首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Low concentrations of high-density lipoprotein (HDL) cholesterol constitute a risk factor for coronary heart disease (CHD). There is increasing evidence that increasing HDL-cholesterol levels reduces cardiovascular risk. The phenotype of low HDL cholesterol with or without elevated triglycerides is common and it is characteristic of patients with central obesity, insulin resistance, hypertension and type 2 diabetes mellitus; conditions associated with increased cardiovascular risk and are part of the rubric of the metabolic syndrome. Epidemiological, experimental and clinical trial evidence suggests that there is a good rationale for raising HDL-cholesterol in these and other high-risk patients. The protective effect of HDL-cholesterol against atherosclerosis and cardiovascular disease is mediated by both enhanced reverse cholesterol transport (RCT) and by direct anti-atherosclerotic mechanisms. Recent studies have elucidated mechanisms whereby HDL acts to reduce cardiovascular risk, supporting the rationale for targeting of HDL with lipid-modifying therapy. Ongoing investigation of mechanisms by which HDL acts to reduce the risk of atherosclerosis will provide opportunities for the development of new therapeutic strategies to decrease the risk of atherosclerosis.  相似文献   

2.
ABCA1. The gatekeeper for eliminating excess tissue cholesterol   总被引:38,自引:0,他引:38  
It is widely believed that HDL functions to transport cholesterol from peripheral cells to the liver by reverse cholesterol transport, a pathway that may protect against atherosclerosis by clearing excess cholesterol from arterial cells. A cellular ATP-binding cassette transporter (ABC) called ABCA1 mediates the first step of reverse cholesterol transport: the transfer of cellular cholesterol and phospholipids to lipid-poor apolipoproteins. Mutations in ABCA1 cause Tangier disease (TD), a severe HDL deficiency syndrome characterized by accumulation of cholesterol in tissue macrophages and prevalent atherosclerosis. Studies of TD heterozygotes revealed that ABCA1 activity is a major determinant of plasma HDL levels and susceptibility to CVD. Drugs that induce ABCA1 in mice increase clearance of cholesterol from tissues and inhibit intestinal absorption of dietary cholesterol. Multiple factors related to lipid metabolism and other processes modulate expression and tissue distribution of ABCA1.Therefore, as the primary gatekeeper for eliminating tissue cholesterol, ABCA1 has a major impact on cellular and whole body cholesterol metabolism and is likely to play an important role in protecting against cardiovascular disease.  相似文献   

3.
Changes in lipoprotein surface potentials were studied by a positively charged analog as a spin probe. Low density lipoproteins (LDL) and high density lipoproteins (subfractions HDL2 and HDL3) of patients with coronary heart disease (CHD) were studied. CHD patients have revealed a significant decrease (by 14.4 +/- 0.3 mV) in LDL and an increase (by 6.3 +/- 2.0 mV) in HDL3 negative surface potential, as compared to the control. The increase in HDL2 surface potential in CHD patients was insignificant (1.9 +/- +/- 2.5 mV). The possible role of LDL and HDL3 surface potential changes in the mechanism of interaction of these types of lipoproteins with vascular wall and blood cellular membranes and in pathogenesis of CHD and atherosclerosis is discussed.  相似文献   

4.
The cholesterol transfer between human erythrocytes and main classes of serum lipoproteins (LP) from healthy donors and artery-coronary disease patients was studied (artery-coronary disease is the main manifestation of atherosclerosis). It is shown that low-density lipoproteins (LDL) are capable of transporting cholesterol to erythrocytes, which lack the specific receptors for LDL. The cell cholesterol content in comparison with erythrocytes incubated without LDL was increased by 11.4%. The effect was even higher in case of LDL, isolated from serum of artery-coronary subjects (the cell cholesterol content was increased by 33.8%). High-density lipoproteins (HDL) accept cholesterol from cell membranes. However, cholesterol-accepting properties of HDL from artery-coronary disease patients were suppressed as compared with normal HDL. Both discovered events must promote the cholesterol accumulation in cell membranes in atherosclerosis. As it is shown by the spin probe method, lipid peroxidation (LPO) causes the disturbance of the structural organization of LP and as the consequence of that--the increase of LDL cholesterol-donating ability and the decrease of HDL cholesterol-accepting ability. The greater LDL are oxidized, the more cholesterol they transport to erythrocytes during incubation. The greater is the level of HDL peroxidation, the stronger their cholesterol-accepting function is suppressed. These results suggest that LPO can play an important role in LP modification, the disturbance of their interaction with cell surface and the cholesterol accumulation in cells in atherosclerosis.  相似文献   

