首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The kinetics of proton transfer in Green Fluorescent Protein (GFP) have been studied as a model system for characterizing the correlation between dynamics and function of proteins in general. The kinetics in EGFP (a variant of GFP) were monitored by using a laser-induced pH jump method. The pH was jumped from 8 to 5 by nanosecond flash photolysis of the "caged proton," o-nitrobenzaldehyde, and subsequent proton transfer was monitored by following the decrease in fluorescence intensity. The modulation of proton transfer kinetics by external perturbants such as viscosity, pH, and subdenaturing concentrations of GdnHCl as well as of salts was studied. The rate of proton transfer was inversely proportional to solvent viscosity, suggesting that the rate-limiting step is the transfer of protons through the protein matrix. The rate is accelerated at lower pH values, and measurements of the fluorescence properties of tryptophan 57 suggest that the enhancement in rate is associated with an enhancement in protein dynamics. The rate of proton transfer is nearly independent of temperature, unlike the rate of the reverse process. When the stability of the protein was either decreased or increased by the addition of co-solutes, including the salts KCl, KNO(3), and K(2)SO(4), a significant decrease in the rate of proton transfer was observed in all cases. The lack of correlation between the rate of proton transfer and the stability of the protein suggests that the structure is tuned to ensure maximum efficiency of the dynamics that control the proton transfer function of the protein.  相似文献   

2.
The iron-regulated surface determinants (Isd) of Staphylococcus aureus, including surface proteins IsdA, IsdB, IsdC, and IsdH and ATP-binding cassette transporter IsdDEF, constitute the machinery for acquiring heme as a preferred iron source. Here we report hemin transfer from hemin-containing IsdA (holo-IsdA) to hemin-free IsdC (apo-IsdC). The reaction has an equilibrium constant of 10 +/- 5 at 22 degrees C in favor of holo-IsdC formation. During the reaction, holo-IsdA binds to apo-IsdC and then transfers the cofactor to apo-IsdC with a rate constant of 54.3 +/- 1.8 s(-1) at 25 degrees C. The transfer rate is >70,000 times greater than the rate of simple hemin dissociation from holo-IsdA into solvent (k transfer = 54.3 s(-1) versus k -hemin = 0.00076 s(-1)). The standard free energy change, Delta G 0, is -27 kJ/mol for the formation of the holo-IsdA-apo-IsdC complex. IsdC has a higher affinity for hemin than IsdA. These results indicate that the IsdA-to-IsdC hemin transfer is through the activated holo-IsdA-apo-IsdC complex and is driven by the higher affinity of apo-IsdC for the cofactor. These findings demonstrate for the first time in the Isd system that heme transfer is rapid, direct, and affinity-driven from IsdA to IsdC. These results also provide the first example of heme transfer from one surface protein to another surface protein in Gram-positive bacteria and, perhaps most importantly, indicate that the mechanism of activated heme transfer, which we previously demonstrated between the streptococcal proteins Shp and HtsA, may apply in general to all bacterial heme transport systems.  相似文献   

3.
The purpose of this report is to develop a correlation between the hydrophobicity of a phospholipid as measured by reversed-phase high-performance liquid chromatography and its rate of spontaneous transfer and to use this correlation to predict the rate of transfer of any homologous lipid from any lipoprotein. We have studied the mechanism of transfer of a series of fluorescent or radiolabeled phospholipids among natural and reassembled serum lipoproteins. Fluorescent phosphatidylcholines included those with 9-(1-pyrenyl)nonanoic acid in the sn-2 position and lauric, myristic, palmitic, stearic, oleic or linoleic acid at sn-1. The radioactive phosphatidylcholines contained [3H]oleic acid in the sn-2 position and lauric, myristic, or palmitic acid at sn-1. The kinetics of transfer of the pyrene-labeled lipid were followed by changes in the excimer fluorescence, and that of the radioactive lipids by separation of the donor (lipid-apolipoprotein recombinant) from the acceptor (single bilayer vesicles) on a column of Sephacryl S-200. The retention time of each lipid was measured by high-performance hydrophobic chromatography through a Waters radially compressed C18 column eluted with 75% isopropanol and 25% triethylammonium phosphate (0.15 M). A linear relationship was observed between the rate-constant of transfer and the retention time which suggest that the rate of desorption of phosphatidylcholines from lipoproteins and vesicles is controlled predominately by the hydrophobic effect. For a homologous series of lipids, the rate of transfer can be predicted from retention times obtained from hydrophobic chromatography. The kinetics of transfer of 1-lauroyl-2-[9-(1-pyrenyl)nonanoyl] phosphatidylcholine between isolated human serum lipoproteins exhibits a linear correlation between the transfer half-time and the size of the donor lipoproteins. As a consequence, transfer from very-low-density lipoprotein is 10-times slower than that observed from high-density lipoproteins. The observed correlations between phospholipid transfer rates and both the Stokes radius of the donor and the retention time of the phospholipid on a hydrophobic column permit one to calculate the rate of transfer of homologous molecules between lipid-protein complexes. The results predict that the spontaneous transfer of phospholipids between plasma lipoproteins would be too slow to be a physiologically important phenomena.  相似文献   

