首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Bromoacetamide derivatives having n-alkyl substituents (BrCH2CONH(CH2)nH, 1-n) and carboxyalkyl substituents (BrCH2CONH(CH2)nCOOH, 2-n) react with His-15 in lysozyme exclusively at N epsilon 2 at pH 5.5 and 40 degree C. Kinetic studies suggest that lysozyme has a small hydrophobic pocket that binds these reagents in the vicinity of His-15.  相似文献   

2.
A lysozyme derivative in which two domains were cross-linked intramolecularly was newly prepared by means of a two-step reaction. First, the beta-carboxyl group of Asp101 in lysozyme was selectively modified with 2-(2-pyridyldithio)ethylamine in the presence of 1-ethyl-3-[3-(dimethylamino)propyl]carbodiimide hydrochloride. After reduction of the pyridyldithio moiety of Asp101 modified lysozyme at pH 4.5 with dithiothreitol, the derivative was allowed to cross-link intramolecularly by reaction with 1,3-dichloroacetone at pH 7. Intramolecularly cross-linked lysozyme thus formed was purified by gel chromatography followed by ion-exchange chromatography. Based on the results of 1H-NMR and peptide analyses, it was concluded that Asp101 was cross-linked to Trp62 with a -CH2COCH2SCH2CH2NH-bridge in this derivative. The derivative showed minor but distinct activity against Micrococcus lysodeikticus and glycol chitin. Its melting temperature for thermal denaturation was higher by 7.3 degrees than that of native lysozyme at pH 3.  相似文献   

3.
H Yamada  R Kuroki  M Hirata  T Imoto 《Biochemistry》1983,22(19):4551-4556
The salt bridge between Lys-13 (epsilon-NH3+) and Leu-129 (alpha-COO-) in lysozyme was converted to an amide bond by 1-ethyl-3-[3-(dimethylamino)propyl]carbodiimide hydrochloride (EDC) reaction in the presence of imidazole (0.3-1 M) at pH 5 and room temperature, followed by dialysis at pH 10. Absence of imidazole under a similar condition did not give this intramolecularly cross-linked lysozyme derivative (CL-lysozyme) but resulted in the formation of intermolecularly cross-linked lysozyme oligomers. From the mechanistic studies on the formation of CL-lysozyme, imidazole was suggested to play the following three roles. (1) Some carboxyl groups activated by EDC in lysozyme were converted to acylimidazole groups which protected them from the reaction with amino groups in other lysozyme molecules at pH 5. These could be hydrolyzed at pH 10 to regenerate free carboxyls. (2) High concentrations of imidazole (pH 5) increased the ionic strength of the solution which weakened the salt bridge in lysozyme and facilitated the activation of the alpha-carboxyl group by EDC. (3) The alpha-carboxyl group activated by EDC was converted to an acylimidazole group which could react with the epsilon-amino group of Lys-13 in the same molecule to form an amide bond. The last step may involve some conformational change of the backbone of lysozyme and be slower than the hydrolysis reaction of the alpha-carboxyl group activated by EDC itself. However, acylimidazole groups are stable against hydrolysis at pH 5. This may afford enough time to allow the epsilon-amino group of Lys-13 to attack the acylimidazole group of Leu-129.  相似文献   

4.
In order to examine how a protein can be effectively stabilized, two intramolecular cross-links, Glu35-Trp108 and Lys1-His15, which have few unfavorable interactions in the folded state, were simultaneously introduced into hen lysozyme. Both of the intramolecularly cross-linked lysozymes, 35-108 CL and 1-15 CL, containing cross-links Glu35-Trp108 and Lys1-His15, respectively, showed increases in thermal stability of 13.9 and 5.2 degrees C, respectively, over that of wild type, at pH 2.7. On the other hand, a doubly cross-linked lysozyme showed an increase in thermal stability of 20.8 degrees C over that of wild type, under identical conditions. Since the sum of the differences in denaturation temperature between wild type and each of the cross-linked lysozymes was nearly equal to that between wild type and the doubly cross-linked lysozyme, we suggest that the efficient stabilization of the lysozyme molecule was the direct result of the double intramolecular cross-links.  相似文献   

