首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
HuCC49 deltaCH2 is a heavy chain constant domain 2 domain-deleted antibody under development as a radioimmunotherapeutic for treating carcinomas overexpressing the TAG-72 tumor antigen. Mammalian cell culture biosynthesis of HuCC49 deltaCH2 produces two isoforms (form A and form B) in an approximate 1:1 ratio, and consequently separation and purification of the desired form A isoform adversely impact process and yield. A protein engineering strategy was used to develop a panel of hinge-engineered HuCC49 deltaCH2 antibodies to identify hinge sequences to optimize production of the form A isoform. We found that adding a single proline residue at Kabat position 243, immediately adjacent to the carboxyl end of the core middle hinge CPPC domain, resulted in an increase from 39 to 51% form A isoform relative to the parent HuCC49 deltaCH2 antibody. Insertion of the amino acids proline-alanine-proline (PAP) at positions 243-245 enhanced production of the form A isoform to 72%. Insertion of a cysteine-rich 15-amino acid IgG3 hinge motif (CPEPKSCDTPPPCPR) in both of these mutant antibodies resulted in secretion of predominantly form A isoform with little or no detectable form B. Yields exceeding 98% of the form A isoform have been realized. Preliminary peptide mapping and mass spectrometry analysis suggest that at least two, and as many as five, inter-heavy chain disulfide linkages may be present.  相似文献   

2.
To enhance therapeutic potential of murine monoclonal antibody, humanization by CDR grafting is usually used to reduce immunogenic mouse residues. Most humanized antibodies still have mouse residues critical for antigen binding, but the mouse residues may evoke immune responses in humans. Previously, we constructed a new humanized version (AKA) of mouse CC49 antibody specific for tumor-associated glycoprotein, TAG-72. In this study, to select a completely human antibody light chain against TAG-72, guided selection strategy using phage display was used. The heavy chain variable region (VH) of AKA was used to guide the selection of a human TAG-72-specific light chain variable region (VL) from a human VL repertoire constructed from human PBL. Most of the selected VLs were identified to be originated from the members of the human germline VK1 family, whereas the VL of AKA is more homologous to the VK4 family. Competition binding assay of the selected Fabs with mouse CC49 suggested that the epitopes of the Fabs overlap with that of CC49. In addition, they showed better antigen-binding affinity compared to parental AKA. The selected human VLs may be used to guide the selection of human VHs to get completely human anti-TAG72 antibody.  相似文献   

3.
《MABS-AUSTIN》2013,5(8):1190-1199
ABSTRACT

Antibody-drug conjugates (ADCs) that are formed using thiol-maleimide chemistry are commonly produced by reactions that occur at or above neutral pHs. Alkaline environments can promote disulfide bond scrambling, and may result in the reconfiguration of interchain disulfide bonds in IgG antibodies, particularly in the IgG2 and IgG4 subclasses. IgG2-A and IgG2-B antibodies generated under basic conditions yielded ADCs with comparable average drug-to-antibody ratios and conjugate distributions. In contrast, the antibody disulfide configuration affected the distribution of ADCs generated under acidic conditions. The similarities of the ADCs derived from alkaline reactions were attributed to the scrambling of interchain disulfide bonds during the partial reduction step, where conversion of the IgG2-A isoform to the IgG2-B isoform was favored.  相似文献   

4.
The tumor-associated glycoprotein (TAG)-72 is expressed in the majority of human adenocarcinomas but is rarely expressed in most normal tissues, which makes it a potential target for the diagnosis and therapy of a variety of human cancers. Here we describe the construction, affinity maturation, and biological characterization of an anti-TAG-72 humanized antibody with minimum potential immunogenicity. The humanized antibody was constructed by grafting only the specificity-determining residues (SDRs) within the complementarity-determining regions (CDRs) onto homologous human immunoglobulin germ line segments while retaining two mouse heavy chain framework residues that support the conformation of the CDRs. The resulting humanized antibody (AKA) showed only about 2-fold lower affinity compared with the original murine monoclonal antibody CC49 and 27-fold lower reactivity to patient serum compared with the humanized antibody HuCC49 that was constructed by CDR grafting. The affinity of AKA was improved by random mutagenesis of the heavy chain CDR3 (HCDR3). The highest affinity variant (3E8) showed 22-fold higher affinity compared with AKA and retained the original epitope specificity. Mutational analysis of the HCDR3 residues revealed that the replacement of Asn(97) by isoleucine or valine was critical for the affinity maturation. The 3E8 labeled with (125)I or (131)I showed efficient tumor targeting or therapeutic effects, respectively, in athymic mice with human colon carcinoma xenografts, suggesting that 3E8 may be beneficial for the diagnosis and therapy of tumors expressing TAG-72.  相似文献   

