首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract: The effect of hypoglycaemic, hypoxic, and ischaemic conditions on high-affinity neurotransmitter transport was studied in the human astrocytoma clone D384 and the human neuroblastoma clone SH-SY5Y. Both cell lines expressed a sodium-dependent glutamate/aspartate transporter. K m values for d -[3H]aspartate uptake were 6.1 ± 0.9 µ M for D384 cells and 5.3 ± 0.3 µ M for SH-SY5Y cells (mean ± SEM of three experiments). In addition, SH-SY5Y, but not D384, expressed a sodium-dependent noradrenaline transporter with K m = 0.6 ± 0.1 µ M (mean ± SEM of three experiments). Up to 3 h of hypoglycaemic conditions had no effect on neurotransmitter uptake or on ATP levels of each cell line. In sharp contrast, during hypoxic conditions, the uptake of d -[3H]aspartate and [3H]noradrenaline declined by 43–56% within 5 min. These reduced rates of neurotransmitter uptake were maintained over 30 min of hypoxic conditions. Five minutes of ischaemic conditions caused similar reductions in neurotransmitter uptake rates. A correlation between reductions in rates of neurotransmitter uptake and in ATP levels was observed for each cell line. Results are discussed in relation to other brain preparations, which are used as models of the nervous system to study the effects of ischaemic conditions on neurotransmitter and energy metabolism.  相似文献   

2.
Reaction of Muscimol with 4-Aminobutyrate Aminotransferase   总被引:1,自引:1,他引:0  
Abstract: The reaction of muscimol as amino donor substrate for GABA transaminase (GABA-T) has been studied using enzyme purified from rabbit brain. Enzyme activity was assayed by measuring the glutamate produced using glutamate dehydrogenase. Kinetic parameters determined at 37°C were for GABA, K m (app) = 1.92 ± 0.24 m M , specific activity = 7.33 ± 0.27 μmol/min/mg ( k cat= 13.7s−1), and for muscimol, K m (app) = 1.27 ± 0.15 m M , specific activity = 0.101 ± 0.009 μmol/min/mg ( k cat= 0.19s−1). Addition of muscimol to the enzyme caused the spectral changes associated with conversion of the pyridoxaldimine form to the pyridoxamine form, and the first-order rate constant for the reaction showed a dependence on muscimol concentration that followed saturation kinetics, with a K = 1.1 ±0.18 m M and k max= 0.065 ± 0.004 s−1 (19°C). The rate of spectral change observed on addition of muscimol to ornithine transaminase was extremely slow—at least an order of magnitude slower than that seen with GABA-T.  相似文献   

3.
Abstract: Cells dissociated from the postnatally developing rat cerebellum retain their high-affinity carrier-mediated transport systems for [3H]GABA ( K t=1.9 μM, V = 1.8 pmol/106 cells/min) and [3H]glutamate ( K t= 10 μM, V = 7.9 pmol/106 cells/min). Using a unit gravity sedimentation technique it was demonstrated that [3H]GABA was taken principally into fractions that were enriched in inhibitory neurons (Purkinje, stellate and basket cells). [3H]β-alanine (which is taken up specifically by the glial GABA transport system) and [3H]glutamate were concentrated by glial-enriched fractions. However [3H]glutamate uptake was minimal in fractions enriched in precursors of granule cells, which may utilise this amino acid as their neurotransmitter. These results are discussed in relation to reports of high-affinity [3H]glutamate uptake by glia. The role of glutamate transport in glutamatergic cells is also considered. The data suggest that high-affinity glutamate transport is a property of glial cells but not granule neurons.  相似文献   