5.
The reaction of ribonuclease A with either 6-chloropurine riboside 5'-monophosphate or the corresponding nucleoside yields one derivative, with the reagent covalently bound to the alpha-amino group of Lys-1, called derivative II and derivative E, respectively. We studied by means of 1H-n.m.r. at 270 MHz the interaction of these derivatives with different purine ligands. The pK values of His-12- and -119 were obtained and compared with those resulting from the interaction with ribonuclease A. The results showed that the interaction of derivative E with 3'AMP is similar to that described for RNase A as the pK2 of His-12 is increased while that of His-119 remains unaltered. However, derivative II presents some differences as it was found an enhancement of the pK2 values of both His-12 and His-119. Interaction of derivative II and derivative E with dApdA increases the pK2 of His-119, whereas a decrease is found when it interacts with ribonuclease A. These results suggest that the phosphate group and the nucleoside of both derivatives are located in regions of the enzyme where natural substrate analogues have secondary interactions and they can be interpreted as additional binding sites.  相似文献   

6.
Bis(3,5-dibromosalicyl) fumarate and a number of related bifunctional reagents react preferentially with oxyhemoglobin to cross-link the beta chains within the 2,3-diphosphoglycerate-binding site. In this report we describe a new derivative cross-linked between the alpha chains which is formed specifically in the reaction with deoxyhemoglobin. X-ray crystallographic studies show that the cross-link lies between Lys-99 alpha 1 and Lys-99 alpha 2, spanning the central cavity of the tetramer. Lys-99 alpha 1 and Lys-99 alpha 2 are located within a cluster of charged residues very near the middle of the hemoglobin molecule. In oxyhemoglobin, this site is completely inaccessible to the cross-linking agent. Competition experiments with inositol hexaphosphate indicate that the compound enters the central cavity in deoxyhemoglobin through the cleft between the alpha chains. Despite the presence of the cross-link between the alpha chains, the modified hemoglobin remains highly cooperative. The Hill coefficient for HbXL99 alpha is 2.6. The oxygen affinity of the cross-linked derivative is decreased by approximately 2-fold; at pH 7.0 in the presence of 0.1 M NaCl the P50 is 13.9 mm Hg compared to 6.6 mm Hg for HbA. This difference appears to be due to relatively small changes in both KR, the association constant for binding of oxygen to the R state, and the allosteric constant L. Surprisingly, the isoelectric point of oxyHbXL99 alpha is almost identical to that of oxyHbA, whereas in the deoxy form the isoelectric point of the cross-linked derivative is decreased relative to native hemoglobin as expected due to the loss of the two positive charges of the modified amino groups. In agreement with these findings, the alkaline Bohr effect of HbXL99 alpha is decreased by more than 50%. Earlier studies argue strongly against the possibility that Lys-99 alpha is directly responsible for this large fraction of the Bohr effect in HbA. Analysis of the structure suggests that in the cross-linked derivative Glu-101 beta, which is in close proximity to Lys-99 alpha in oxyhemoglobin, becomes an acid Bohr group.  相似文献   

