首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
姚燕  周开亚  宋大祥 《动物学报》2006,52(1):209-214
蜕皮抑制激素(Moltinhibitinghormone,MIH)属于甲壳动物高血糖激素家族神经肽,对甲壳类的蜕皮起抑制作用。本研究用DNA重组技术将中华绒螯蟹(Eriocheirjaponicasinensis)的蜕皮抑制激素1(ErsMIH1)成熟肽的cDNA序列亚克隆至原核表达载体pET28a( )中,并在大肠杆菌BL21(DE3)中进行高效表达。SDSPAGE检测结果显示,融合蛋白pET-MIH1的Mr约为12kD,与理论值相符。融合蛋白的表达量约占菌体总蛋白的15%,表达产物以包涵体形式存在。对包涵体进行变性、复性及纯化处理,并以8mol/L尿素溶解的包涵体作为免疫原免疫BALB/c小鼠制备多克隆抗体。ELISA和Westernblot的结果表明制备的抗体效价高、特异性强  相似文献   

2.
Ecdysteroid secretion in vitro by gland quarters and dispersed cells of ecdysial glands (Y-organs) of the crab, Cancer antennarius Stimpson, was characterized. Optimum culture conditions are reported for maximum, sustained (72 hr) secretion and maintenance of cell viability in activated Y-organs obtained from de-eyestalked donors. Addition in vitro of eyestalk ganglia extracts containing the putative molt-inhibiting hormone (MIH) inhibited ecdysteroid production dose-dependently in the range of 0.1-4.0 and 0.01-4.0 eyestalk equivalents of MIH for gland quarters and dispersed cells, respectively. Inhibition by MIH was reversible, tissue specific as to source of MIH activity, and did not affect cell viability relative to controls. The results of replicate incubations of gland quarters with MIH were analyzed with formal statistics of parallel-line assay. The inhibitory action on ecdysteroid secretion is shown to be reproducibly linear and parallel in the dosage range, 0.1-4.0 eyestalk equivalents, amenable to calculation of relative potency among successive extracts, and of sufficiently high precision to serve as an MIH bioassay. Also, the results of these studies support the hypothesis that control of Y-organs by the eyestalks is physiologically direct.  相似文献   

3.
The structure of the precursor of a molt-inhibiting hormone (MIH) of the American crayfish, Orconectes limosus was determined by cloning of a cDNA based on RNA from the neurosecretory perikarya of the X-organ in the eyestalk ganglia. The open reading frame includes the complete precursor sequence, consisting of a signal peptide of 29, and the MIH sequence of 77 amino acids. In addition, the mature peptide was isolated by HPLC from the neurohemal sinus gland and analyzed by ESI-MS and MALDI-TOF-MS peptide mapping. This showed that the mature peptide (Mass 8664.29 Da) consists of only 75 amino acids, having Ala75-NH2 as C-terminus. Thus, C-terminal Arg77 of the precursor is removed during processing, and Gly76 serves as an amide donor. Sequence comparison confirms this peptide as a novel member of the large family, which includes crustacean hyperglycaemic hormone (CHH), MIH and gonad (vitellogenesis)-inhibiting hormone (GIH/VIH). The lack of a CPRP (CHH-precursor related peptide) in the hormone precursor, the size and specific sequence characteristics show that Orl MIH belongs to the MIH/GIH(VIH) subgroup of this larger family. Comparison with the MIH of Procambarus clarkii, the only other MIH that has thus far been identified in freshwater crayfish, shows extremely high sequence conservation. Both MIHs differ in only one amino acid residue ( approximately 99% identity), whereas the sequence identity to several other known MIHs is between 40 and 46%.  相似文献   

4.
The present study was focused on the regulation of ecdysteroidogenesis in the Y-organ of Scylla serrata during molting cycle. A strong expression of molt-inhibiting hormone (MIH) and phosphorylation of ERK was predominantly observed in the postmolt and intermolt stages of Y-organs, whereas protein kinase C, steroidogenic acute regulatory protein (StAR) and cytochrome P450(scc) activity were exclusively seen in the premolt stages. Interestingly, inhibition of ERK phosphorylation by PD98059 in the early postmolt (A), middle postmolt (B) and intermolt (C) stages resulted in the prominent expression of PKC and StAR in the postmolt stages. This result indicates that phosphorylation of ERK is required for suppression of ecdysteroid biosynthesis with the involvement of protein kinase C, and StAR protein.  相似文献   