4.
Modulation of Human Glutamate Transporter Activity by Phorbol Ester   总被引:5,自引:4,他引:1  
Abstract: Termination of synaptic glutamate transmission depends on rapid removal of glutamate by neuronal and glial high-affinity transporters. Molecular biological and pharmacological studies have demonstrated that at least five subtypes of Na+-dependent mammalian glutamate transporters exist. Our study demonstrates that Y-79 human retinoblastoma cells express a single Na+-dependent glutamate uptake system with a K m of 1.7 ± 0.42 µ M that is inhibited by dihydrokainate and dl - threo -β-hydroxyaspartate (IC50 = 0.29 ± 0.17 µ M and 2.0 ± 0.43 µ M , respectively). The protein kinase C activator phorbol 12-myristate 13-acetate caused a concentration-dependent inhibition of glutamate uptake (IC50 = 0.56 ± 0.05 n M ), but did not affect Na+-dependent glycine uptake significantly. This inhibition of glutamate uptake resulted from a fivefold decrease in the transporter's affinity for glutamate, without significantly altering the V max. 4α-Phorbol 12,13-didecanoate, a phorbol ester that does not activate protein kinase C, did not alter glutamate uptake significantly. The phorbol 12-myristate 13-acetate-induced inhibition of glutamate uptake was reversed by preincubation with staurosporine. The biophysical and pharmacological profile of the human glutamate transporter expressed by the Y-79 cell line indicates that it belongs to the dihydrokainate-sensitive EAAT2/GLT-1 subtype. This conclusion was confirmed by western blot analysis. Protein kinase C modulation of glutamate transporter activity may represent a mechanism to modulate extracellular glutamate and shape postsynaptic responses.  相似文献   

5.
Abstract: [35S]r-Butylbicyclophosphorothionate (TBPT), a cage convulsant with picrotoxinin-like activity, binds to rat brain membranes to a single site with an apparent KD of 25.1 ± 5.6 n M and a Bmax of 1.40 ± 0.22 pmol/mg protein. TBPT binding to rat brain membranes was inhibited by a variety of convulsant, depressant, anxiolytic, and anticonvulsant drugs that had previously been shown to inhibit [3H]a-dihydropicrotoxinin binding. Depressant drugs such as pentobarbital and the nonbarbiturate (+)etomidate inhibited TBPT binding in an uncompetitive manner. Thus, pentobarbital and (+)etomidate decreased both the affinity and the number of binding sites of TBPT to whole brain membranes. The IC50 values of (+)etomidate (9 μ M ) and pentobarbital (90 μ M ) are similar to the EC50 values at which they enhance both [3H]-γ-aminobutyric acid and [3H]diazepam binding in cerebral cortex membranes. RO5–4864, which has recently been shown to be a convulsant, also inhibited TBPT binding (IC50= 10 μ M ). These results suggest that TBPT binds to the picrotoxinin site and further supports the notion that the picrotoxinin site is an important modulatory site at the benzodiazepine-GABA receptor-ionophore complex.  相似文献   

6.
Abstract: The cellular mechanisms underlying opioid action remain to be fully determined, although there is now growing indirect evidence that some opioid receptors may be coupled to phospholipase C. Using SH-SY5Y human neuroblastoma cells (expressing both μ-and δ-opioid receptors), we demonstrated that fentanyl, a μ-preferring opioid, caused a dose-dependent (EC50= 16 n M ) monophasic increase in inositol (1,4,5)trisphosphate mass formation that peaked at 15 s and returned to basal within 1–2 min. This response was of similar magnitude (25.4 ± 0.8 pmol/mg of protein for 0.1 μ M fentanyl) to that found in the plateau phase (5 min) following stimulation with 1 m M carbachol (18.3 ± 1.4 pmol/mg of protein), and was naloxone-, but not naltrindole-(a δ antagonist), reversible. Further studies using [ d -Ala2, MePhe4, Gly(ol)5]enkephalin and [ d -Pen2,5]enkephalin confirmed that the response was specific for the μ receptor. Incubation with Ni2+ (2.5 m M ) or in Ca2+-free buffer abolished the response, as did pretreatment (100 ng/ml for 24 h) with pertussis toxin (control plus 0.1 μ M fentanyl, 26.9 ± 1.5 pmol/mg of protein; pertussis-treated plus 0.1 μ M fentanyl, 5.1 ± 1.3 pmol/mg of protein). In summary, we have demonstrated a μ-opioid receptor-mediated activation of phospholipase C, via a pertussis toxin-sensitive G protein, that is Ca2+-dependent. This stimulatory effect of opioids on phospholipase C, and the potential inositol (1,4,5)trisphosphate-mediated rises in intracellular Ca2+, could play a part in the cellular mechanisms of opioid action.  相似文献   