7.
The arrangement of 8 histones in the nucleosome core has been investigated by identifying the sites of 4 histone sequences cross-linked with a bifunctional amino-group reagent, dimethyl suberimidate, selected from among 4 diimidoesters of various linker lengths examined. H1-depleted calf thymus chromatin was allowed to react with 14C-labeled suberimidate at pH 8.5 and 0 degrees C. The cross-linked chromatin was then digested exhaustively with trypsin. Almost all the histone fragments were released from the chromatin with 0.25 M HCl and chromatographed on several columns and on paper. Cross-linked peptides were detected by analyzing the content of radioactive suberimidoylbislysine after acid hydrolysis. The chromatographic procedure developed here showed that the whole histone fragments contained 29 mol% of the total linked reagent as suberimidoylbisylsine. The 5 finally purified cross-linked peptides were identified from the total and N-terminal amino acids of each pair of peptides separated by two-dimensional cellulose thin layer chromatography after cutting the linker by ammonolysis. Thus, intramolecular cross-linking was found between Lys-5 and Lys-9 of H2A, and Lys-34 and Lys-85 of H2B, while intermolecular cross-linking was found between Lys-24 (or 27) of H2B and Lys-74 of H2A, Lys-85 of H2B and Lys-91 of H4, and Lys-120 of H2B and Lys-115 of H3 and/or Lys-77 of H4. Most of these lysine residues are located in the DNA-binding segments of the 4 histone sequences identified previously [Kato, Y. & Iwai, K, (1977) J. Biochem. 81, 621--630]. All the 5 or 6 cross-links can be located in a heterotypic tetramer consisting of one molecule each of H2A, H2B, H3, and H4, and a model of the histone arrangement in the tetramer is proposed. Two such tetramers may compose to the histone octamer in the nucleosome core.  相似文献   

8.
In the reaction of the intramolecular cross-linking between Lys-13 (epsilon-NH3+) and Leu-129 (alpha-COO-) in lysozyme using imidazole and 1-ethyl-3-[3-(dimethylamino)propyl]carbodiimide hydrochloride [Yamada, H., Kuroki, R., Hirata, M., & Imoto, T. (1983) Biochemistry 22, 4551-4556], it was found that two-thirds of the protein (both the recovered and cross-linked lysozymes) showed a lower affinity than the rest against chitin-coated Celite, an affinity adsorbent for lysozyme. The protein with the reduced affinity was separated on chitin-coated Celite affinity chromatography and found to be slightly different from native lysozyme in the elution position of the tryptic peptide of Ile-98-Arg-112 on reversed-phase high-performance liquid chromatography. In contrast with native lysozyme, the limited hydrolysis of this abnormal tryptic peptide of Ile-98-Arg-112 in 6 N HCl at 110 degrees C gave a considerable amount of beta-aspartylglycine. Therefore, it was concluded that two-thirds of the protein obtained from this reaction possessed the beta-aspartylglycyl sequence at Asp-101-Gly-102. As a result, we obtained four lysozymes from this reaction, the derivative with the beta-aspartyl sequence at Asp-101 (101-beta-lysozyme), the cross-linked derivative between Lys-13 and Leu-129 (CL-lysozyme), the CL-lysozyme derivative with the beta-aspartyl sequence at Asp-101 (101-beta-CL-lysozyme), and native lysozyme. In the ethyl esterification of Asp-52 in lysozyme with triethyloxonium fluoroborate [Parsons, S. M., Jao, L., Dahlquist, F. W., Borders, C. L., Jr., Groff, T., Racs, J., & Raftery, M. A. (1969) Biochemistry 8, 700-712; Parsons, S. M., & Raftery, M. A. (1969) Biochemistry 8, 4199-4205], the same bond rearrangement was detected in the same ratio.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
The relationship of structural and functional moieties on calmodulin is important in all venues of cell activity. In this study, we investigate the effect of lysine modification on calmodulin function. Azidosalicylate reagents containing different "linker arm" lengths, between the photoactive terminus and an amine-reactive N-hydroxysuccinimidyl ester moiety were used to modify calmodulin lysines at three different positions in a calcium-dependent manner. The short cross-linker, (ASNE-2 (where ASNE represents azidosalicylate N-hydroxysuccinimidyl ester), modifies Lys-75, whereas the longer reagent, ASNE-6, modifies lysines 21, 75, and 94. The modification of these different lysines is shown to be calcium-dependent. At 1-100 microM levels of calcium, only Lys-94 is modified, suggesting that modification of this residue is directed by both the binding of calcium to calcium-binding loops III and IV and the hydrophobic pocket exposed between these two loops as a result of calcium binding. At higher calcium concentrations (> 200 microM), where sites I and II become filled, modification of Lys-21 or Lys-75 also was observed. All the modified calmodulins were able to stimulate 3',5'-cyclic-nucleotide phosphodiesterase fully although the Kact for the Lys-75 and Lys-21 derivatives increased 10- and 50-fold, respectively. None of the modifications affected the activation of erythrocyte plasma membrane Ca(2+)-ATPase. Only the ASNE-6 Lys-75 derivative showed efficient (40%) photocross-linking to the Ca(2+)-ATPase. The ASNE-2 Lys-75 derivative as well as the ASNE-6 Lys-21 and Lys-94 derivatives did not show efficient calcium-dependent photocross-linking to this enzyme.  相似文献   

