首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We studied photoinhibition in two cultivars of tobacco ( Nicotiana tabacum L.) expressing the bacterial gor gene in the cytosol and in four lines of poplar ( Populus tremula × P. alba ) expressing the FeSOD gene of Arabidopsis thaliana in the chloroplast. The respective total activities of glutathione reductase (EC 1.6.4.2) in leaves of gor tobaccos and superoxide dismutase (EC 1.15.1.1) in the FeSOD poplars were 5–8 times higher than in the respective untransformed control plants. Leaves of control and transformed plants were subjected to high-light stress at 20°C, and photoinhibition of photosystem II (PSII) was measured by oxygen evolution and chlorophyll fluorescence. The leaves were illuminated both in the presence and absence of lincomycin, which inhibits chloroplast protein synthesis. In both cases, the time course of loss of PSII activity was identical in plants overproducing superoxide dismutase (SOD) and in the untransformed controls, suggesting that the ability to convert superoxide to hydrogen peroxide is not a limiting factor in protection against photoinhibition, or in the repair of photoinhibitory damage or that the site of O2 production is not accessible to the transgene product. The rate constant of photoinhibition, measured in lincomycin-treated leaves, was smaller in glutathione reductase (GR) overproducing tobacco cv. Samsun than in the respective wild-type, but this difference was not seen in cv. Bel W3. The steady-state level of PSII activity measured when the PSII repair cycle was allowed to equilibrate with photoinhibitory damage under high light was not higher in the GR overproducing cv. Samsun, suggesting that the repair of photoinhibitory damage was not enhanced in plants overproducing GR in the cytosol.  相似文献   

2.
Reactive oxygen species (ROS), including superoxide anions, hydrogen peroxide and hydroxyl radicals are generated through normal biochemical processes, but their production is increased by abiotic stresses. The prospects for enhancing ROS scavenging, and hence stress tolerance, by direct gene expression in a vulnerable cell compartment, the chloroplast, have been explored in tobacco. Several plastid transformants were generated which contained either a Nicotiana mitochondrial superoxide dismutase (MnSOD) or an Escherichia coli glutathione reductase (gor) gene. MnSOD lines had a three-fold increase in MnSOD activity, but interestingly a five to nine-fold increase in total chloroplast SOD activity. Gor transgenic lines had up to 6 times higher GR activity and up to 8 times total glutathione levels compared to wild type tobacco. Photosynthetic capacity of transplastomic plants, as measured by chlorophyll content and variable fluorescence of PSII was equivalent to non-transformed plants. The response of these transplastomic lines to several applied stresses was examined. In a number of cases improved stress tolerance was observed. Examples include enhanced methyl viologen (Paraquat)-induced oxidative stress tolerance in Mn-superoxidase dismutase over-expressing plants, improved heavy metal tolerance in glutathione reductase expressing lines, and improved tolerance to UV-B radiation in both sets of plants.  相似文献   

3.
Untransformed hybrid poplar (Populus tremula x P. alba) and transgenic lines overexpressing glutathione synthetase (GshS) in the cytosol (200-300-fold) or glutathione reductase (GR) either in the cytosol 5-fold) or in the chloroplast (150-200-fold) were exposed to 0 (control), 100, 200 or 300 nl l-1 ozone for 3 d for 7 h d-1. Following acute ozone stress treatments, wild-type and transgenic poplar suffered from visible foliar injury consisting of dark brown necrotic lesions on the laminae. Necrotic lesions were sharply separated from photosynthetically active cells by a band of red-violet discoloured cell lines showing yellow autofluorescence by blue light, and blue autofluorescence by UV-light excitation. When plants were exposed to 100 nl l-1 ozone, leaf injury was in general negligible, but when 200 and 300 nl l-1 ozone was applied, in both untransformed poplar and transgenic lines overexpressing GshS or GR up to 60% and 80%, respectively, visible injury developed on mature leaves. The mean percentage of injured leaf area amounted to 20-30% (200 nl l-1) and 40-60% (300 nl l-1). Irrespective of transformation, young leaves of poplar trees were only slightly affected by ozone treatments. In support of these observations, net CO2 assimilation rates of mature leaves were decreased by up to 65% (300 nl l-1 ozone) in wild-type and transformed poplar, whereas net photosynthesis of young leaves remained unaffected even under severe stress conditions. Leaf conductance was significantly decreased by all ozone treatments, but was in the same range in young and mature leaves, and in wild-type and transformed poplar, pre- and post-exposure to ozone. It can therefore be assumed that the ozone doses effectively taken up into the leaf tissue were not dependent on leaf development and that the strength of the ozone stress exerted was similar in all types of poplar trees investigated in this study.From these data it is concluded that: (i) elevated foliar activities of glutathione synthetase or glutathione reductase alone are not sufficient to improve tolerance of hybrid poplar to acute ozone stress, and (ii) the sensitivity of poplar leaves to acute ozone stress is controlled by unknown factors closely related to leaf development rather than by foliar activities of glutathione synthetase and glutathione reductase, or leaf conductance.  相似文献   