4.
Adrenal medullary chromaffin-vesicle membranes contain a transmembrane electron carrier that may provide reducing equivalents for intravesicular dopamine beta-hydroxylase in vivo. This electron transfer system can generate a membrane potential (inside positive) across resealed chromaffin-vesicle membranes (ghosts) by passing electrons from an internal electron donor to an external electron acceptor. Both ascorbic acid and isoascorbic acid are suitable electron donors. As an electron acceptor, ferricyanide elicits a transient increase in membrane potential at physiological temperatures. A stable membrane potential can be produced by coupling the chromaffin-vesicle electron-transfer system to cytochrome oxidase by using cytochrome c. The membrane potential is generated by transferring electrons from the internal electron donor to cytochrome c. Cytochrome c is then reoxidized by cytochrome oxidase. In this coupled system, the rate of electron transfer can be measured as the rate of oxygen consumption. The chromaffin-vesicle electron-transfer system reduces cytochrome c relatively slowly, but the rate is greatly accelerated by low concentrations of ferrocyanide. Accordingly, stable electron transfer dependent membrane potentials require cytochrome c, oxygen, and ferrocyanide. They are abolished by the cytochrome oxidase inhibitor cyanide. This membrane potential drives reserpine-sensitive norepinephrine transport, confirming the location of the electron-transfer system in the chromaffin-vesicle membrane. This also demonstrates the potential usefulness of the electron transfer driven membrane potential for studying energy-linked processes in this membrane.  相似文献   

5.
A novel immunosystem is described that exploits the effect of luminescence energy transfer from a luminescently labeled antigen to a fluorescent antibody. A luminescent ruthenium-ligand complex (D-455) with absorption/emission maxima at 456/639 nm, respectively, was employed as the donor label, and a squaraine-type cyanine label (636/655 nm), as the fluorescent acceptor label. Specifically, the system human serum albumin (HSA)/anti-HSA was studied. HSA was labeled with the donor dye D-455, and anti-HSA was labeled with the acceptor dye A-631. On formation of the antigen-antibody complex, energy transfer occurs. The radiationless energy transfer affects both the decay time of D-455 and the intensities of the emissions of both D-455 and A-631. The decay time of around 500 ns of D-455 allows frequency-domain measurements in the low kilohertz range and therefore can be based on the use of conventional optoelectronics. This also suggests gated measurements to be performed. The major difference from existing HSA immunosystems is the use of a slow decaying ruthenium-ligand complex as the donor and of a long-wave emitting cyanine acceptor dye having a high quantum yield and a decay kinetics that is governed by the rate of energy transfer from the slow decaying donor.  相似文献   

6.
We describe a technique of rapid (within 1-2 h) transfer of DNA and RNA from agarose gels to nitrocellulose or nylon membrane filters. It is characterized by nearly complete elimination of mechanical action on the gel (a thin layer of liquid is placed over the gel and, filtering through the gel into a stack of paper towels beneath, it transfers nucleic acids onto the filter under the gel). This "descending" transfer, as opposed to the widely used "ascending" Southern transfer, reduces the transfer time (to about 1 h) with equal or higher quality of the hybridization signal. The comparison of transfer kinetics by the both methods shows that (a) the Southern transfer of large size DNA fragments proceeds quicker than it has been thought so far and is almost complete within 4 h; (b) the descending transfer has an advantage over the ascending one in the rate of transfer (1-2 h) and its efficiency; and (c) the time of transfer may become a critical parameter upon using a filter with an apparently low retention capacity (Hybond N, Amersham) that is manifested by a decreased signal at longer than optimal transfer times.  相似文献   