5.
The use of anti-idiotypic antibodies as immunogens represents one potential approach to active specific immunotherapy of cancer. Two panels of syngeneic monoclonal anti-idiotypic antibodies were generated. One panel was directed against mAb CC49 and the other to mAb COL-1. mAb CC49 recognizes the pancarcinoma antigen (Ag), tumor-associated glycoprotein-72 (TAG-72), and mAb COL-1 recognizes carcinoembryonic antigen (CEA). Seven anti-idiotypic (AI) antibodies (Ab2) designated AI49-1–7 were generated that recognize the variable region of mAb CC49. These mAb were shown to inhibit the interaction of mAb CC49 (Ab1) with TAG-72 (Ag). Five anti-idiotypic antibodies designated CAI-1–5 were also generated to the anti-CEA mAb, COL-1 (Ab1). These Ab2 were shown to inhibit the interaction between COL-1 (Ab1) and CEA (Ag). Immunization of mice, rats, and rabbits with Ab2 directed against CC49 or COL-1 could not elicit specific Ab3 humoral immune responses, i.e., antibody selectively reactive with their respective target antigens. However, immunization of mice with the CC49 anti-idiotypic antibody (Ab2), designated AI49-3, could induce a delayed-type hypersensitivity response (DTH) specific for tumor cells that express TAG-72. Similarly, immunization of mice with an anti-idiotypic antibody directed against COL-1, designated CAI-1, could induce specific DTH cell-mediated immune responses to murine tumor cells that express human CEA on their surface. These results thus demonstrate that while some anti-idiotype mAb may not be potent immunogens in eliciting Ab3 humoral responses, they are capable of eliciting specific cellular immune responses against human carcinoma-associated antigens. This type of mAb may ultimately be useful in active immunotherapy protocols for human carcinoma.Some of the studies described in this paper were in partial fulfillment of requirements for the completion of Dr. Irvine's dissertation at the George Washington University  相似文献   

6.
Cysteine-linked antibody-drug conjugates (ADCs) produced from IgG2 monoclonal antibodies (mAbs) are more heterogeneous than ADCs generated from IgG1 mAbs, as IgG2 ADCs are composed of a wider distribution of molecules, typically containing 0 – 12 drug-linkers per antibody. The three disulfide isoforms (A, A/B, and B) of IgG2 antibodies confer differences in solvent accessibilities of the interchain disulfides and contribute to the structural heterogeneity of cysteine-linked ADCs. ADCs derived from either IgG2-A or IgG2-B mAbs were compared to better understand the role of disulfide isoforms on attachment sites and distribution of conjugated species. Our characterization of these ADCs demonstrated that the disulfide configuration affects the kinetics of disulfide bond reduction, but has minimal effect on the primary sites of reduction. The IgG2-A mAbs yielded ADCs with higher drug-to-antibody ratios (DARs) due to the easier reduction of its interchain disulfides. However, hinge-region cysteines were the primary conjugation sites for both IgG2-A and IgG2-B mAbs.  相似文献   

