed at the end of S phase. The question of the existence of small tetraploid clones, G2 arrested cells or cells with a G2 elongation remains open. However, we feel that it is more probable that, in this pathology, an elongation of the duration of G2 occurs.  相似文献   

14.
The purpose of this study was to investigate the cell cycle perturbation of cultured C6 rat glioma cells induced by 1-(4-amino-2-methyl-5-pyrimidyl)methyl-3-(2-chloroethyl)3-nitrosourea hydrochloride (ACNU) using simultaneous flow cytometric measurements of DNA and bromodeoxyuridine (BrdU) content. A new graphic computer program permitted the quantification of cell density in hexagonal subareas and allowed the fraction of BrdU-labeled cells with mid-S phase DNA content (FLS) to be defined in a narrow window. The cell kinetic parameters such as cell cycle time (Tc) and S phase time (Ts) were estimated from a manually plotted FLS curve at 18 and 6 hr, respectively. The major effect of ACNU on the cell cycle was an accumulation of the cells in the G2M phase 12 to 24 hr posttreatment when compared to G2M traverse of untreated cells. For the two-dimensional analysis, cells were labeled with BrdU and then treated with ACNU, or treated with ACNU and then labeled with BrdU. It was concluded that the cells in the S and G2M phases at the time of ACNU administration progressed to mitosis but that the G1 phase cells accumulated in the subsequent G2M phase. Two-dimensional FCM analysis using BrdU provided a useful tool in studying cell cycle perturbation.  相似文献   

15.
The influence of pulse labelling with 50 microCi tritiated thymidine ( [3H]TdR) (2 microCi/g) on epidermal cell-cycle distribution in mice was investigated. Animals were injected intraperitoneally with the radioactive tracer or with saline at 08.00 hours, and groups of animals were sacrificed at intervals during the following 32 hr. Epidermal basal cells were isolated from the back skin of the animals and prepared for DNA flow cytometry, and the proportions of cells in the S and G2 phases of the cell cycle were estimated from the obtained DNA frequency distributions. The proportions of mitoses among basal cells were determined in histological sections from the same animals, as were the numbers of [3H]TdR-labelled cells per microscopic field by means of autoradiography. The results showed that the [3H]TdR activity did not affect the pattern of circadian rhythms in the proportions of cells in S, G2 and M phase during the first 32 hr after the injection. The number of labelled cells per vision field was approximately doubled between 8 and 12 hr after tracer injection, indicating an unperturbed cell-cycle progression of the labelled cohort. In agreement with previous reports, an increase in the mitotic index was seen during the first 2 hr. These data are in agreement with the assumption that 50 microCi [3H]TdR given as a pulse does not perturb cell-cycle progression in mouse epidermis in a way that invalidates percentage labelled mitosis (PLM) and double-labelling experiments.  相似文献   

16.
Abstract. From the 20th day to the 30th day of life, the mitotic rhythm is progressively induced by a reduction in nocturnal values, while diurnal rhythms remain unchanged. Mitotic peaks emerge at 10.00 hours.
A labelling index wave occurs 8 hr before the corresponding mitotic wave, with a peak at 02.00 hours and a minimum in the evening, coincidental with the acrophase of plasma corticosterone level (activity phase).
Labelled mitoses curves and metaphase accumulation after colchicin injection show that the duration of the S, G2 and M phases remain approximately constant and that the circadian variation is due to a variation in the rate of cells that enter these successive phases. During the synchronization period (from day 20 to 30), the growth fraction decreases progressively. Adrenalectomy at this time is followed by a higher cell proliferation and all rhythms disappear after 2 days.
Corticosterone injected before the triggering of the rhythmic activity in 17-day-old rats immediately reduces the labelling index, while the mitotic index is decreased 10 hr later; this delay is equal to the S + G2 duration.
The results are discussed. They favour the hypothesis that the circadian variation of corticosterone is responsible for the induction of a circadian variation in developmental cell proliferation by inhibition of the G1-S transition when it is higher in the evening.
The circadian rhythm of hepatic cell proliferation in rats appears on the 20th day of life, when the hypothalamo-adrenal axis is mature enough for circadian activity to occur.  相似文献   

17.
Resting cells in tumours present a major problem in cancer chemotherapy. In the plateau phase of grwoth of the murine JB-1 ascites tumour (i.e. 10 days after 2-5 X 10(6) cells i.p.) large fractions of non-cycling cells with G1 and G2 DNA content (Q1 and Q2 cells) are present, and the fate of these resting cells was investigated after treatment with 1-beta-D-arabinofuranosylcytosine (Ara-C).The experimental work of growth curves, percentage of labelled mitoses curves after continuous labelling with 3H-TdR, and cytophotometric determination of single-cell DNA content in unlabelled tumour cells. Treatment with an i.p. single injection of Ara-C 200 mg/kg in the plateau JB-1 tumour resulted in a significant reduction in the number of tumour cells 1 and 2 days later as compared with untreated controls, while no difference in the number of tumour cells was observed after 3 days. In tumours prelabelled with 3H-TdR 24 hr before Ara-C treatment, a significant decrease in the percentage of labelled mitoses was observed 6-8 hr later followed by a return to the initial value after 12 hr, and a new pronounced fall from 20 hr after Ara-C. The second fall in the percentage of labelled mitoses disappeared when the labelling with 3H-TdR was continued also after Ara-C treatment. Cytophotometry of unlabelled tumour cells prelabelled for 24 hr with 3H-TdR before Ara-C treatment showed 20 hr after Ara-C a pronounced decrease in the fraction of Q1 cells paralleled by an increase in the fraction of unlabelled cells with S DNA content. The results indicate recycling of resting cells first with G2 and later with G1 DNA content, which contribute to the regrowth of the tumours.  相似文献   