7.
To shorten the biosensor assay time, a new technique, based on the increasing of mass transfer rate between the enzyme-containing membrane and the bulk solution as a result of phase transition of stimuli-sensitive matrix (swelling-shrinkage processes) under the action of an outer signal, is proposed. For a model system – glucose oxidase immobilized into thermosensitive poly-N-isopropylacrylamide gel – the total time of the assay procedure can be halved.  相似文献   

8.
Ion Fluxes to the Vacuole of Nitella translucens   总被引:2,自引:0,他引:2  
The time course of the appearance in the vacuole of Nitellatranslucens and of Tolypella intricata of tracer from the outsidesolution has been studied over short periods of uptake. Thereare two components of chloride transfer to the vacuole, a fastcomponent linear with time and a second component at longertimes whose behaviour is reasonably well described in termsof a single rate constant for exchange; a constant fractionof the total entry is in the fast component and the apparentrate constant for the second component is proportional to theinflux. In Nitella the path of rapid transfer involves chlorideand sodium, and may also involve a small but variable amountof potassium, but in Tolypella potassium has a significant componentof rapid transfer; these correspond to the cations for whichchloride-linked components of cation influx have been shownby another worker. Over both parts of the time course the level of activity inthe cytoplasm specifies, not the rate of transfer to the vacuoleas would be expected, but the rate as a fraction of the influx;the processes of influx to the cell and transfer to the vacuoleare intimately linked. It is difficult to explain the results in terms of static membranesand fixed compartments. An explanation in terms of the sequence,entry of salt by pino-cytotic vesicles at the plasmalemma, fusionof these vesicles with the endoplasmic reticulum after someloss of tracer to the surrounding cytoplasm, and transfer tothe vacuole in minivacuoles formed from the endoplasmic reticulum,is consistent with the time course found. A model of this kind,involving transport by a dynamic membrane system, seems necessaryto explain the results.  相似文献   

9.
The transfer of protons in membrane proteins is an essential phenomenon in biology. However, the basic rules by which H(+) transfer occurs in water wires inside proteins are not well characterized. In particular, the effects of specific atoms and small groups of atoms on the rate of H(+) transfer in water wires are not known. In this study, new covalently linked gramicidin-A (gA) peptides were synthesized, and the effects of specific atoms and peptide constraints on the rate of H(+) transfer were measured in single molecules. The N-termini of two gA peptides were linked to various molecules: S,S-cyclopentane diacid, R,R-cyclopentane diacid, and succinic acid. Single-channel proton conductances (g(H)) were measured at various proton concentrations ([H(+)]) and compared to previous measurements obtained in the S,S- and R,R-dioxolane-linked as well as in native gA channels. Replacing the S,S-dioxolane by an S,S-cyclopentane had no effects on the g(H)-[H(+)] relationships, suggesting that the constrained and continuous transition between the two gA peptides via these S,S linkers is ultimately responsible for the two- to fourfold increase in g(H) relative to native gA channels. It is likely that constraining a continuous transition between the two gA peptides enhances the rate of H(+) transfer in water wires by decreasing the number of water wire configurations that do not transfer H(+) at higher rates as in native gA channels (a decrease in the activation entropy of the system). On the other hand, g(H) values in the R,R-cyclopentane are considerably larger than those in R,R-dioxolane-linked gA channels. One explanation would be that the electrostatic interactions between the oxygens in the dioxolane and adjacent carbonyls in the R,R-dioxolane-linked gA channel attenuate the rate of H(+) transfer in the middle of the pore. Interestingly, g(H)-[H(+)] relationships in the R,R-cyclopentane-linked gA channel are quite similar to those in native gA channels. g(H) values in succinyl-linked gA channels display a wide distribution of values that is well represented by a bigaussian. The larger peaks of these distributions are similar to g(H) values measured in native gA channel. This observation is also consistent with the notion that constraining the transition between the two beta-helical gA peptides enhances the rate of H(+) transfer in water wires by decreasing the activation entropy of the system.  相似文献   