7.
Collagen biosynthesis is a complex process that begins with the association of three procollagen chains. A series of conserved intra- and interchain disulfide bonds in the carboxyl-terminal region of the procollagen chains, or C-propeptide, has been hypothesized to play an important role in the nucleation and alignment of the chains. We tested this hypothesis by analyzing the ability of normal and cysteine-mutated pro-α2(I) chains to assemble into type I collagen heterotrimers when expressed in a cell line (D2) that produces only endogenous pro-α1(I). Pro-α2(I) chains containing single or double cysteine mutations that disrupted individual intra- or interchain disulfide bonds were able to form pepsin resistant type I collagen with pro-α1(I), indicating that individual disulfide bonds were not critical for assembly of the pro-α2(I) chain with pro-α1(I). Pro-α2(I) chains containing a triple cysteine mutation that disrupted both intrachain disulfide bonds were not able to form pepsin resistant type I collagen with pro-α1(I). Therefore, disruption of both pro-α2(I) intrachain disulfide bonds prevented the production and secretion of type I collagen heterotrimers. Although none of the individual disulfide bonds is essential for assembly of the procollagen chains, the presence of at least one intrachain disulfide bond may be necessary as a structural requirement for chain association or to stabilize the protein to prevent intracellular degradation. J.Cell. Biochem. 71:233–242, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

8.
The murine antibody R24 and mouse-human Fv-IgG1(kappa) chimeric antibody chR24 are specific for the cell-surface tumor antigen disialoganglioside GD3. X-ray diffraction and surface plasmon resonance experiments have been employed to study the mechanism of "homophilic binding," in which molecules of R24 recognize and bind to other molecules of R24 though their heavy chain variable domains. R24 exhibits strong binding to liposomes containing disialoganglioside GD3; however, the kinetics are unusual in that saturation of binding is not observed. The binding of chR24 to GD3-bearing liposomes is significantly weaker, suggesting that cooperative interactions involving antibody constant regions contribute to R24 binding of membrane-bound GD3. The crystal structures of the Fabs from R24 and chR24 reveal the mechanism for homophilic binding and confirm that the homophilic and antigen-binding idiotopes are distinct. The homophilic binding idiotope is formed largely by an anti-parallel beta-sheet dimerization between the H2 complementarity determining region (CDR) loops of two Fabs, while the antigen-binding idiotope is a pocket formed by the three CDR loops on the heavy chain. The formation of homophilic dimers requires the presence of a canonical conformation for the H2 CDR in conjunction with participation of side chains. The relative positions of the homophilic and antigen-binding sites allows for a lattice of GD3-specific antibodies to be constructed, which is stabilized by the presence of the cell membrane. This model provides for the selective recognition by R24 of cells that overexpress GD3 on the cell surface.  相似文献   

9.
A testosterone binding scFv antibody was isolated from a naïve human library with a modest size of 108 clones. The crystal structure of the Fab fragment form of the 5F2 antibody clone complexed with testosterone determined at 1.5 Å resolution shows that the hapten is bound deeply in the antibody binding pocket. In addition to the interactions with framework residues only CDR‐L3 and CDR‐H3 loops interact with testosterone and the heavy chain forms the majority of the contacts with the hapten. The testosterone binding site of the 5F2 antibody with a high abundance of aromatic amino acid residues shows similarity with an in vitro affinity matured antibody having around 300 times higher affinity. The moderate affinity of the 5F2 antibody originates from the different orientation of the hapten and few light chain contacts. This is the first three‐dimensional structure of a human steroid hormone binding antibody that has been isolated from a naïve human repertoire. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

10.
用硫氰酸盐洗脱法直接测定噬菌体抗体的相对亲和力   总被引:5,自引:0,他引:5  
抗体与相应抗原的结合可以被硫氰酸盐洗脱而解离,抗体的亲和力越高则解离所需要的硫氰酸盐浓度就越大,这一原理在传统的免疫学实验中被用来测定单克隆抗体或多克隆抗体的相对亲和力。如果证明该原理同样适用于噬菌体抗体库技术,则可以建立一种直接测定噬菌体抗体相对亲和力的简便方法。首先将噬菌体抗体与工作浓度的硫氰酸盐共孵育,以证明这一过程并不影响其后的ELISA反应,然后参照硫氰酸盐洗脱法测定完整抗体分子和Fab段相对亲和力的方法,在ELISA实验中以酶标抗M13为二抗检测了5个单克隆噬菌体抗体的相对亲和力,并与相对应的可溶性Fab段的相对亲和力进行了比较。被测抗体中包括3个克隆的抗角蛋白抗体和2个克隆的抗乙型肝炎表面抗原抗体。结果发现,用硫氰酸盐洗脱法测定5个噬菌体抗体所得到的亲和力排序与测定其相应可溶性Fab段所得结果一致,表明硫氰酸盐洗脱法可作为一种简便快速的方法用来直接测定噬菌体抗体的相对亲和力。  相似文献   