5.
6.
7.
The action of molt-inhibiting hormone (MIH) on the inhibition of ecdysone release from the Y-organ of decapod crustacean keeps the animal in the intermolt stage that dominates its molting cycle. MIH is thus one of the major keys in mediating growth and reproduction. This study has isolated cDNA encoding two types of MIH, Pem-MIH1 and Pem-MIH2, from the black tiger shrimp, Penaeus monodon on the basis of sequence homology to MIH from two other shrimp species. The full-length cDNA of Pem-MIH1 was characterized. Pem-MIH1 cDNA harbored 318 bp open reading frame that coded for a translated product containing 28 amino acids of the signal peptide and a putative mature Pem-MIH of 77 amino acids. The recombinant Pem-MIH1 was expressed in Pichia pastoris as a secreted protein. After purification by gel filtration, the purified Pem-MIH1 exhibited the ability to extend molting duration of P. monodon from 11.8 days to 16.3 days suggesting that Pem-MIH1 be responsible for molt-inhibiting function in the shrimp. The attempt to clone Pem-MIH1 and Pem-MIH2 genes was achieved by direct PCR amplification and PCR-based genome walking strategy, respectively. The structure of both Pem-MIH genes, containing three exons interrupted by two introns, was similar to each other and also to that of MIH genes of other crustaceans reported so far. Expression study of Pem-MIH1 and Pem-MIH2 in various tissues of P. monodon revealed the difference in expression patterns. Pem-MIH1 expressed in both the eyestalk and the thoracic ganglia whilst Pem-MIH2 expression was limited to the eyestalk. The expression of MIH in non-eyestalk tissue may suggest additional role of this hormone.  相似文献   

8.
9.
Gonadotropin-releasing hormone (GnRH), a regulator of gonadal maturation in vertebrates, is primarily secreted by neurosecretory cells of the pre-optic area (POA) in the forebrain of teleosts. GnRH-immunoreactive (GnRH-ir) cells of this area demonstrate positive correlation in number and size of soma with gonadal maturity and directly innervate the pituitary in most teleosts. Gonadal development in triploid fish remains impaired due to genetic sterility. The gonadal immaturity in triploid fish may be due to low levels of gonadotropin and sex steroids during the vitellogenic phase of reproductive cycle. However, the nature of GnRH-ir cells in triploid fish is not yet known. Triploid catfish (H. fossilis) showed significant decrease (P<0.001) in size and number of immunoreactive-GnRH cells of POA and low immunoreactivity in pituitary in comparison to their diploid full-sibs during the late pre-spawning phase of ovarian cycle. This study suggests that low activity of GnRH-cells in triploid may be due to lack of positive feedback stimulation by sex steroids and/or reduced responsiveness of sensory cells to environmental cues required for gonadal maturation in teleosts.  相似文献   

10.
Luteinizing hormone-releasing hormone (LHRH) was conjugated to bovine thyroglobulin and used to immunize a BALB/c mouse. Spleen lymphocytes were subsequently fused to SP2/0 myeloma cells and two of the resulting hybridoma clones were found to produce high titer antibodies to LHRH (HU4H and HU11B); both belonged to the IgG1 subclass. Characterization of the monoclonal antibodies revealed that HU4H and HU11B have conformational and sequential specificity to LHRH, respectively, and that neither one shows significant immunoactivity with pro-LHRH. The value of these antibodies in immunocytochemical applications is demonstrated by their ability to cause intense specific staining of LHRH neuronal cell bodies and fibers in brain sections from several mammalian species.  相似文献   