7.
Abstract: Four catalytic inhibitors of GABA aminotransferase (gabaculine, γ-acetylenic GABA, γ-vinyl GABA, ethanolamine O -sulphate) as well as aminooxyacetic acid and valproate were studied for effects on neurochemical assays for GABA synthesis, receptor binding, uptake and metabolism in mouse and rat brain preparations. Gabaculine did not interfere with GABA synthesis as reflected by the activity of glutamate decarboxylase (GAD), it was only a weak inhibitor (IC50= 0.94 mM) of GABA receptor binding sites but was a moderately potent inhibitor of GABA uptake (IC50= 81 μM) and very potent (IC50= 1.8 μM) with respect to inhibition of the GABA-metabolizing enzyme GABA aminotransferase (GABA-T). γ-Acetylenic GABA was a weak inhibitor of GAD and GABA binding (IC50 > 1 mM), but virtually equipotent to inhibit uptake and metabolism of GABA (IC50 560 and 150 μM, respectively). This was very similar to γ-vinyl GABA, except that this drug did not decrease GAD activity. Ethanolamine O -sulphate was found to show virtually no inhibition of GAD and GABA uptake, but was a fairly potent inhibitor of GABA binding (IC50= 67 μM) and in this respect, 500 times more potent than as an inhibitor of GABA-T. Aminooxyacetic acid was a powerful inhibitor of both GAD and GABA-T (IC50 14 and 2.7 μM, respectively), but had very little affinity to receptor and uptake sites for GABA. Valproate showed no effects on GABA neurochemical assays which could be related to anticonvulsant action. The present results suggest that the anticonvulsant properties of the four catalytic inhibitors of GABA-T tested are at least in part mediated through a direct influence on GABA receptors and uptake sites.  相似文献   

8.
The Uptake of Carnitine by Slices of Rat Cerebral Cortex   总被引:5,自引:3,他引:2  
Abstract: The properties of carnitine transport were studied in rat brain slices. A rapid uptake system for carnitine was observed, with tissue-medium gradients of 38 ± 3 for L-[14CH3]carnitine and 27 ± 3 for D-[14CH3]carnitine after 180 min incubation at 37°C in 0.64 mM substrate. Uptake of L- and D-carnitine showed saturability. The estimated values of K m for L- and D-carnitine were 2.85 mM and 10.0 mM, respectively; but values of V max (1 μmol/min/ml in-tracellular fluid) were the same for the two isomers. The transport system showed stereospecificity for L-carnitine. Carnitine uptake was inhibited by structurally related compounds with a four-carbon backbone containing a terminal carboxyl group. L-Carnitine uptake was competitively inhibited by γ-butyrobetaine ( K i= 3.22 mM), acetylcarnitine ( K i= 6.36 mM), and γ-aminobutyric acid ( K i= 0.63 mM). The data suggest that carnitine and γ-aminobutyric acid interact at a common carrier site. Transport was not significantly reduced by choline or lysine. Carnitine uptake was inhibited by an N2 atmosphere, 2,4-dinitrophenol, carbonylcyanide- N -chlorophenylhydrazone, potassium cyanide, n-ethylmaleimide, and ouabain. Transport was abolished by low temperature (4°C) and absence of glucose from the medium. Carnitine uptake was Na+-dependent, but did not require K+ or Ca2+.  相似文献   