4.
Abstract: The sensitivity of hybrid poplar (Populus tremula × P. alba) to oxidative stress mediated by paraquat exposure was analysed with leaf discs from wild-type plants and plants expressing the bacterial cDNA of the enzymes of glutathione synthesis, namely gshI, encoding γ-glutamylcysteine synthetase (ECS), or gshII, encoding glutathione synthetase (GS), both in the cytosol. It was expected that leaf discs containing more than 2-fold elevated glutathione concentrations due to over-expression of ECS are less susceptible to paraquat exposure than wild-type plants and transformants over-expressing GS. However, neither over-expression of GS nor of ECS improved paraquat tolerance of the leaves. This result was surprising, because in wild-type plants reduced paraquat sensitivity of young compared with mature leaves coincided with ca. 30 % higher glutathione contents of the young leaves. Apparently, developmental changes in paraquat sensitivity of poplar leaves are controlled by factors different from glutathione contents. Feeding experiments with glutathione and its metabolic precursor γ-glutamylcysteine (EC) plus gly showed that glutathione can provide protection from paraquat-mediated photo-oxidative stress; but at least ca. 5-fold elevated glutathione levels are required for this effect in poplar leaves. Currently, such high glutathione levels have not been achieved by the application of plant molecular biology techniques. The significance of glutathione for the compensation of photo-oxidative stress is discussed.  相似文献   

5.
To determine the importance of glutathione reductase (GR, EC 1.6.4.2) for heavy metal accumulation and tolerance, a bacterial GR was expressed in Indian mustard ( Brassica juncea L.), targeted to the cytosol or the plastids. GR activity in the cytosolic transgenics (cytGR) was about two times higher compared to wild-type plants; in the plastidic transgenics (cpGR) the activity was up to 50 times higher. When treated with 100 μ M CdSO4, cytGR plants did not differ from wild type in cadmium tolerance or accumulation. CpGR plants, however, showed enhanced cadmium tolerance at the chloroplast level: in contrast to wild-type plants they showed no chlorosis, and their chlorophyll fluorescence parameters Fv/Fm and photochemical quenching were higher. Cadmium tolerance at the whole-plant level (plant growth) was not affected. The lower cadmium stress experienced by the cpGR chloroplasts may be the result of reduced cadmium uptake and/or translocation: cadmium levels in shoots of cpGR plants were half as high as those in wild-type shoots. These differences in cadmium tolerance and accumulation may result from increased root glutathione levels, which were up to two times higher in cpGR plants than in the wild type.  相似文献   

6.
A pea glutathione reductase cDNA was expressed in tobacco. Three classes of construct were used which gave a range of elevated levels of glutathione reductase (GR) activity in the cytosol (GR32), chloroplasts (GR36), or in both chloroplasts and mitochondria (GR46). In some transgenic progeny (T2) from self-fertilized GR32 and GR36 primary transformants, having approximately twofold elevation of GR activity as compared with recessive siblings, there was an amelioration of the effect on leaf discs of up to 15 µM paraquat. However, lines with similarly elevated levels of GR activity showed no decreased sensitivity to the herbicide. None of the GR32 and GR36 lines was less sensitive to ozone. Conversely, T2 progeny of GR46 lines, with greater than 4.5-fold elevations of GR activity, showed no reduced sensitivity to paraquat but two out of four of these lines were less sensitive to ozone fumigation. The differential response to stress co-segregated with the presence of the transgene but there was no relationship between the degree of stress response and the level of GR activity. There was an elevation in the total glutathione pool in all lines showing increased GR activity but there was no change in the ratio of oxidized to reduced glutathione. These results demonstrate that the mechanisms of protection against ozone and paraquat are different although both can be mediated by elevated GR activity.  相似文献   