11.
Summary Using a Y-organ in vitro assay to measure repression of ecdysteroid synthesis in the presence of putative moult-inhibiting hormone (MIH), in conjunction with HPLC separation of sinus gland neuropeptides ofCarcinus maenas, it was found that both the hyperglycemic hormone (CHH) and a novel peptide (argued to represent the MIH) inhibited ecdysteroid synthesis. The latter was purified to homogeneity, and amino acid analysis showed that it is a 61 residue peptide (minimum molecular mass 7,200 Da) with the following amino acid composition: Asx9; Thr2; Ser2; Glx7; Pro1; Gly4; Ala2; 1/2 Cys4; Val4; Met1; Ile3; Leu5; Tyr1; Phe3; His3; Trp2; Lys2; Arg6. The N-terminus appears to be blocked. MIH is at least 20 times more potent than CHH in repressing ecdysteroid synthesis and is active at concentrations of less than 250 pmol/l. There may be structural similarities between CHH and MIH, howeve, MIH displays no CHH radioimmunoreactivity or hyperglycemic activity. The physiological significance of CHH in controlling ecdysteroid titres is not known.Abbreviations CHH hyperglycemic hormone - MIH moult inhibiting hormone - PAGE polyacrylamide gel electrophoresis - RIA radioimmunoassay - SDS sodium dodecyl sulfate - SG smus gland(s) - SGE sinus gland equivalent - TFA trifluoroacetic acid  相似文献   

12.
In Crustacea, secretion of ecdysteroid molting hormones by Y-organs is regulated, at least in part, by molt-inhibiting hormone (MIH), a polypeptide neurohormone produced by neurosecretory cells of the eyestalks. This article reviews current knowledge of MIH, with particular emphasis on recent findings regarding the (a) structure of the MIH peptide and gene, (b) levels of MIH in eyestalks and hemolymph, (c) cellular mechanism of action of MIH, and (d) responsiveness of Y-organs to MIH. At least 26 MIH/MIH-like sequences have been directly determined by protein sequencing or deduced from cloned cDNA. Recent studies reveal the existence of multiple forms of MIH/MIH-like molecules among penaeids and raise the possibility that molecular polymorphism may exist more generally among MIH (type II) peptides. The hemolymphatic MIH titer has been determined for two species, a crayfish (Procambarus clarkii) and a crab (Carcinus maenas). The data are dissimilar and additional studies are needed. Composite data indicate cellular signaling pathways involving cGMP, cAMP, or both may play a role in MIH-induced suppression of ecdysteroidogenesis. Data from the two species studied in our laboratories (P. clarkii and Callinectes sapidus) strongly favor cGMP as the physiologically relevant second messenger. Ligand-binding studies show an MIH receptor exists in Y-organ plasma membranes, but the MIH receptor has not been isolated or fully characterized for any species. Such studies are critical to understanding the cellular mechanism by which MIH regulates ecdysteroidogenesis. Rates of ecdysteroid synthesis appear also to be influenced by stage-specific changes in the responsiveness of Y-organs to MIH. The changes in responsiveness result, at least in part, from changes in glandular phosphodiesterase (PDE) activity. The PDE isotype (PDE1) present in Y-organs of C. sapidus is calcium/calmodulin dependent. Thus, calcium may regulate ecdysteroidogenesis through activation of glandular PDE.  相似文献   

13.
Molt-inhibiting hormone (MIH) negatively regulates the synthesis of ecdysteroid molting hormones by crustacean Y-organs. We report here the expression of blue crab (Callinectes sapidus) MIH in insect cells using recombinant baculovirus. Insect Sf9 cells were transfected with recombinant baculovirus containing a DNA insert encoding the C. sapidus MIH prohormone (signal sequence plus mature hormone). The construct was designed to yield a mature, fully processed recombinant MIH (recMIH). Several baculovirus recombinants showing no contamination with wild-type viral DNA were subsequently analyzed for their ability to direct expression of recMIH. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis of proteins from infected cells revealed time-dependent expression of two proteins of approximately the predicted size for the C. sapidus MIH prohormone and mature hormone. Western blot results (using antiserum against MIH of Carcinus maenas) indicated that the proteins were MIH-immunoreactive. N-Terminal amino acid sequence data and mass spectral analysis indicated the expressed proteins were of the correct sequence and molecular mass. Cell lysates containing the recombinant protein dose-dependently suppressed the synthesis of ecdysteroids by Y-organs in vitro. We anticipate the recombinant peptide will prove useful for studies of the structure and function of MIH.  相似文献   