11.
Interleukin 6 plays a key role in mediating inflammatory reactions in autoimmune diseases and cancer, where it is also involved in metastasis and tissue invasion. Neutralizing antibodies against IL-6 and its receptor have been approved for therapeutic intervention or are in advanced stages of clinical development. Here we describe the crystal structures of the complexes of IL-6 with two Fabs derived from conventional camelid antibodies that antagonize the interaction between the cytokine and its receptor. The x-ray structures of these complexes provide insights into the mechanism of neutralization by the two antibodies and explain the very high potency of one of the antibodies. It effectively competes for binding to the cytokine with IL-6 receptor (IL-6R) by using side chains of two CDR residues filling the site I cavities of IL-6, thus mimicking the interactions of Phe229 and Phe279 of IL-6R. In the first antibody, a HCDR3 tryptophan binds similarly to hot spot residue Phe279. Mutation of this HCDR3 Trp residue into any other residue except Tyr or Phe significantly weakens binding of the antibody to IL-6, as was also observed for IL-6R mutants of Phe279. In the second antibody, the side chain of HCDR3 valine ties into site I like IL-6R Phe279, whereas a LCDR1 tyrosine side chain occupies a second cavity within site I and mimics the interactions of IL-6R Phe229.  相似文献   

12.
Passive immunization with monoclonal antibodies from humans or nonhuman primates represents an attractive alternative to vaccines for prevention of illness caused by dengue viruses (DENV) and other flaviviruses, including the West Nile virus. In a previous study, repertoire cloning to recover Fab fragments from bone marrow mRNA of chimpanzees infected with all four DENV serotypes (dengue virus serotype 1 [DENV-1] to DENV-4) was described. In that study, a humanized immunoglobulin G1 (IgG1) antibody that efficiently neutralized DENV-4 was recovered and characterized. In this study, the phage library constructed from the chimpanzees was used to recover Fab antibodies against the other three DENV serotypes. Serotype-specific neutralizing Fabs were not identified. Instead, we recovered DENV-neutralizing Fabs that specifically precipitated the envelope protein and were cross-reactive with all four DENV serotypes. Three of the Fabs competed with each other for binding to DENV-1 and DENV-2, although each of these Fabs contained a distinct complementarity determining region 3 (CDR3)-H sequence. Fabs that shared an identical or nearly identical CDR3-H sequences cross-neutralized DENV-1 and DENV-2 at a similar high 50% plaque reduction neutralization test (PRNT(50)) titer, ranging from 0.26 to 1.33 microg/ml, and neutralized DENV-3 and DENV-4 but at a titer 10- to 20-fold lower. One of these Fabs, 1A5, also neutralized the West Nile virus most efficiently among other flaviviruses tested. Fab 1A5 was converted to a full-length antibody in combination with human sequences for production in mammalian CHO cells. Humanized IgG1 1A5 proved to be as efficient as Fab 1A5 for cross-neutralization of DENV-1 and DENV-2 at a titer of 0.48 and 0.95 microg/ml, respectively. IgG1 1A5 also neutralized DENV-3, DENV-4, and the West Nile virus at a PRNT(50) titer of approximately 3.2 to 4.2 microg/ml. This humanized antibody represents an attractive candidate for further development of immunoprophylaxis against DENV and perhaps other flavivirus-associated diseases.  相似文献   

13.
The quaternary neutralizing epitope (QNE) of HIV-1 gp120 is preferentially expressed on the trimeric envelope spikes of intact HIV virions, and QNE-specific monoclonal antibodies (mAbs) potently neutralize HIV-1. Here, we present the crystal structures of the Fabs of human mAb 2909 and macaque mAb 2.5B. Both mAbs have long beta hairpin CDR H3 regions >20 ? in length that are each situated at the center of their respective antigen-binding sites. Computational analysis showed that the paratopes include the whole CDR H3, while additional CDR residues form shallow binding pockets. Structural modeling suggests a way to understand the configuration of QNEs and the antigen-antibody interaction for QNE mAbs. Our data will be useful in designing immunogens that may elicit potent neutralizing QNE Abs.  相似文献   