5.
Despite significant progress in the management of atherosclerosis and its resultant complications, cardiovascular disease remains the principal cause of death in the world. The National Cholesterol Education Project Adult Treatment Panel III (NCEP ATP III) recognizes low levels of high-density lipoprotein cholesterol (HDL) as a risk factor for coronary heart disease (CHD) and high levels of HDL as a risk-reducing factor; however, the elevation of HDL as a specific therapeutic target for the prevention and treatment of CHD has yet to be accepted on the same level as low-density lipoprotein (LDL)-reducing therapies. Current HDL elevators including nicotinic acid, fibric acid derivatives, peroxisome proliferator activated receptor (PPAR) agonists and statins also affect other lipid constituents which make interpretation of the clinical trials of these drugs difficult in teasing out the independent effect of HDL elevation. Ample laboratory investigation suggests that HDL elevation would reduce atherosclerotic burden through multiple independent mechanisms. In this review, we explore HDL biology, its potential mechanisms in the treatment of atherosclerotic disease, and promising new drugs with HDL-raising activity.  相似文献   

6.
High-density lipoproteins (HDL) play an important role in protection against atherosclerosis by mediating reverse cholesterol transport - the transport of excess cholesterol from peripheral tissues to the liver for disposal. SR-BI is a cell surface receptor for HDL and other lipoproteins (LDL and VLDL) and mediates the selective uptake of lipoprotein cholesterol by cells. Overexpression or genetic ablation of SR-BI in mice revealed that it plays an important role in HDL metabolism and reverse cholesterol transport and protects against atherosclerosis in mouse models of the disease. If it plays a similar role in humans then it may be an attractive target for therapeutic intervention. We will review some of the recent advances in the understanding of SR-BI's physiological role and cellular function in lipoprotein metabolism.  相似文献   

7.
The quantitative or qualitative decline of high-density lipoprotein (HDL) is linked to the pathogenesis of atherosclerosis because of its antiatherogenic functions, including the mediation of reverse cholesterol transport from the peripheral cells to the liver. We have recently shown that group X secretory phospholipase A(2) (sPLA(2)-X) is involved in the pathogenesis of atherosclerosis via potent lipolysis of low-density lipoprotein (LDL) leading to macrophage foam cell formation. We demonstrate here that sPLA(2)-X as well as group V secretory PLA(2) (sPLA(2)-V), another group of sPLA(2) that can potently hydrolyze phosphatidylcholine (PC), also possess potent hydrolytic potency for PC in HDL linked to the production of a large amount of unsaturated fatty acids and lysophosphatidylcholine (lysoPC). In contrast, the classical types of group IB and IIA secretory PLA(2)s evoked little, if any, lypolytic modification of HDL. Treatment with sPLA(2)-X or -V also caused an increase in the negative charge of HDL with no oxidation and little modification of apolipoprotein AI (apoAI). Modification with sPLA(2)-X or -V resulted in significant decrease in the capacity of HDL to cause cellular cholesterol efflux from lipid-loaded macrophages. Immunohistochemical analysis revealed significant expression of sPLA(2)-X in foam cell lesions in the arterial intima of Watanabe heritable hyperlipidemic (WHHL) rabbit. These findings suggest that lipolytic modification of HDL by sPLA(2)-X or -V causes drastic change of HDL in terms of the production of a large amount of unsaturated fatty acids and lysoPC linked to the reduction of its antiatherogenic functions. These sPLA(2)-mediated modifications of plasma lipoproteins might be relevant to the pathogenesis of atherosclerosis.  相似文献   