9.
Abstract— Uptake and release of glutamine were measured in primary cultures of astrocytes together with the activity of the phosphate activated glutaminase (EC 3.5.1.2). In contrast to previous findings of an effective, high affinity uptake of other amino acids (e.g. glutamate, GABA) no such uptake of glutamine was observed, though a saturable, concentrative uptake mechanism did exist (K m = 3.3 ± 0.5 m m ; V max= 50.2 ± 12.6 nmol ± min−1± mg−1). The phosphate activated glutaminase activity in the astrocytes (6.9 ± 0.9 nmol ± min−1± mg−1) was similar to the activity found in whole brain (5.4 ± 0.7 nmol ± min −l± mg−1), which may contrast with previous findings of a higher activity of the glutamine synthetase (EC 6.3.1.2) in astrocytes than in whole brain. The observations are compatible with the hypothesis of an in vivo flow of glutamate (and GABA) from neurons to astrocytes where it is taken up and metabolized, and a compensatory flow of glutamine towards neurons and away from astrocytes although the latter cell type may be more deeply involved in glutamine metabolism than envisaged in the hypothesis.  相似文献   

10.
Abstract: Metabolism of [1-13C]glucose was monitored in superfused cerebral cortex slice preparations from 1-, 2-, and 5-week-old rats using 1H-observed/13C-edited (1H{13C}) NMR spectroscopy. The rate of label incorporation into glutamate C-4 did not differ among the three age groups: 0.52–0.67% of total 1H NMR-detected glutamate/min. This was rather unexpected, as oxygen uptake proceeded at 1.1 ± 0.1, 1.9 ± 0.1, and 2.0 ± 0.1 µmol/min/g wet weight in brain slices prepared from 1-, 2-, and 5-week-old animals, respectively. Steady-state glutamate C-4 fractional enrichments in the slice preparations were ∼23% in all age groups. In the acid extracts of slices glutamate C-4 enrichments were smaller, however, in 1- and 2-week-old (17.8 ± 1.7 and 16.8 ± 0.8%, respectively) than in 5-week-old rats (22.7 ± 0.7%) after 75 min of incubation with 5 m M [1-13C]glucose. We add a new assignment to the 1H{13C} NMR spectroscopy, as acetate C-2 was detected in slice preparations from 5-week-old animals. In the acid extracts of slice preparations acetate C-2 was labeled by ∼30% in 5-week-old rats but by 15% in both 1- and 2-week-old animals, showing that the turnover rate was increased in 5-week-old animals. In the extracts 3–4% of the C-6 of N -acetyl-aspartate (NAA; CH3 of the acetyl group) contained label as determined by both NMR and mass spectrometry, which indicated that there was no significant labeling to other carbons in NAA. NAA accumulated label from [1-13C]glucose but not from [2-13C]acetate, and the rate of label incorporation increased by threefold on cerebral maturation.  相似文献   

11.
Abstract: Choline uptake in Y79 human retinoblastoma cells occurs through two kinetically distinguishable processes. The high-affinity system shows little sodium or energy dependence, and it does not appear to be linked to acetyl CoA: choline O -acetyltransferase. When the cells are grown in a culture medium containing 10% fetal bovine serum, the high-affinity system has a K' m= 2.16 ± 0.13 μ m and V' max= 27.0 ± 2.9 pmol min−1 mg−1, whereas the low-affinity system has K' m= 20.4 ± 1.3 μ m and V' max= 402 ± 49 pmol min−1 mg−1. Under these conditions, the polyunsaturated fatty acid content of the cell membranes is relatively low. When the polyunsaturated fatty acid content of the microsomal membrane fraction was increased by supplementing the culture medium with linolenic or docosahexaenoic acids (n-3 polyunsaturated fatty acids) or arachidonic acid (n-6 polyunsaturated fatty acid), the K' m of the high-affinity choline transport system was reduced by 40–60%. The V' max also was reduced by 20–40%. Supplementation with oleic acid, the most prevalent monounsaturated fatty acid, did not affect either kinetic parameter. The results suggest that one functional effect of the high unsaturated fatty acid content of neural cell membranes is to facilitate the capacity of the high-affinity choline uptake system to transport low concentrations of choline. This effect appears to be specific for polyunsaturated fatty acids but not for a single type, for it is produced by members of both the n-3 and n-6 classes of polyunsaturated fatty acids.  相似文献   