7.
8.
9.
The poplar hybrid Populus tremula X P. alba was transformed with the Escherichia coli gene for glutathione synthetase ( gsh II ) targetted to the cytosol. Leaves of five lines of transgenic plants exhibited glutathione synthetase activities 15- to 60-fold higher than those of wild-type plants. Total glutathione levels and GSH/GSSG ratios were similar in transgenic and wild-type plants. Precursor feeding experiments with cysteine and γ-glutamylcysteine suggest that glutathione synthesis in the cytoplasm is controlled by a multistep procedure that includes (i) the availability of cysteine, (ii) the availability of γ-glutamylcysteine, and (iii) regulation of the activities of both γ-glutamylcysteine synthetase and glutathione synthetase. However step (ii) may set an upper limit for the cellular glutathione content.  相似文献   

10.
To investigate the possible mechanisms of glutathione reductase (GR) in protecting against oxidative stress, we obtained transgenic tobacco (Nicotiana tabacum) plants with 30–70% decreased GR activity by using a gene encoding tobacco chloroplastic GR for the RNAi construct. We investigated the responses of wild type and transgenic plants to oxidative stress induced by application of methyl viologen in vivo. Analyses of CO2 assimilation, maximal efficiency of photosystem II photochemistry, leaf bleaching, and oxidative damage to lipids demonstrated that transgenic plants exhibited enhanced sensitivity to oxidative stress. Under oxidative stress, there was a greater decrease in reduced to oxidized glutathione ratio but a greater increase in reduced glutathione in transgenic plants than in wild type plants. In addition, transgenic plants showed a greater decrease in reduced ascorbate and reduced to oxidized ascorbate ratio than wild type plants. However, there were neither differences in the levels of NADP and NADPH and in the total foliar activities of monodehydroascorbate reductase and dehydroascorbate reductase between wild type and transgenic plant. MV treatment induced an increase in the activities of GR, ascorbate peroxidase, superoxide dismutase, and catalase. Furthermore, accumulation of H2O2 in chloroplasts was observed in transgenic plants but not in wild type plants. Our results suggest that capacity for regeneration of glutathione by GR plays an important role in protecting against oxidative stress by maintaining ascorbate pool and ascorbate redox state.  相似文献   

11.
Poplars (Populus tremula × Populus alba) were transformed to overexpress Escherichia coli γ-glutamylcysteine synthetase (γ-ECS) or glutathione synthetase in the chloroplast. Five independent lines of each transformant strongly expressed the introduced gene and possessed markedly enhanced activity of the gene product. Glutathione (GSH) contents were unaffected by high chloroplastic glutathione synthetase activity. Enhanced chloroplastic γ-ECS activity markedly increased γ-glutamylcysteine and GSH levels. These effects are similar to those previously observed in poplars overexpressing these enzymes in the cytosol. Similar to cytosolic γ-ECS overexpression, chloroplastic overexpression did not deplete foliar cysteine or methionine pools and did not lead to morphological changes. Light was required for maximal accumulation of GSH in poplars overexpressing γ-ECS in the chloroplast. High chloroplastic, but not cytosolic, γ-ECS activities were accompanied by increases in amino acids synthesized in the chloroplast. We conclude that (a) GSH synthesis can occur in the chloroplast and the cytosol and may be up-regulated in both compartments by increased γ-ECS activity, (b) interactions between GSH synthesis and the pathways supplying the necessary substrates are similar in both compartments, and (c) chloroplastic up-regulation of GSH synthesis is associated with an activating effect on the synthesis of specific amino acids formed in the chloroplast.  相似文献   

12.
N-terminal presequences from cDNAs encoding mitochondrion- or chloroplast-specific proteins are able, with variable efficiencies, to target preproteins to their respective organelles. In the few cases studied in which a nuclear-encoded protein is found in both these organelles, each compartment-specific isoform is encoded by a separate gene. Glutathione reductase (GR) from peas is encoded by a single nuclear gene and yet GR is distributed between chloroplasts, mitochondria and the cytosol. Previous sequence analysis of a full-length GR cDNA revealed the presence of a putative plastid transit peptide. However, expression of this cDNA in transgenic tobacco resulted in substantially elevated GR activities in both chloroplasts and mitochondria in four independent lines examined. There was no effect on expression of the endogenous tobacco GR genes. Replacement of the GR presequence with presequences from pea rbcS (chloroplast) and Nicotiana plumbaginifolia Mn-SOD (mitochondrion) resulted in targeting of GR only into the appropriate organelle. Expression of a fusion protein between the amino terminal region of GR and phosphinothricin acetyl transferase resulted in targeting of the foreign protein to chloroplasts and mitochondria. Thus, the pea GR presequence is capable of co-targeting this enzyme or a foreign protein to chloroplasts and mitochondria in vivo . This is the first example of co-targeting by a higher plant preprotein.  相似文献   