14.
We provide evidence that in vitro protein cross-linking can be accomplished in three concerted steps: (i) a change in protein conformation; (ii) formation of interchain disulfide bonds; and (iii) formation of interchain isopeptide cross-links. Oxidative refolding and thermal unfolding of ribonuclease A, lysozyme, and protein disulfide isomerase led to the formation of cross-linked dimers/oligomers as revealed by SDS-polyacrylamide gel electrophoresis. Chemical modification of free amino groups in these proteins or unfolding at pH < 7.0 resulted in a loss of interchain isopeptide cross-linking without affecting interchain disulfide bond cross-linking. Furthermore, preformed interchain disulfide bonds were pivotal for promoting subsequent interchain isopeptide cross-links; no dimers/oligomers were detected when the refolding and unfolding solution contained the reducing agent dithiothreitol. Similarly, the Cys326Ser point mutation in protein disulfide isomerase abrogated its ability to cross-link into homodimers. Heterogeneous proteins become cross-linked following the formation of heteromolecular interchain disulfide bonds during thermal unfolding of a mixture of of ribonuclease A and lysozyme. The absence of glutathione and glutathione disulfide during the unfolding process attenuated both the interchain disulfide bond cross-links and interchain isopeptide cross-links. No dimers/oligomers were detected when the thermal unfolding temperature was lower than the midpoint of thermal denaturation temperature.  相似文献   

15.
Antibodies to the autoantigen transglutaminase 2 (TG2) are a hallmark of celiac disease. We have studied the interaction between TG2 and an anti-TG2 antibody (679-14-E06) derived from a single gut IgA plasma cell of a celiac disease patient. The antibody recognizes one of four identified epitopes targeted by antibodies of plasma cells of the disease lesion. The binding interface was identified by small angle x-ray scattering, ab initio and rigid body modeling using the known crystal structure of TG2 and the crystal structure of the antibody Fab fragment, which was solved at 2.4 Å resolution. The result was confirmed by testing binding of the antibody to TG2 mutants by ELISA and surface plasmon resonance. TG2 residues Arg-116 and His-134 were identified to be critical for binding of 679-14-E06 as well as other epitope 1 antibodies. In contrast, antibodies directed toward the two other main epitopes (epitopes 2 and 3) were not affected by these mutations. Molecular dynamics simulations suggest interactions of 679-14-E06 with the N-terminal domain of TG2 via the CDR2 and CDR3 loops of the heavy chain and the CDR2 loop of the light chain. In addition there were contacts of the framework 3 region of the heavy chain with the catalytic domain of TG2. The results provide an explanation for the biased usage of certain heavy and light chain gene segments by epitope 1-specific antibodies in celiac disease.  相似文献   

16.
17.
Aggregation of human therapeutic antibodies represents a significant hurdle to product development. In a test across multiple antibodies, it was observed that IgG1 antibodies aggregated less, on average, than IgG2 antibodies under physiological pH and mildly elevated temperature. This phenomenon was also observed for IgG1 and IgG2 subclasses of anti‐streptavidin, which shared 95% sequence identity but varied in interchain disulfide connectivity. To investigate the structural and covalent changes associated with greater aggregation in IgG2 subclasses, soluble aggregates from the two forms of anti‐streptavidin were isolated and characterized. Sedimentation velocity analytical ultracentrifugation (SV‐AUC) measurements confirmed that the aggregates were present in solution, and revealed that the IgG1 aggregate was composed of a predominant species, whereas the IgG2 aggregate was heterogeneous. Tertiary structural changes accompanied antibody aggregation as evidenced by greater ANS (8‐Anilino‐1‐naphthalene sulfonic acid) binding to the aggregates over monomer, and differences in disulfide character and tryptophan environments between monomer, oligomer and aggregate species, as observed by near‐UV circular dichroism (CD). Differences between subclasses were observed in the secondary structural changes that accompanied aggregation, particularly in the intermolecular β‐sheet and turn structures between the monomer and aggregate species. Free thiol determination showed ~2.4‐fold lower quantity of free cysteines in the IgG1 subclass, consistent with the 2.4‐fold reduction in aggregation of the IgG1 form when compared with IgG2 under these conditions. These observations suggested an important role for disulfide bond formation, as well as secondary and tertiary structural transitions, during antibody aggregation. Such degradations may be minimized using appropriate formulation conditions.  相似文献   