10.
The ribonuclease A derivative Npi-[13C1]carboxymethyl-histine-119 ribonuclease prepared by using [13C1]bromoacetate as alkylating reagent has been investigated with high resolution 13C NMR spectroscopy. In the 13C NMR spectra two carbon resonances of relatively high intensity appear which can be assigned to carboxyl groups attached to His-119 and Met-30, their intensity ratio being 10 : 1. The pH dependence of the carbon resonance of the carboxy-methyl group bound to the Npi of His-119 differs in the absence and presence of Cyd-2'-P, thus indicating that the catalytically inactive derivative does bind nucleotides. A mechanism of the alkylation reaction at pH 5.6 is proposed in which the epsilon-amino group of Lys-41 acts as the binding site for the carboxyl group of bromoacetate pushing the bromomethylene group towards the Npi of His-119 or the Ntau of His-12.  相似文献   

11.
The recent structural determination of Escherichia coli penicillin-binding protein 5 (PBP 5) provides the opportunity for detailed structure-function studies of this enzyme. PBP 5 was investigated in terms of its stability, linear reaction kinetics, acyl-donor substrate specificity, inhibition by a number of active site-directed reagents, and pH profile. PBP 5 demonstrated linear reaction kinetics for up to several hours. Dilution of PBP 5 generally resulted in substantial loss of activity, unless BSA or a BSA derivative was added to the diluting buffer. PBP 5 did not demonstrate a significant preference against a simple set of five alpha- and epsilon-substituted L-Lys-D-Ala-D-Ala derivatives, suggesting that PBP 5 lacks specificity for the cross-linked state of cell wall substrates. Among a number of active site-directed reagents, only some thiol-directed reagents gave substantial inhibition. Notably, serine-directed reagents, organic phosphates, and simple boronic acids were ineffective as inhibitors. PBP 5 was stable over the pH range 4.6-12.3, and the k(cat)/K(m) vs. pH profile for activity against Ac(2)-L-Lys-D-Ala-D-Ala was bell-shaped, with pK(a)s at 8.2 and 11.1. This is the first complete pH profile, including both acidic and basic limbs, for a PBP-catalyzed DD-carboxypeptidase (CPase) reaction. Based on its structure, similarity to Class A beta-lactamases, and results from mutagenesis studies, the acidic and basic limbs of the pH profile of PBP 5 are assigned to Lys-47 and Lys-213, respectively. This assignment supports a role for Lys-47 as the general base for acylation and deacylation reactions.  相似文献   

12.
T Hiratsuka 《Biochemistry》1987,26(11):3168-3173
When myosin subfragment 1 (S-1) reacts with the bifunctional reagents with cross-linking spans of 3-4.5 A, p-nitrophenyl iodoacetate and p-nitrophenyl bromoacetate, the 20-kilodalton (20-kDa) segment of the heavy chain is cross-linked to the 26-kDa segment via the reactive thiol SH2. The well-defined reactive lysyl residue Lys-83 of the 26-kDa segment was not involved in the cross-linking. The cross-linking was completely abolished by nucleotides. Taking into account the recent report that SH2 is cross-linked to a thiol of the 50-kDa segment of S-1 using a reagent with a cross-linking span of 2 A [Chaussepied, P., Mornet, D., & Kassab, R. (1986) Proc. Natl. Acad. Sci. U.S.A. 83, 2037-2041], present results suggest that SH2 of S-1 lies close to both the 26- and 50-kDa segments of the heavy chain. The data also encourage us to confirm our previous suggestion that the ATPase site of S-1 residues at or near the region where all three segments of 26, 50, and 20 kDa are contiguous [Hiratsuka, T. (1984) J. Biochem. (Tokyo) 96, 269-272; Hiratsuka, T. (1985) J. Biochem. (Tokyo) 97, 71-78].  相似文献   