13.
Thiol‐based redox‐regulation is vital for coordinating chloroplast functions depending on illumination and has been throroughly investigated for thioredoxin‐dependent processes. In parallel, glutathione reductase (GR) maintains a highly reduced glutathione pool, enabling glutathione‐mediated redox buffering. Yet, how the redox cascades of the thioredoxin and glutathione redox machineries integrate metabolic regulation and detoxification of reactive oxygen species remains largely unresolved because null mutants of plastid/mitochondrial GR are embryo‐lethal in Arabidopsis thaliana. To investigate whether maintaining a highly reducing stromal glutathione redox potential (EGSH) via GR is necessary for functional photosynthesis and plant growth, we created knockout lines of the homologous enzyme in the model moss Physcomitrella patens. In these viable mutant lines, we found decreasing photosynthetic performance and plant growth with increasing light intensities, whereas ascorbate and zeaxanthin/antheraxanthin levels were elevated. By in vivo monitoring stromal EGSH dynamics, we show that stromal EGSH is highly reducing in wild‐type and clearly responsive to light, whereas an absence of GR leads to a partial glutathione oxidation, which is not rescued by light. By metabolic labelling, we reveal changing protein abundances in the GR knockout plants, pinpointing the adjustment of chloroplast proteostasis and the induction of plastid protein repair and degradation machineries. Our results indicate that the plastid thioredoxin system is not a functional backup for the plastid glutathione redox systems, whereas GR plays a critical role in maintaining efficient photosynthesis.  相似文献   

14.
Cuttings of Populus kangdingensis and Populus cathayana, originating from high and low altitudes in the eastern Himalaya, respectively, were examined during one growing season in a greenhouse to determine their responses to drought stress (soil moisture decreased from 100 to 55 or 25 % field capacity). Compared to control plants grown under 100 % field capacity, those poplars grown under 55 and 25 % field capacity possessed lower increases in height and stem diameter, and higher contents of soluble sugars, free proline, malondialdehyde (MDA) and hydrogen peroxide, and higher activities of catalase (CAT), superoxide dismutase (SOD), peroxidase (POD), ascorbate peroxidase (APX) and glutathione reductase (GR). Compared with P. cathayana with greater leaf area, P. kangdingensis with greater root/shoot ratio exhibited lower MDA and H2O2 contents, higher soluble sugar and free proline contents, and higher activities of CAT, SOD, POD, APX and GR. These results suggested that P. kangdingensis was more drought tolerant than P. cathayana.  相似文献   

15.
16.
One approach to understanding the Reactive Oxygen Species (ROS)-scavenging systems in plant stress tolerance is to manipulate the levels of antioxidant enzyme activities. In this study, we expressed in the chloroplast three such enzymes: dehydroascorbate reductase (DHAR), glutathione-S-transferase (GST) and glutathione reductase (GR). Homoplasmic chloroplast transformants containing either DHAR or GST, or a combination of DHAR:GR and GST:GR were generated and confirmed by molecular analysis. They exhibited the predicted changes in enzyme activities, and levels or redox state of ascorbate and glutathione. Progeny of these plants were then subjected to environmental stresses including methyl viologen (MV)-induced oxidative stress, salt, cold and heavy metal stresses. Overexpression of these different enzymes enhanced salt and cold tolerance. The simultaneous expression of DHAR:GR and GST:GR conferred MV tolerance while expression of either transgene on its own didn't. This study provides evidence that increasing part of the antioxidant pathway within the chloroplast enhances the plant's ability to tolerate abiotic stress.  相似文献   