10.
Respirometry is a precious tool for determining the activity of microbial populations. The measurement of oxygen uptake rate is commonly used but cannot be applied in anoxic or anaerobic conditions or for insoluble substrate. Carbon dioxide production can be measured accurately by gas balance techniques, especially with an on-line infrared analyzer. Unfortunately, in dynamic systems, and hence in the case of short-term batch experiments, chemical and physical transfer limitations for carbon dioxide can be sufficient to make the observed carbon dioxide evolution rate (OCER) deduced from direct gas analysis very different from the biological carbon dioxide evolution rate (CER).To take these transfer phenomena into account and calculate the real CER, a mathematical model based on mass balance equations is proposed. In this work, the chemical equilibrium involving carbon dioxide and the measured pH evolution of the liquid medium are considered. The mass transfer from the liquid to the gas phase is described, and the response time of the analysis system is evaluated.Global mass transfer coefficients (K(L)a) for carbon dioxide and oxygen are determined and compared to one another, improving the choice of hydrodynamic hypotheses. The equations presented are found to give good predictions of the disturbance of gaseous responses during pH changes.Finally, the mathematical model developed associated with a laboratory-scale reactor, is used successfully to determine the CER in nonstationary conditions, during batch experiments performed with microorganisms coming from an activated sludge system. (c) 1997 John Wiley & Sons, Inc. Biotechnol Bioeng 53: 243-252, 1997.  相似文献   

11.
The kinetics of dynamically interacting enzyme systems is examined, in the light of increasing evidence attesting to the widespread occurrence of this mode of organization in vivo. The transient time, a key phenomenological parameter for the coupled reaction, is expressed as a function of the lifetime of the intermediate substrate. The relationships between the transient time and the pseudo-first-order rate constants for the coupled reaction by the complexed and uncomplexed enzyme species are indicative of the mechanism of intermediate transfer ('channelling'). In a dynamically interacting enzyme system these kinetic parameters are composite functions of those for the processes catalysed by the complex and by the separated enzymes. The mathematical paradigm can be extended to a linear sequence of N coupled reactions catalysed by dynamically (pair-wise) interacting enzymes.  相似文献   

12.
The dynamics of a population of integrate and fire (IF) neurons with spike-frequency adaptation (SFA) is studied. Using a population density approach and assuming a slow dynamics for the variable driving SFA, an equation for the emission rate of a finite set of uncoupled neurons is derived. The system dynamics is then analyzed in the neighborhood of its stable fixed points by linearizing the emission rate equation. The information transfer properties are then probed by perturbing the system with a sinusoidal input current: despite the low-pass properties of the dynamical variable associated with SFA, the adapting IF neuron behaves as a band-pass device and a phase-lock condition appears at a frequency related to the characteristic time constants of both neuronal and SFA dynamics. When a finite set of neurons is considered, the power spectral density of the pooled firing rates shows for intermediate omega a rich pattern of resonances. Theoretical predictions are successfully compared to numerical simulations.  相似文献   

13.
A bionic baroreflex system (BBS) is a computer-assisted intelligent feedback system to control arterial pressure (AP) for the treatment of baroreflex failure. To apply this system clinically, an appropriate efferent neural (sympathetic vasomotor) interface has to be explored. We examined whether the spinal cord is a candidate site for such interface. In six anesthetized and baroreflex-deafferentiated cats, a multielectrode catheter was inserted into the epidural space to deliver epidural spinal cord stimulation (ESCS). Stepwise changes in ESCS rate revealed a linear correlation between ESCS rate and AP for ESCS rates of 2 pulses/s and above (r2, 0.876-0.979; slope, 14.3 +/- 5.8 mmHg.pulses(-1).s; pressure axis intercept, 35.7 +/- 25.9 mmHg). Random changes in ESCS rate with a white noise sequence revealed dynamic transfer function of peripheral effectors. The transfer function resembled a second-order, low-pass filter with a lag time (gain, 16.7 +/- 8.3 mmHg.pulses(-1).s; natural frequency, 0.022 +/- 0.007 Hz; damping coefficient, 2.40 +/- 1.07; lag time, 1.06 +/- 0.41 s). On the basis of the transfer function, we designed an artificial vasomotor center to attenuate hypotension. We evaluated the performance of the BBS against hypotension induced by 60 degrees head-up tilt. In the cats with baroreflex failure, head-up tilt dropped AP by 37 +/- 5 mmHg in 5 s and 59 +/- 11 mmHg in 30 s. BBS with optimized feedback parameters attenuated hypotension to 21 +/- 2 mmHg in 5 s (P < 0.05) and 8 +/- 4 mmHg in 30 s (P < 0.05). These results indicate that ESCS-mediated BBS prevents orthostatic hypotension. Because epidural stimulation is a clinically feasible procedure, this BBS can be applied clinically to combat hypotension associated with various pathophysiologies.  相似文献   