13.
The interaction of bifunctional ATP derivatives, Appp5'[NH-(CH2) n-NH]ppp5'A (n = 0 or 2-8) with tyrosyl-, valyl-, lysyl-, tryptophanyl-tRNA synthetases and creatine kinase was investigated. ATP derivatives don't inhibit the tRNA aminoacylation catalyzed by tyrosyl-tRNA synthetase. These derivatives behave as mixed-type inhibitors with respect to ATP in the case of valyl- and lysyl-tRNA-synthetases. In the case of the other enzymes all analogs of ATP manifest competitive inhibition towards ATP. The affinity of all ATP derivatives to tryptophanyl-tRNA synthetase does not differ significantly (Ki = 0.2 divided by 0.6 mM). The Ki values for these derivatives in the case of creatine kinase are also very similar with the exception of A5'ppp-NH-(CH2)3-NH-ppp5'A. The Ki value for this derivative is one order of magnitude lower than for other ones. The affinity reagents received by periodate oxidation of bifunctional ATP analogs derivatives of di-, tetra- and heptamethylenediamine modify non-identical subunits of creatine kinase with different velocities, but modification of M- and M'-subunits proceeds independently. An analogues derivative of trimethylenediamine interacts simultaneously with two centers of the dimeric form of kinase forming non-equivalent complexes. The covalent attachment of the reagent to one subunit of creatine kinase does not except the complex formation and covalent binding of bifunctional ATP analogs with the other subunit of the dimer, but results in a one order of magnitude decrease in affinity of the ATP derivative to the nonmodified centre of the enzyme. These data permit to evaluate the distance between ATP binding sites of creatine kinase in its dimeric form as 5-6 A approximately. Such a distance between active sites may be the reason for the higher activity of the M- and M'-creatine kinase subunits taken separately as compared to the enzyme dimeric form.  相似文献   

14.
Photoactivatable derivatives of the alpha-neurotoxin II from Naja naja oxiana are useful tools for investigating the three dimensional architecture of the extra-membrane part of the nicotinic acetylcholine receptor from the electric tissue of Torpedo californica. Three derivatives, carrying an azidobenzoyl group in position Lys-15, Lys-26, and Lys-46, respectively, are shown to react differently within the receptor's quaternary structure. Especially the Lys-26 and Lys-46 derivatives can be used for differentiating between the two nonequivalent alpha-subunits. The Lys-26 derivative is applied for probing the receptor subunits next to the alpha-subunit: the gamma-subunit is shown to be located next to the alpha-subunit binding d-tubocurarine with high affinity. The delta-subunit is the neighbor of the low affinity alpha-subunit. We radioiodinated the toxin derivatives and localized the 125I at the His-31 residue of the toxin. Very little label was found in position Tyr-24, the only tyrosine residue of the toxin, or in position His-4, the only other histidine residue. This result is important for the cleavage experiments necessary in attempts to identify the receptor sequence which reacted with the photolabel.  相似文献   