12.
Abstract— Slices from various regions of rat brain, incubated at 25°C, rapidly accumulate [3H]GABA from the surrounding medium until after 60min tissue:medium ratios as high as 300 may be achieved. Kinetic analysis has demonstrated two distinct uptake systems for GABA in all the brain regions examined. One system has a relatively high substrate affinity ( Km = 1.2 ± 10-5 M) while the other has a lower affinity ( Km = 4 ± 10-4 M). Studies at low GABA concentration (5 ± 10-8 M), as well as estimates of maximum velocities, have shown that the distribution of the high affinity uptake system is heterogeneous. Cortex, hypothala mus, midbrain and hippocampus have relatively high uptake rates while the striatum, cerebellum and pons and medulla have a lower uptake rate. Maximum velocities for the low affinity uptake system show much less regional variation.
Lithium, either added to the incubation medium or fed to rats, had no effect on the uptake of GABA by cortical slices.  相似文献   

13.
Abstract: The uptake of 3',3,5-triiodo- l -thyronine (T3) and l -thyroxine (T4) by primary cultures derived from rat brain hemispheres was studied under initial velocity conditions, at 25°C. Uptake of both hormones was carrier mediated and obeyed simple Michaelis-Menten kinetics. The K m of T3 uptake was very similar to that of T4, and did not vary significantly from day 1 to 4 in culture (310–400 n M ). The maximal velocity ( V max) of T3 uptake nearly doubled between day 1 and 4 of culture (41 ± 3 vs. 70 ± 5 pmol/min/mg of DNA, respectively). The V max of T4 uptake did not change (28 ± 8 and 31 ± 4 pmol/min/mg of DNA on days 1 and 4, respectively). The rank order of unlabeled thyroid hormone analogues to compete with labeled T3 or T4 uptakes were the same (T3 > T4 > 3',5',3-triiodo- l -thyronine > 3',3,5-triiodo- d -thyronine > triiodothyroacetic acid), indicating that the transport system is stereospecific. Unlabeled T4 was a stronger competitor of labeled T4 uptake than of labeled T3 uptake, whereas unlabeled T3 had the same potency for both processes. These results suggest that T3 and T4 are transported either by two distinct carriers or by the same carrier bearing separate binding sites for each hormone. They also indicate that the efficiency of T3 uptake increases during neuronal maturation.  相似文献   

14.
Abstract: We studied astrocytic metabolism of leucine, which in brain is a major donor of nitrogen for the synthesis of glutamate and glutamine. The uptake of leucine into glia was rapid, with a V max of 53.6 ± 3.2 nmol/mg of protein/min and a K m of 449.2 ± 94.9 µ M . Virtually all leucine transport was found to be Na+ independent. Astrocytic accumulation of leucine was much greater (3×) in the presence of α-aminooxyacetic acid (5 m M ), an inhibitor of transamination reactions, suggesting that the glia rapidly transaminate leucine to α-ketoisocaproic acid (KIC), which they then release into the extracellular fluid. This inference was confirmed by the direct measurement of KIC release to the medium when astrocytes were incubated with leucine. Approximately 70% of the leucine that the glia cleared from the medium was released as the keto acid. The apparent K m for leucine conversion to extracellular KIC was a medium [leucine] of 58 µ M with a V max of ∼2.0 nmol/mg of protein/min. The transamination of leucine is bidirectional (leucine + α-ketoglutarate ↮ KIC + glutamate) in astrocytes, but flux from leucine → glutamate is more active than that from glutamate → leucine. These data underscore the significance of leucine handling to overall brain nitrogen metabolism. The release of KIC from glia to the extracellular fluid may afford a mechanism for the "buffering" of glutamate in neurons, which would consume this neurotransmitter in the course of reaminating KIC to leucine.  相似文献   