14.
The stochastic versus deterministic solution of the Seidel–Herzel model describing the baroreceptor control loop (which regulates the short-time heart rate) are compared with the aim of exploring the heart rate variability. The deterministic model solutions are known to bifurcate from the stable to sustained oscillatory solutions if time delays in transfer of signals by sympathetic nervous system to the heart and vasculature are changed. Oscillations in the heart rate and blood pressure are physiologically crucial since they are recognized as Mayer waves. We test the role of delays of the sympathetic stimulation in reconstruction of the known features of the heart rate. It appears that realistic histograms and return plots are attainable if sympathetic time delays are stochastically perturbed, namely, we consider a perturbation by a white noise. Moreover, in the case of stochastic model the bifurcation points vanish and Mayer oscillations in heart period and blood pressure are observed for whole considered space of sympathetic time delays.   相似文献   

15.
Resistance genes, as aph2" are usually encoded on conjugate plasmids and spread with high rate 2 among Gram-positive cocci. The conjugation is inducted by recipient strains by secreting specific pheromone involved in formation of mating aggregates with donor cells. The project aimed to check if strain with lower rate of gene transfer differ also from strains with high gene transfer in ability to aggregate to donor strains. In our study we used two aph2"(+), three aph2"(-) with low transfer e and three aph2"(-) with high transfer strains. Each time one aph2"(+) and one aph2" strains were cultivated for 18h in BHI. The bacteria was washed, stained with carboksyfluorescein, and analyzed by flow cytometry in FACS BD cytometr. Relative fluorescence and size of aggregation was used to compare influence on particular stains. In result of induction of aph2"(+) strains with aph2" recipients with high transfer rate we observed increase of size and number aggregates. Surprisingly, induction with aph2" recipients with low transfer rate result in two different reaction of aph2"(+) donors. In case of one of the , according to expectation we do not observe increase of aggregation. Second of the donors aggregate with induction with aph2" recipients with low transfer rate, but in contrast to reaction to presence of other recipients, fluorescence of such aggregates increased. The results show that strain with lower rate of gene transfer in fact differ from strains with high gene transfer in ability to aggregate to donor strains ant that analysis of aggregation alone is insufficient to distinguish between recipients of high and low transfer rate.  相似文献   

16.
Proteins in the postmicrosomal supernatant fraction of rat brain catalyzed the transfer of bovine brain galactocerebroside, sulfatide, and ganglioside GM1 from unilamellar liposomes to the rat erythrocytes or ghosts. The vesicles were made with egg yolk lecithin, cholesterol, 3H-labelled glycolipid, and a trace of [14C]triolein as a nonexchangeable marker. The routine assay of the glycosphingolipid transfer consisted of incubation of the donor liposomes with erythrocytes in the presence or absence of supernatant protein in physiological buffer at 37 degrees C for various time intervals. After the incubation, the erythrocytes were separated from the vesicles by centrifugation and the extent of protein-catalyzed transfer of labelled glycolipid in the membrane-bound total lipid fraction was determined by scintillation spectrometry. The fraction of [3H]glycosphingolipid transferred is represented by a change in the 3H/14C ratios at initial and subsequent time intervals. The glycosphingolipid transfer catalyzed by the supernatant protein was found to be logarithmic, whereas the protein-independent transfer was linear over a period of 3-4 h. The rate constant (K) and half time (t1/2) of the protein-catalyzed transfer reaction of cerebrosides and sulfatides were almost the same, while the transfer of ganglioside GM1 occurred at a slightly faster rate, probably owing to the greater aqueous solubility of this lipid. The transfer activity was also increased in a manner dependent on the amount of supernatant protein added up to 10 mg. The catalytic activity of the protein was lost when heated at 70 degrees C for 5 min. The pH optimum of the activity was around 7.4.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
An empirical correlation, based on conventional forms, has been developed to represent the oxygen mass transfer coefficient as a function of operating conditions and organic fraction in two-phase, aqueous-organic dispersions. Such dispersions are characteristic of two-phase partitioning bioreactors, which have found increasing application for the biodegradation of toxic substrates. In this work, a critical distinction is made between the oxygen mass transfer coefficient, k(L)a, and the oxygen mass transfer rate. With an increasing organic fraction, the mass transfer coefficient decreases, whereas the oxygen transfer rate is predicted to increase to an optimal value. Use of the correlation assumes that the two-phase dispersion behaves as a single homogeneous phase with physical properties equivalent to the weighted volume-averaged values of the phases. The addition of a second, immiscible liquid phase with a high solubility of oxygen to an aqueous medium increases the oxygen solubility of the system. It is the increase in oxygen solubility that provides the potential for oxygen mass transfer rate enhancement. For the case studied in which n-hexadecane is selected as the second liquid phase, additions of up to 33% organic volume lead to significant increases in oxygen mass transfer rate, with an optimal increase of 58.5% predicted using a 27% organic phase volume. For this system, the predicted oxygen mass transfer enhancements due to organic-phase addition are found to be insensitive to the other operating variables, suggesting that organic-phase addition is always a viable option for oxygen mass transfer rate enhancement.  相似文献   