15.
Catalysis by purified avian 3-hydroxy-3-methylglutaryl-CoA lyase is critically dependent on the reduction state of the enzyme, with less than 1% of optimal activity being observed with the air-oxidized enzyme. The enzyme is irreversibly inactivated by sulfhydryl-directed reagents with the rate of this inactivation being highly dependent upon the redox state of a critical cysteine. Methylation of reduced avian lyase with 1 mM 4-methylnitrobenzene sulfonate results in rapid inactivation of the enzyme with a k(inact) of 0.178 min-1. The oxidized enzyme is inactivated at a sixfold slower rate (k(inact) = 0.028 min-1). Inactivation of the enzyme with the reactive substrate analog 2-butynoyl-CoA shows a similar dependence upon the enzyme's redox state, with a sevenfold difference in k(inact) observed with oxidized vs. reduced forms of the enzyme. Chemical cross-linking of the reduced enzyme with stoichiometric amounts of the bifunctional reagents 1,3-dibromo-2-propanone (DBP) or N,N'-ortho-phenylene-dimaleimide (PDM) coincides with rapid inactivation. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis of enzyme treated with bifunctional reagent reveals a band of twice the molecular weight of the lyase monomer, indicating that an intersubunit cross-link has been formed. Differential labeling of native and cross-linked protein with [1-14C]iodoacetate has identified as the primary cross-linking target a cysteine within the sequence VSQAACR, which maps at the carboxy-terminus of the cDNA-deduced sequence of the avian enzyme (Mitchell, G.A., et al., 1991, Am. J. Hum. Genet. 49, 101). In contrast, bacterial HMG-CoA lyase, which contains no corresponding cysteine, is not cross-linked by comparable treatment with bifunctional reagent. These results provide evidence for a potential regulatory mechanism for the eukaryotic enzyme via thiol/disulfide exchange and identify a cysteinyl residue with the reactivity and juxtaposition required for participation in disulfide formation.  相似文献   

16.
We labeled cobra-alpha-toxin (Naja naja siamensis 3) with near stoichiometric quantities of fluorescein isothiocyanate. To reduce labeling of the hyperreactive N epsilon-lysine 23, the alpha-toxin was modified reversibly with citraconic anhydride before fluorescein labeling. The citraconic anhydride was later removed with strong acid, and four of the six possible monofluorescein alpha-toxin derivatives were isolated by isoelectric focusing on an immobilized pH gradient. Thermolysin digestion and subsequent high pressure liquid chromatography of the peptides yielded one dominant fluorescent peak from three of the isolated monofluorescein derivatives. Sequence analyses of these three fluorescent peaks indicated monofluorescein labeling at Lys-69, Lys-35, and Lys-49. Since one derivative (not identified by sequence analysis) displayed essentially identical chromatographic, spectroscopic, and binding properties as our previously identified monofluorescein-Lys-23 toxin (Johnson, D. A., and Taylor, P. (1982) J. Biol. Chem. 257, 5632-5636), we identified the site of labeling of this fourth derivative to be Lys-23. While only small differences were observed in the extinction maxima and molar extinction coefficients, the quantum yields of the isolated derivatives varied markedly and ranged between 0.18 and 0.41. Binding of monofluorescein-Lys-69, -Lys-35, -Lys-49, and -Lys-23 derivatives to the membrane-associated acetylcholine receptor from Torpedo californica was associated with -39, -26, -9, and +96% changes in fluorescence emission intensity, respectively. Based on analyses of the kinetics of fluorescence changes associated with receptor binding, the association and dissociation rate constants were measured. Relative to native cobra alpha-toxin, monofluorescein conjugation reduced the bimolecular association rate constants for binding to the receptor 13-33-fold. The dissociation rate binding rate constants were less affected and were reduced 0-5-fold.  相似文献   

17.
The pK values of the histidine residues in ribonuclease T1 (RNase T1) are unusually high: 7.8 (His-92), 7.9 (His-40), and 7.3 (His-27) [Inagaki et al. (1981) J. Biochem. 89, 1185-1195]. In the RNase T1 mutant Glu-58----Ala, the first two pK values are reduced to 7.4 (His-92) and 7.1 (His-40). These lower pKs were expected since His-92 (5.5 A) and His-40 (3.7 A) are in close proximity to Glu-58 at the active site. The conformational stability of RNase T1 increases by over 4 kcal/mol between pH 9 and 5, and this can be entirely accounted for by the greater affinity for protons by the His residues in the folded protein (average pK = 7.6) than in the unfolded protein (pk approximately 6.6). Thus, almost half of the net conformational stability of RNase T1 results from a difference between the pK values of the histidine residues in the folded and unfolded conformations. In the Glu-58----Ala mutant, the increase in stability between pH 9 and 5 is halved (approximately 2 kcal/mol), as expected on the basis of the lower pK values for the His residues in the folded protein (average pK = 7.1). As a consequence, RNase T1 is more stable than the mutant below pH 7.5, and less stable above pH 7.5. These results emphasize the importance of measuring the conformational stability as a function of pH when comparing proteins differing in structure.  相似文献   