8.
Apolipoprotein A-I (ApoA-I), a primary protein component of high-density lipoprotein (HDL), plays an important role in cholesterol metabolism mediating the formation of HDL and the efflux of cellular cholesterol from macrophage foam cells in arterial walls. Lipidation of ApoA-I is mediated by adenosine triphosphate (ATP) binding cassette A1 (ABCA1). Insufficient ABCA1 activity may lead to increased risk of atherosclerosis due to reduced HDL formation and cholesterol efflux. The standard radioactive assay for measuring cholesterol transport to ApoA-I has low throughput and poor dynamic range, and it fails to measure phospholipid transfer. We describe the development of two sensitive, nonradioactive high-throughput assays that report on the lipidation of ApoA-I: a homogeneous assay based on time-resolved fluorescence resonance energy transfer (TR-FRET) and a discontinuous assay that uses the label-free Epic platform. The TR-FRET assay employs HiLyte Fluor 647-labeled ApoA-I with N-terminal biotin bound to streptavidin-terbium. When fluorescent ApoA-I was incorporated into HDL, TR-FRET decreased proportionally to the increase in the ratio of lipids to ApoA-I, demonstrating that the assay was sensitive to the amount of lipid bound to ApoA-I. In the Epic assay, biotinylated ApoA-I was captured on a streptavidin-coated biosensor. Measured resonant wavelength shift was proportional to the amount of lipids associated with ApoA-I, indicating that the assay senses ApoA-I lipidation.  相似文献   

9.
In humans, a chronically increased circulating level of C-reactive protein (CRP), a positive acute-phase reactant, is an independent risk factor for cardiovascular disease. This observation has led to considerable interest in the role of inflammatory proteins in atherosclerosis. In this review, after discussing CRP, we focus on the potential role in the pathogenesis of human vascular disease of inflammation-induced proteins that are carried by lipoproteins. Serum amyloid A (SAA) is transported predominantly on HDL, and levels of this protein increase markedly during acute and chronic inflammation in both animals and humans. Increased SAA levels predict the risk of cardiovascular disease in humans. Recent animal studies support the proposal that SAA plays a role in atherogenesis. Evidence is accruing that secretory phospholipase A(2), an HDL-associated protein, and platelet-activating factor acetylhydrolase, a protein associated predominantly with LDL in humans and HDL in mice, might also play roles both as markers and mediators of human atherosclerosis. In contrast to positive acute-phase proteins, which increase in abundance during inflammation, negative acute-phase proteins have received less attention. Apolipoprotein A-I (apoA-I), the major apolipoprotein of HDL, decreases during inflammation. Recent studies also indicate that HDL is oxidized by myeloperoxidase in patients with established atherosclerosis. These alterations may limit the ability of apoA-I to participate in reverse cholesterol transport. Paraoxonase-1 (PON1), another HDL-associated protein, also decreases during inflammation. PON1 is atheroprotective in animal models of hypercholesterolemia. Controversy over its utility as a marker of human atherosclerosis may reflect the fact that enzyme activity rather than blood level (or genotype) is the major determinant of cardiovascular risk. Thus, multiple lipoprotein-associated proteins that change in concentration during acute and chronic inflammation may serve as markers of cardiovascular disease. In future studies, it will be important to determine whether these proteins play a causal role in atherogenesis.  相似文献   

10.
Expression of human lecithin cholesterol acyltransferase (LCAT) in mice (LCAT-Tg) leads to increased high density lipoprotein (HDL) cholesterol levels but paradoxically, enhanced atherosclerosis. We have hypothesized that the absence of cholesteryl ester transfer protein (CETP) in LCAT-Tg mice facilitates the accumulation of dysfunctional HDL leading to impaired reverse cholesterol transport and the development of a pro-atherogenic state. To test this hypothesis we cross-bred LCAT-Tg with CETP-Tg mice. On both regular chow and high fat, high cholesterol diets, expression of CETP in LCAT-Tg mice reduced total cholesterol (-39% and -13%, respectively; p < 0.05), reflecting a decrease in HDL cholesterol levels. CETP normalized both the plasma clearance of [(3)H]cholesteryl esters ([(3)H]CE) from HDL (fractional catabolic rate in days(-1): LCAT-Tg = 3.7 +/- 0.34, LCATxCETP-Tg = 6.1 +/- 0.16, and controls = 6.4 +/- 0.16) as well as the liver uptake of [(3)H]CE from HDL (LCAT-Tg = 36%, LCATxCETP-Tg = 65%, and controls = 63%) in LCAT-Tg mice. On the pro-atherogenic diet the mean aortic lesion area was reduced by 41% in LCATxCETP-Tg (21.2 +/- 2.0 micrometer(2) x 10(3)) compared with LCAT-Tg mice (35.7 +/- 2.0 micrometer(2) x 10(3); p < 0.001). Adenovirus-mediated expression of scavenger receptor class B (SR-BI) failed to normalize the plasma clearance and liver uptake of [(3)H]CE from LCAT-Tg HDL. Thus, the ability of SR-BI to facilitate the selective uptake of CE from LCAT-Tg HDL is impaired, indicating a potential mechanism leading to impaired reverse cholesterol transport and atherosclerosis in these animals. We conclude that CETP expression reduces atherosclerosis in LCAT-Tg mice by restoring the functional properties of LCAT-Tg mouse HDL and promoting the hepatic uptake of HDL-CE. These findings provide definitive in vivo evidence supporting the proposed anti-atherogenic role of CETP in facilitating HDL-mediated reverse cholesterol transport and demonstrate that CETP expression is beneficial in pro-atherogenic states that result from impaired reverse cholesterol transport.  相似文献   