15.
Abstract— Cyclic 3',5'-AMP (cAMP) and cyclic 3',5'–GMP (cGMP) phosphodiesterase activities were found in human cerebrospinal fluid (CSF) using low substrate concentration (0.4μM). More rapid hydrolysis of cGMP than that of cAMP was observed in human CSF. However, cGMP hydrolytic activity of CSF was very much lower (0.3 pmol/min/ml CSF) than that of human cerebral cortex (33.7 nmol/min/g wet cortex). The pH optimum was found to be 8.0 (cGMP phosphodiesterase) and 7.5 (cAMP phosphodiesterase). The maximum stimulation of both cAMP and cGMP phosphodiesterase was achieved at 4 mM-MgCl2. Cyclic AMP had relatively little effect on the hydrolysis of cGMP in CSF and the cortex, while cGMP inhibited hydrolysis of cAMP in both tissues. Snake venom was found to stimulate cAMP and cGMP phosphodiesterase activity of CSF, by 60% and 110% respectively. This stimulation by snake venom was also observed in the cortex phosphodiesterase, but was not observed in human plasma or thyroid phosphodiesterase. When CSF was applied to Sepharose 6B column, cGMP phosphodiesterase was separated into three different molecular forms. A plot of activity against substrate concentration using peak I (largest molecular size) revealed a high affinity ( K m= 2.6μM) and a low affinity ( K m= 100μM) for cAMP suggesting the existence of at least two molecular forms of the enzyme. On the other hand, using a cGMP as substrate the only one K m value (1.90 μm) was obtained. These K m values of CSF enzymes described above were close to those obtained from human cerebral cortex preparations. The enzyme under peak I corresponded to the cortex enzyme when judged from its molecular size and stimulation by snake venom. It seems likely from our results that at least a part of CSF phosphodiesterase originates from the central nervous system.  相似文献   

16.
Potential desensitization of brain nicotinic receptors was studied using a [3H]dopamine release assay. Nicotine-stimulated [3H]dopamine release from mouse striatal synaptosomes was concentration-dependent with an EC50 of 0.33 ± 0.13 μ M and a Hill coefficient of 1.44 ± 0.18. Desensitization by activating concentrations of nicotine had a similar EC50 and a half-time of 35 s. Concentrations of nicotine that evoked little release also induced a concentration-dependent desensitization (EC50=6.9 plusmn; 3.6 n M , t1/2= 1.6-2.0 min, n H=1.02 ± 0.01). Both types of desensitization produced a maximum 75% decrease in [3H]dopamine release. Recovery from desensitization after exposure to low or activating concentrations of nicotine was time-dependent with half-times of 6.1 min and 12.4 min, respectively. Constants determined for binding of [3H]nicotine to striatal membrane at 22°C included a K Dof 3.7 ± 0.5 n M , Bmax of 67.5 ± 2.2 fmol/mg, and Hill coefficient of 1.07 ± 0.06. Association of nicotine with membrane binding sites was biphasic with half-times of 9 s and 1.8 min. The fast rate process contributed 37% of the total reaction. Dissociation was a uniphasic process with a half-time of 1.6 min. Comparison of constants determined by the release and binding assays indicated that the [3H]-nicotine binding site could be the presynaptic receptor involved in [3H]dopamine release in mouse striatal synaptosomes.  相似文献   

17.
Adenosine Transport into Guinea-pig Synaptosomes   总被引:17,自引:15,他引:2  
Abstract: Kinetics for transport of adenosine into guinea-pig neocortex synaptosomes were studied by incubating them with [14C]adenosine for up to 30 s. The apparent K m value of the high-affinity transport system for adenosine was 21.1 μM and the V max value was 257.3 pmol/min/mg protein. The transport system was inhibited by both compounds structurally related (compounds 554 and 555) and unrelated (dipyridamole) to adenosine. Because electrically stimulated synaptosomes release up to 1.5% of the adenosine derivative content per min, the physiological significance of adenosine uptake is discussed as a possible mechanism to compensate for the loss of adenine nucleotides from synaptosomes preparations.  相似文献   