18.
Human angiogenin is inactivated by treatment with bromoacetate at pH 5.5. Use of [14C]bromoacetate and tryptic peptide mapping have identified the sites of carboxymethylation as His-13 and His-114, with His-114 reacting approximately 1.5-fold more rapidly than His-13. At later stages in the reaction, both His-13 and -114 become modified with His-114 in part forming a bis derivative. Comparison with carboxymethylhistidine derivatives of known structure obtained from bovine pancreatic ribonuclease A indicates that the reaction order is N-1 of His-114 greater than N-3 of His-13 greater than N-3 of His-114.  相似文献   

19.
Thermodynamics of protein cross-links   总被引:5,自引:0,他引:5  
R E Johnson  P Adams  J A Rupley 《Biochemistry》1978,17(8):1479-1484
The thermal transitions of native lysozyme and a well-characterized cross-linked derivative of lysozyme [Imoto, T., and Rupley, J. A. (1973), J. Mol. Biol. 80, 657] have been studied in 1.94 M guanidine hydrochloride at pH 2. The observed increase in the melting temperature from 32.4 degrees C for native lysozyme to 61.8 degrees C for the cross-linked derivative corresponds to a calculated 5.2 kcal/mol increase in the free energy of denaturation. This free-energy change is attributed to the decreased entropy of the unfolded polypeptide chain following introduction of a cross-link and is shown to compare well with theoretical predictions. The possibility that an introduction of a cross-link could also affect the enthalpy of an unfolded protein was investigated. The heats of reduction of bovine serum albumin and lysozyme by dithioerythritol in 6 M guanidine hydrochloride were determined and compared to that for the model peptide, oxidized glutathione. The near identity of the observed heats was taken as evidence that the introduction of cross-links into a random-coil protein does not, in general, introduce strain.  相似文献   

20.
A cross-linked complex between bovine NADPH-adrenodoxin reductase (AR) and adrenodoxin (AD) was prepared with 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide and purified, as described previously [Hara, T. & Kimura, T. (1989) J. Biochem. 105, 594-600]. The covalent complex was S-pyridylethylated and digested with lysylendopeptidase, and the resulting peptides were separated by reversed-phase HPLC to identify the cross-linked peptide. Comparison of the HPLC chromatograms of the peptides showed that (i) two tandem peptides (K-4 and K-5) from AD and a peptide (K-1) from AR were missing in the chromatogram of the peptides of the covalent complex and (ii) a single new peak was observed in the chromatogram of the peptides from the covalent complex. Amino acid composition and sequence analyses showed that the newly observed peptide was a covalently cross-linked peptide formed between a peptide K-4-K-5 (Ile-25-Lys-98) derived from AD and a peptide K-1 (Ser-1-Lys-27) derived from AR, in which an amide bond had been formed between the epsilon-amino group of Lys-66 in AD and the gamma-carboxyl group of Glu-4 in AR. These results indicate that the binding site of AR with AD is localized in the amino-terminal part of AR and that of AD with AR is localized around Lys-66 of AD. The six clustered basic amino acid residues (His-24, Lys-27, His-28, His-29, Arg-31, and His-33) present in the amino-terminal portion of AR and the eight clustered acidic amino acid residues (Glu-65, Glu-68, Asp-72, Glu-73, Glu-74, Asp-76, Asp-79, and Asp-86) present in the middle part of AD may play an important role in the complex formation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号