11.
Tangier disease and ABCA1   总被引:29,自引:0,他引:29  
Tangier disease is an autosomal recessive genetic disorder characterized by a severe high-density lipoprotein (HDL) deficiency, sterol deposition in tissue macrophages, and prevalent atherosclerosis. Mutations in the ATP binding cassette transporter ABCA1 cause Tangier disease and other familial HDL deficiencies. ABCA1 controls a cellular pathway that secretes cholesterol and phospholipids to lipid-poor apolipoproteins. This implies that an inability of newly synthesized apolipoproteins to acquire cellular lipids by the ABCA1 pathway leads to their rapid degradation and an over-accumulation of cholesterol in macrophages. Thus, ABCA1 plays a critical role in modulating flux of tissue cholesterol and phospholipids into the reverse cholesterol transport pathway, making it an important therapeutic target for clearing excess cholesterol from macrophages and preventing atherosclerosis.  相似文献   

12.
High density lipoproteins (HDL), one of the main lipoprotein particles circulating in plasma, is involved in the reverse cholesterol transport. Several lines of evidence suggest that elevated levels of HDL is protective against coronary heart disease. The role of HDL in the removal of body cholesterol and in the regression of atherosclerosis add to the importance of understanding the molecular-cellular processes that determine plasma levels of HDL. Factors modulating plasma levels of HDL may have influence on the predisposition of an individual to premature coronary artery disease. Apolipoprotein (apo) A-I is the main apolipoprotein component of HDL and, to a large extent, sets the plasma levels of HDL. Thus, understanding the regulation of apoA-I gene expression may provide clues to raise plasma levels of HDL. This review discusses the various pathways that alter plasma levels of HDL. Since apoA-I is the main protein component of HDL and determines the plasma levels of HDL, this review also covers the regulation of apoA-I gene expression.  相似文献   

13.
High-density lipoproteins are the putative vehicles for cholesterol removal from monocyte-derived macrophages, which are an important cell type in all stages of atherosclerosis. The role of HDL(2), an HDL subclass that accounts for most variation in plasma HDL-cholesterol concentration, in cholesterol metabolism in monocyte-derived macrophages is not known. In this study, the dose-dependent effects of HDL(2) on cellular cholesterol mass, efflux, and esterification, and on cellular cholesteryl ester (CE) hydrolysis using the mouse macrophage P388D1 cell line was investigated. HDL(2) at low concentrations (40 microg protein/ml) decreased CE content without affecting cellular free cholesterol content (FC), CE hydrolysis, or cholesterol biosynthesis. In addition, HDL(2) at low concentrations reduced cellular acyl-coenzyme A:cholesterol acyltransferase (ACAT) activity and increased FC efflux from macrophages. Thus, HDL(2) has two potential roles in reverse cholesterol transport. In one, HDL(2) is an acceptor of macrophage FC. In the other, more novel role, HDL(2) increases the availability of macrophage FC through the inhibition of ACAT. Elucidation of the mechanism by which HDL(2) inhibits ACAT could identify new therapeutic targets that enhance the transfer of cholesterol from macrophages to the liver.  相似文献   