17.
Ding S  Lei M  Lu Q  Zhang A  Yin Y  Wen X  Zhang L  Lu C 《Biochimica et biophysica acta》2012,1817(11):1979-1991
Chloroplast glutathione reductase (GR) plays an important role in protecting photosynthesis against oxidative stress. We used transgenic tobacco (Nicotiana tabacum) plants with severely decreased GR activities by using a gene encoding tobacco chloroplast GR for the RNAi construct to investigate the possible mechanisms of chloroplast GR in protecting photosynthesis against chilling stress. Transgenic plants were highly sensitive to chilling stress and accumulated high levels of H?O? in chloroplasts. Spectroscopic analysis and electron transport measurements show that PSII activity was significantly reduced in transgenic plants. Flash-induced fluorescence relaxation and thermoluminescence measurements demonstrate that there was a slow electron transfer between Q(A) and Q(B) and decreased redox potential of Q(B) in transgenic plants, whereas the donor side function of PSII was not affected. Immunoblot and blue native gel analyses illustrate that PSII protein accumulation was decreased greatly in transgenic plants. Our results suggest that chloroplast GR plays an important role in protecting PSII function by maintaining the electron transport in PSII acceptor side and stabilizing PSII complexes under chilling stress. Our results also suggest that the recycling of ascorbate from dehydroascorbate in the ascorbate-glutathione cycle in the chloroplast plays an essential role in protecting PSII against chilling stress.  相似文献   

18.
AIMS: To improve glutathione (GSH) production in Escherichia coli by different genetic constructions containing GSH genes. METHODS AND RESULTS: GSH production was very low in E. coli by the expression of gshI gene. An increase of GSH production was achieved by the expression of both gshI and gshII genes in E. coli. A higher GSH production, namely 34.8 mg g(-1) wet cell weight, was obtained by simultaneous expression of two copies of gshI gene and one copy of gshII gene. CONCLUSIONS: The simultaneous expression of two copies of gshI gene and one copy of gshII gene resulted in a significant increase in GSH production. SIGNIFICANCE AND IMPACT OF THE STUDY: The expression strategy for GSH production described here can be used to increase gene expression and obtain high production rates in other multienzyme reaction systems.  相似文献   

19.
The coding sequence of the wild-type, cys-sensitive, cysE gene from Escherichia coli, which encodes an enzyme of the cysteine biosynthetic pathway, namely serine acetyltransferase (SAT, EC 2.3.1. 30), was introduced into the genome of potato plants under the control of the cauliflower mosaic virus 35S promoter. In order to target the protein into the chloroplast, cysE was translationally fused to the 5'-signal sequence of rbcS from Arabidopsis thaliana. Transgenic plants showed a high accumulation of the cysE mRNA. The chloroplastic localisation of the E. coli SAT protein was demonstrated by determination of enzymatic activities in enriched organelle fractions. Crude leaf extracts of these plants exhibited up to 20-fold higher SAT activity than those prepared from wild-type plants. The transgenic potato plants expressing the E. coli gene showed not only increased levels of enzyme activity but also exhibited elevated levels of cysteine and glutathione in leaves. Both were up to twofold higher than in control plants. However, the thiol content in tubers of transgenic lines was unaffected. The alterations observed in leaf tissue had no effect on the expression of O-acetylserine(thiol)-lyase, the enzyme which converts O-acetylserine, the product of SAT, to cysteine. Only a minor effect on its enzymatic activity was observed. In conclusion, the results presented here demonstrate the importance of SAT in plant cysteine biosynthesis and show that production of cysteine and related sulfur-containing compounds can be enhanced by metabolic engineering.  相似文献   

20.
Internode stem fragments of the poplar hybrid Populus tremula x Populus alba were transformed with a bacterial gene (gshl) for [gamma]-glutamylcysteine synthetase ([gamma]-ECS) targeted to the cytosol. Lines overexpressing [gamma]-ECS were identified by northern analysis, and the transformant with the highest enzyme activity was used to investigate the control of glutathione synthesis. Whereas foliar [gamma]-ECS activity was below the limit of detection in untransformed plants, activities of up to 8.7 nmol mg-1 protein min-1 were found in the transformant, in which the foliar contents of [gamma]-glutamylcysteine ([gamma]-EC) and glutathione were increased approximately 10- and 3-fold, respectively, without affecting either the reduction state of the glutathione pool or the foliar cysteine content. A supply of exogenous cysteine to leaf discs increased the glutathione content from both transformed and untransformed poplars, and caused the [gamma]-EC content of the transformant discs to increase still further. The following conclusions are drawn: (a) the native [gamma]-ECS of untransformed poplars exists in quantities that are limiting for foliar glutathione synthesis; (b) foliar glutathione synthesis in untransformed poplars is limited by cysteine availability; (c) in the transformant interactions between glutathione synthesis and cysteine synthesis operate to sustain the increased formation of [gamma]-EC and glutathione; and (d) the foliar glutathione content of the transformant is restricted by cysteine availability and by the activity of glutathione synthetase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号