18.
Hepatocytes, isolated from adult (250-350 g) rats, attached and survived well in primary culture on highly diluted (less than 1 microgram/cm2) collagen gel in a synthetic medium without serum or hormones. About 20% of the cells "spontaneously" entered S phase during the first 4 days of culturing, and mitoses were easily demonstrated at the near physiological concentration (1.25 mM) of Ca++ prevailing in the medium. Cultures given 9 nM epidermal growth factor (EGF) and 20 nM insulin 20 h after inoculation showed vigorous DNA synthesis and mitotic activity. Autoradiography of such cells exposed to [3H]thymidine allowed the determination of the following cell cycle parameters: Lag period from EGF/insulin stimulation till onset of increased DNA synthesis, 17 h; rate of entry into S phase (kG1/S), 0.028/h; duration of S phase, 8.4 h; duration of G2 phase, 2.7 h. The peak DNA synthesis (pulse labelling index, 24%) and peak mitotic activity (mitotic index, 1.7%) occurred 35 and 43 h, respectively, after the stimulation with EGF/insulin. These values are comparable to those reported during the in vivo compensatory hyperplasia following partial hepatectomy of adult rats. A marked variation of the intranuclear [3H]thymidine pulse labelling pattern was noted: During the first 1.5 h of the S phase, the labelling was extranucleolar and during the last 1.5 h chiefly nucleolar. The cells survived well in the absence of glucocorticoid, whose effect on cell cycle parameters therefore could be studied. Dexamethasone (25-250 nM) did not appreciably affect the durations of S phase and G2 phase or the pattern of preferential extranucleolar and nucleolar DNA synthesis within the S phase.  相似文献   

19.
The isolation of mutants requiring -asparagine from a population of BHK 21/13 cells has enabled us to synchronize the cell growth using the deprivation effect of this amino acid. In the absence of asparagine, cells cannot enter a new cycle of DNA synthesis and accumulate in G 1 phase, If asparagine is added to 24 h growth-arrested cultures, a wave of DNA synthesis is observed after a 6 h latency period, followed by a partially synchronous cell division reaching a 55% labelling index. During a 24 h period, in the presence of very small amounts of asparagine (1 to 6 × 10−6 M) a higher cell fraction accumulates at G 1 period. In these conditions the degree of synchronisation is improved, reaching an 85% labelling index, following a 24 h incubation in the presence of 6 × 10−6 M asparagine.L'isolement de mutants exigeants en -asparagine d'une population clonale de cellules BHK 21/13 nous a permis d'exploiter l'effet de la carence en cet acide aminé pour synchroniser les cellules. En l'absence d'asparagine, les cellules ne peuvent entrer dans un nouveau cycle de synthèse de DNA et s'accumulent en phase G 1. Après 24 h de carence, si l'on place les cellules ainsi quiescentes dans un milieu contenant de l'asparagine, on observe après un temps de latence de 6 h une onde de synthèse de DNA suivie d'une synchronisation partielle des divisions cellulaires. En présence de faibles quantités d'asparagine (1 à 6 × 10−6 M) un plus grand nombre de cellules s'accumulent en phase G 1 durant la période de carence de 24 h. Dans ces conditions l'enrichissement de cette phase en cellules nous a permis d'améliorer le degré de synchronisation et d'obtenir un index de marquage de 85% après une carence en 6 × 10−6 M d'asparagine.  相似文献   

20.
A diurnal rhythmicity in the labeling index was observed in the epidermis of hairless mice, injected with either 14C- or 3H-thymidine, at different times during a 24 hr period. A modified autoradiographic technique, using 14C- and 3H-thymidine and two overlying emulsion layers, makes it possible to clearly differentiate synthesizing cells which are singly labeled with either carbon-14 or tritium, and cells labeled with both isotopes. At various times during a 24 hr period, hairless mice were injected with thymidine-2-14C and colcemid, followed at 2 or 3 hr by a second injection of 3H-thymidine. The labeling indices were calculated for the 14C- and 3H-thymidine injection times. These labeling indices were consistent with the control, single isotope, labeling indices and exhibited the same diurnal rhythm. Cells singly labeled with 3H- or 14C-thymidine have either started or completed DNA synthesis during the interval between the two injections. Flow rates into and out of DNA synthesis, throughout the 24 hr period, can be calculated from these singly labeled cells. The flow rates varied rhythmically throughout the day and paralleled changes in the labeling indices. The influx and efflux flow rates, at all times measured, were not equal. The influx flow rate was reflected in the efflux rate at a time later equal to the duration of S. By means of these flow rates, the per cent of cells in DNA synthesis was calculated for each hour during a 24 hr period. The resulting labeling index curve matches the observed 24 hr diurnal rhythm in labeling indices. By extension of these flow rates through mitosis, the resulting mitotic index curve is comparable to the reported 24 hr diurnal rhythm in mitotic indices.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号