18.
A novel membrane bioreactor has been used for the treatment of an industrially produced wastewater arising in the manufacture of 3-chloronitrobenzene. This wastewater is not amenable to direct biological treatment without some form pretreatment or dilution, due to the inorganic composition (pH <1, salt concentration 4% w/w) of the wastewater. In the membrane bioreactor, the organic pollutants are first separated from the wastewater by selective membrane permeation, and then biodegraded in the biological growth compartment of the bioreactor. At a wastewater flow rate of 64 mL h(-1) (corresponding to a contact time of approximately 1.7 hours) over 99% of the 3-chloronitrobenzene and over 99% of the nitrobenzene in the wastewater were degraded. Degradation of 3-chloronitrobenzene was accompanied by evolution of chloride ions in a stoichiometric ratio. Both 3-chloronitrobenzene and nitrobenzene degradation were accompanied by the evolution of carbon dioxide; approximately 80% of the carbon entering the system was oxidized to CO(2) carbon. Analysis of mass transport across the membrane revealed that 3-chloronitrobenzene and nitrobenzene are transported more rapidly than phenol. This is explained in terms of a resistances-in-series model, which shows phenol transfer to be rate limited by the membrane diffusion step, whereas the chloronitrobenzene and nitrobenzene transfer are rate limited by the liquid film mass transfer. (c) 1993 Wiley & Sons, Inc.  相似文献   

19.
Heart rate (HR) power spectral indexes are limited as measures of the cardiac autonomic nervous systems (CANS) in that they neither offer an effective marker of the beta-sympathetic nervous system (SNS) due to its overlap with the parasympathetic nervous system (PNS) in the low-frequency (LF) band nor afford specific measures of the CANS due to input contributions to HR [e.g., arterial blood pressure (ABP) and instantaneous lung volume (ILV)]. We derived new PNS and SNS indexes by multisignal analysis of cardiorespiratory variability. The basic idea was to identify the autonomically mediated transfer functions relating fluctuations in ILV to HR (ILV-->HR) and fluctuations in ABP to HR (ABP-->HR) so as to eliminate the input contributions to HR and then separate each estimated transfer function in the time domain into PNS and SNS indexes using physiological knowledge. We evaluated these indexes with respect to selective pharmacological autonomic nervous blockade in 14 humans. Our results showed that the PNS index derived from the ABP-->HR transfer function was correctly decreased after vagal and double (vagal + beta-sympathetic) blockade (P < 0.01) and did not change after beta-sympathetic blockade, whereas the SNS index derived from the same transfer function was correctly reduced after beta-sympathetic blockade in the standing posture and double blockade (P < 0.05) and remained the same after vagal blockade. However, this SNS index did not significantly decrease after beta-sympathetic blockade in the supine posture. Overall, these predictions were better than those provided by the traditional high-frequency (HF) power, LF-to-HF ratio, and normalized LF power of HR variability.  相似文献   

20.
We report on a highly ordered array of carbon nanotubes (CNTs) that serves as a universally direct nanoelectrode interface for redox proteins and provides an efficient conduit for electron transfer. The site-selective, covalent docking of the enzyme glucose oxidase (GO(x)) on the CNT tips is found to have a marked effect on enhancing electron transfer properties, as measured by cyclic voltammetry. A unimolecular electron transfer rate of 1500 s(-1) has been measured for this system, a value exceeding the rate of oxygen reduction by glucose oxidase. Furthermore, the redox enzyme-CNT array conjugate can be utilized as a quantitative, substrate-specific biosensor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号