18.
Abstract: [3H]Kainate bound to chick cerebellar membranes with a K D of 0.6 μ M and with an exceptionally high B max of 165 pmol/mg of protein. In octylglucoside-solubilised extracts, the affinity of [3H]kainate was reduced ( K D= 2.7 μ M ), but the B max was relatively unchanged (130 pmol/mg of protein). The rank potency of competitive ligands was domoate > kainate > 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX) > glutamate. Binding sites for α-[3H]amino-3-hydroxy-5-methylisoxazolepropionate ([3H]AMPA) were much less abundant, with K D and B max values in membranes of 86 n M and I pmol/mg of protein, respectively. The affinity of [3H]AMPA binding was also reduced on solubilisation ( K D= 465 n M ), but there was an increase in the B max (1.7 pmol/mg of protein). Quisqualate and CNQX were the most effective displacers of [3H]AMPA binding, but kainate was also a relatively potent inhibitor. However, in contrast to the displacement profile for [3H]kainate, domoate was markedly less potent than kainate at displacing [3H]AMPA. These results suggest that [3H]AMPA binds to a small subset of the kainate sites that, unlike the majority of the [3H]kainate binding protein, which has been reported to be located in the Bergmann glia, may represent neuronal unitary non- N -methyl-D-aspartate receptors.  相似文献   

19.
The effects of N-ethylmaleimide (NEM) on mouse platelet serotonin (5-HT) and 86Rb+ uptake were studied. The 5-HT transport system showed a biphasic response to increasing concentrations of NEM, with low concentrations (25–50 μM) stimulating and high concentrations (200–400 μM) inhibiting 5-HT transport. Fluoxetine, an inhibitor of the platelet 5-HT transporter, blocked NEM-induced stimulation of 5-HT transport. The kinetics of 5-HT uptake indicated that NEM (50 μM) markedly increased the maximal rate of 5-HT transport (Vmax control = 28.4±1.4 pmol/108 platelets/4 min vs Vmax NEM = 64.5±9.5 pmol/108 platelets/4 min but had no significant effect on the Km value. Platelet Na+ K+ ATPase activity was determined by measuring 86Rb+ uptake. Platelet 86Rb+ uptake showed a biphasic response to NEM, with low concentrations (25–100 μM) significantly stimulating and high concentrations (400 μM) inhibiting uptake. These changes in platelet 86Rb+ uptake paralleled the biphasic changes in 5-HT transport. In the presence of fluoxetine, 5-HT transport was markedly inhibited but no change in the ability of NEM to stimulate 86Rb+ uptake was observed. These data suggest that low concentrations of NEM activate plasma membrane Na+ K+ ATPase which results in a marked stimulation of platelet 5-HT transport.  相似文献   

20.
Abstract: Elevated extracellular potassium concentration ([K+]e) has been shown to induce reversal of glial Na+-dependent glutamate uptake in whole-cell patch clamp preparations. It is uncertain, however, whether elevated [K+]e similarly induces a net glutamate efflux from intact cells with a physiological intracellular milieu. To answer this question, astrocyte cultures prepared from rat and mouse cortices were incubated in medium with elevated [K+]e (by equimolar substitution of K+ for Na+), and glutamate accumulation was measured by HPLC. With [K+]e elevations to 60 m M , medium glutamate concentrations did not increase during incubation periods of 5–120 min. By contrast, 45 min of combined inhibition of glycolytic and oxidative ATP production increased medium glutamate concentrations 50–100-fold. Similar results were obtained in both rat and mouse cultures. Studies were also performed using astrocytes loaded with the nonmetabolized glutamate tracer d -aspartate, and parallel results were obtained; no increase in medium d -aspartate content resulted from [K+]e elevation up to 90 m M , whereas a large increase occurred during inhibition of energy metabolism. These results suggest that a net efflux of glutamate from intact astrocytes is not induced by any [K+]e attainable in brain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号