14.
Periodontitis, a consequence of persistent bacterial infection and chronic inflammation, has been suggested to predict coronary heart disease (CHD). The aim of this study was to investigate the impact of periodontitis on HDL structure and antiatherogenic function in cholesterol efflux in vitro. HDL was isolated from 30 patients (age 43.6 +/- 6.1 years, mean +/- SD) with periodontitis before and after (3.2 +/- 1.4 months) periodontal treatment. The capacity of HDL for cholesterol efflux from macrophages (RAW 264.7), HDL composition, and key proteins of HDL metabolism were determined. After periodontal treatment, phospholipid transfer protein (PLTP) activity was 6.2% (P<0.05) lower, and serum HDL cholesterol concentration, PLTP mass, and cholesteryl ester transfer protein activity were 10.7% (P<0.001), 7.1% (P=0.078), and 19.4% (P<0.001) higher, respectively. The mean HDL2/HDL3 ratio increased from 2.16 +/- 0.87 to 3.56 +/- 0.48 (P<0.05). HDL total phospholipid mass and sphingomyelin-phosphatidylcholine ratio were 7.4% (P<0.05) and 36.8% (P<0.001) higher, respectively. The HDL-mediated cholesterol efflux tended to be higher after periodontal treatment; interestingly, this increase was significant (P<0.05) among patients whose C-reactive protein decreased (53.7% reduction, P=0.015) and who were positive by PCR for Actinobacillus actinomycetemcomitans. These results suggest that periodontitis causes similar, but milder, changes in HDL metabolism than those that occur during the acute-phase response and that periodontitis may diminish the antiatherogenic potency of HDL, thus increasing the risk for CHD.  相似文献   

15.
Alcohol, wine and platelet function   总被引:3,自引:0,他引:3  
Ruf JC 《Biological research》2004,37(2):209-215
Epidemiological studies have demonstrated an inverse correlation between moderate wine and alcohol consumption and morbidity and mortality from coronary heart disease. The protective effect has been associated with an increase in the plasma level of HDL cholesterol, as it is well recognized that plasma HDL is inversely correlated with CHD. In addition, it has become evident that blood platelets contribute to the rate of development of atherosclerosis and CHD through several mechanisms. In recent studies it has been shown that the level of HDL cholesterol can explain only 50% of the protective effect of alcoholic beverages; the other 50% may be partly related to a decrease in platelet activity. This anti-platelet activity of wine is explained by ethanol but also by the polyphenolic components with which red wines are richly endowed. Several studies carried out on humans and animals have shown that wine phenolics could exert their effects by reducing prostanoid synthesis from arachidonate. In addition, it has been suggested that wine phenolics could reduce platelet activity mediated by nitric oxide. Moreover, wine phenolics increase vitamin E levels while decreasing the oxidation of platelets submitted to oxidative stress. However, a rebound phenomenon of hyperaggregability is observed after an acute alcohol consumption which is not observed with wine consumption. This protection afforded by wine has been duplicated in animals with grape phenolics added to alcohol. The rebound phenomenon may explain ischemic strokes or sudden deaths known to occur after episodes of drunkenness. It appears that wine, and wine phenolics in particular, could have a more significant inhibitory effect on platelet aggregation and could explain, in part, the hypothesis that red wine is more protective against atherosclerosis and coronary heart disease.  相似文献   

16.
Conventional wisdom suggests that halting or reversing long-term atherosclerosis requires increasing the amount of circulating high-density lipoprotein (HDL) coursing through the vasculature. However, recent evidence seems to indicate that reducing the size of cholesterol-containing lipid plaques might be accomplished by methods that either do not raise or, in fact, lower the amount of circulating HDL. Carriers of apoAI(Milano), a variant of apoprotein AI (a component of HDL), have reduced levels of circulating low-density lipoprotein (LDL). Intriguingly, these individuals have reduced amounts of circulating HDL and total apoAI. Infusions of the ApoAI(Milano) variant given to patients with coronary atherosclerosis appear to lead to disease regression and reduced plaque size. However, larger studies are required to provide definitive proof of apoAI(Milano)'s benefits. What is certain is that attention should be focused on the removal of cholesterol from plaques rather than simply desiring to raise HDL concentrations in patients.  相似文献   