18.
A concise synthesis of the bifunctional chelating agent 1,4,7,10-tetraaza-N-(1-carboxy-3-(4-nitrophenyl)propyl)-N',N',N' '-tris(acetic acid)cyclododecane (PA-DOTA) is reported. Difficulties involving the production of partially alkylated products and their removal have been addressed and obviated. After the pure nitro form of PA-DOTA was obtained, conversion to the isothiocyanato form PA-DOTA (1, conjugation to HuCC49 and HuCC49deltaCH2 monoclonal antibodies was achieved. Subsequent radiolabeling with 177Lu was performed, demonstrating a useful bifunctional chelating agent suitable for clinical radioimmunotherapy applications.  相似文献   

19.
《MABS-AUSTIN》2013,5(1):120-128
While antibody engineering improves the properties of therapeutic antibodies, optimization of regions that do not contact antigens has been mainly focused on modifying the effector functions and pharmacokinetics of antibodies. We recently reported an asymmetric anti-FIXa/FX bispecific IgG4 antibody, ACE910, which mimics the cofactor function of FVIII by placing the two factors into spatial proximity for the treatment of hemophilia A. During the optimization process, we found that the activity was significantly affected by IgG subclass and by modifications to the inter-chain disulfide bonds, upper hinge region, elbow hinge region, and Fc glycan, even though these regions were unlikely to come into direct contact with the antigens. Of these non–antigen-contacting regions, the tertiary structure determined by the inter-chain disulfide bonds was found to strongly affect the FVIII-mimetic activity. Interestingly, IgG4-like disulfide bonds between Cys131 in the heavy chain and Cys114 in the light chain, and disulfide bonds between the two heavy chains at the hinge region were indispensable for the high FVIII-mimetic activity. Moreover, proline mutations in the upper hinge region and removal of the Fc glycan enhanced the FVIII-mimetic activity, suggesting that flexibility of the upper hinge region and the Fc portion structure are important for the FVIII-mimetic activity. This study suggests that these non–antigen-contacting regions can be engineered to improve the biological activity of IgG antibodies with functions similar to ACE910, such as placing two antigens into spatial proximity, retargeting effector cells to target cells, or co-ligating two identical or different antigens on the same cell.  相似文献   

20.
While antibody engineering improves the properties of therapeutic antibodies, optimization of regions that do not contact antigens has been mainly focused on modifying the effector functions and pharmacokinetics of antibodies. We recently reported an asymmetric anti-FIXa/FX bispecific IgG4 antibody, ACE910, which mimics the cofactor function of FVIII by placing the two factors into spatial proximity for the treatment of hemophilia A. During the optimization process, we found that the activity was significantly affected by IgG subclass and by modifications to the inter-chain disulfide bonds, upper hinge region, elbow hinge region, and Fc glycan, even though these regions were unlikely to come into direct contact with the antigens. Of these non–antigen-contacting regions, the tertiary structure determined by the inter-chain disulfide bonds was found to strongly affect the FVIII-mimetic activity. Interestingly, IgG4-like disulfide bonds between Cys131 in the heavy chain and Cys114 in the light chain, and disulfide bonds between the two heavy chains at the hinge region were indispensable for the high FVIII-mimetic activity. Moreover, proline mutations in the upper hinge region and removal of the Fc glycan enhanced the FVIII-mimetic activity, suggesting that flexibility of the upper hinge region and the Fc portion structure are important for the FVIII-mimetic activity. This study suggests that these non–antigen-contacting regions can be engineered to improve the biological activity of IgG antibodies with functions similar to ACE910, such as placing two antigens into spatial proximity, retargeting effector cells to target cells, or co-ligating two identical or different antigens on the same cell.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号