17.
Atherosclerosis is a major contributor to the onset and progression of cardiovascular disease (CVD). Cholesterol-loaded foam cells play a pivotal role in forming atherosclerotic plaques. Induction of cholesterol efflux from these cells may be a promising approach in treating CVD. The reverse cholesterol transport (RCT) pathway delivers cholesteryl ester (CE) packaged in high-density lipoproteins (HDL) from non-hepatic cells to the liver, thereby minimising cholesterol load of peripheral cells. RCT takes place via a well-organised interplay amongst apolipoprotein A1 (ApoA1), lecithin cholesterol acyltransferase (LCAT), ATP binding cassette transporter A1 (ABCA1), scavenger receptor-B1 (SR-B1), and the amount of free cholesterol. Unfortunately, modulation of RCT for treating atherosclerosis has failed in clinical trials owing to our lack of understanding of the relationship between HDL function and RCT. The fate of non-hepatic CEs in HDL is dependent on their access to proteins involved in remodelling and can be regulated at the structural level. An inadequate understanding of this inhibits the design of rational strategies for therapeutic interventions. Herein we extensively review the structure–function relationships that are essential for RCT. We also focus on genetic mutations that disturb the structural stability of proteins involved in RCT, rendering them partially or completely non-functional. Further studies are necessary for understanding the structural aspects of RCT pathway completely, and this review highlights alternative theories and unanswered questions.  相似文献   

18.
PURPOSE OF REVIEW: Cholesteryl ester transfer protein (CETP) inhibitors (JTT-705 and torcetrapib) are currently in clinical testing, and significantly raise high-density lipoprotein (HDL) cholesterol levels. Low HDL cholesterol is a significant independent predictor of coronary heart disease (CHD) and HDL raising has been associated with coronary heart disease risk reduction, but there is debate about whether CETP inhibition will reduce coronary heart disease risk. RECENT FINDINGS: It has been documented in transgenic mouse models that apolipoprotein (apo) C-I inhibits CETP, and that high mono-unsaturated fat diets prevent the normal stimulation of CETP activity by dietary cholesterol. In rabbits, torcetrapib markedly decreases clearance of HDL cholesteryl ester via an indirect pathway, but has no effect on total plasma cholesteryl ester clearance. In humans, torcetrapib raises HDL apoA-I by modestly decreasing its fractional catabolic rate, while having a very profound effect on raising HDL cholesterol and large alpha-1 migrating HDL particles by more than 50%, with no effect on fecal cholesterol excretion. When JTT-705 at 600 mg/day was given to hypercholesterolemic patients already on pravastatin 40 mg/day, the combination was well tolerated and increases in HDL cholesterol of 28% were noted. SUMMARY: In our view, CETP inhibitors in combination with statins will be profoundly beneficial in reducing human atherosclerosis, primarily because they normalize HDL particles and prevent the transfer of cholesteryl ester from HDL to atherogenic lipoproteins.  相似文献   

19.
Prebeta-HDL particles act as the primary acceptors of cellular cholesterol in reverse cholesterol transport (RCT). An impairment of RCT may be the reason for the increased risk of coronary heart disease (CHD) in subjects with familial low HDL. We studied the levels of serum prebeta-HDL and the major regulating factors of HDL metabolism in 67 subjects with familial low HDL and in 64 normolipidemic subjects. We report that the subjects with familial low HDL had markedly reduced prebeta-HDL concentrations compared with the normolipidemic subjects (17.4 +/- 7.2 vs. 23.4 +/- 7.8 mg apolipoprotein A-I/dl; P < 0.001). A positive correlation was observed between prebeta-HDL concentration and serum triglyceride (TG) level (r = 0.334, P = 0.006). In addition, serum TG level was found to be the strongest predictor of prebeta-HDL concentration in subjects with familial low HDL. The activities of cholesteryl ester transfer protein and hepatic lipase were markedly increased in subjects with familial low HDL without a significant correlation to prebeta-HDL concentration. Our results support the hypothesis that impaired RCT is one mechanism behind the increased risk for CHD in subjects with familial low HDL.  相似文献   

20.
Lipid-poor apolipoproteins remove cellular cholesterol and phospholipids by an active transport pathway controlled by an ATP binding cassette transporter called ABCA1 (formerly ABC1). Mutations in ABCA1 cause Tangier disease, a severe HDL deficiency syndrome characterized by a rapid turnover of plasma apolipoprotein A-I, accumulation of sterol in tissue macrophages, and prevalent atherosclerosis. This implies that lipidation of apolipoprotein A-I by the ABCA1 pathway is required for generating HDL particles and clearing sterol from macrophages. Thus, the ABCA1 pathway has become an important therapeutic target for mobilizing excess cholesterol from tissue macrophages and protecting against atherosclerosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号