14.
Methyl farnesoate (MF), a crustacean juvenile hormone (JH) analog, plays important roles in the regulation of a number of physiological processes such as molting, metamorphosis, and reproduction. Understanding its metabolic pathway is a key for various potential applications in crustacean aquaculture, including artificial seed production and enhancement of growth. Although the synthetic pathway of MF is well established, little is known about its degradation and recycling in crustaceans. In insects, juvenile hormone esterase (JHE), a carboxylesterase, is responsible for JH inactivation. Two cDNAs, encoding JHE-like carboxylesterases (CXEs) from the hepatopancreas and ovary of Pandalopsis japonica, were isolated by using a combination of in-silico data mining from an expressed sequence tag (EST) database and traditional PCR-based cloning. The full length Pj-CXE1 (2084bp) and Pj-CXE2 (1985bp) cDNAs encoded proteins composed of 584 and 581 amino acids, respectively. The active site sequence and domain organization of the Pj-CXEs were highly conserved, including the catalytic triad and other motifs, which suggested that both Pj-CXEs are biologically active carboxylesterases. Phylogenetic analysis of the deduced sequences of Pj-CXEs showed that both were most closely related to the JHEs from non-lepidopteran insects. End-point RT-PCR showed that Pj-CXE1 was expressed primarily in the gonad, whereas Pj-CXE2 was expressed in both the hepatopancreas and hindgut. Quantitative PCR showed that Pj-CXE1 was upregulated in the gonads by eyestalk ablation (ESA). In contrast, ESA had no significant effect on Pj-CXE2 expression in hepatopancreas or gonad. This is the first report of the cloning of two JHE-like CXE cDNAs in decapods and the upregulation of Pj-CXE1 by acute withdrawal of eyestalk neuropeptides. Further study is needed to understand the function of CXEs in MF metabolism and its regulation by eyestalk neuropeptides.  相似文献   

15.
Based on the amino acid sequence of the molt-inhibiting hormone of Carcinus maenas, two degenerated oligonucleotide primers were synthesized and used in the polymerase chain reaction. By use of complementary DNA of a library constructed from medulla terminalis-X-organ RNA of C. maenas as template, the specific complementary DNA between the primers was amplified, cloned and sequenced. This strategy revealed a DNA sequence for which the deduced amino acid sequence is identical to the recently published C. maenas molt-inhibiting hormone sequence as determined by Edman degradation. Visualization of messenger RNAs encoding molt-inhibiting hormone and crustacean hyperglycemic hormone in different perikarya of the X-organ was obtained using digoxigenin-labelled complementary RNA probes. Combination of immunocytochemical staining using polyclonal antisera against the native C. maenas neuropeptides and in situ hybridization performed on alternating sections confirmed the specificity of the reaction. The results show that there is no co-localization of molt-inhibiting hormone and crustacean hyperglycemic hormone at the messenger RNA and the protein level.  相似文献   

16.
17.
  • 1.1. Assays are described for the putative molt-inhibiting hormone (MIH) from the sinus glands of American lobsters (Homarus americanus).
  • 2.2. Homogenates of dissected sinus glands are able to significantly delay induced molts in eyestalkablated juvenile lobsters.
  • 3.3. In addition, these extracts are also able to significantly decrease circulating titers of ecdysteroids (as measured by radioimmunoassay) when injected into ablated lobsters.
  相似文献   

18.
Reissner's fibers are secretions produced by different ependymal areas of the chordate brain, viz., in adult vertebrates, by the dorsal subcommissural organ, and in all stages of cephalochordates (Branchiostoma lancelets), by the ventral infundibular organ. Fibers produced by these different organs are seemingly identical and the two fiber sources also share some immunocytochemical and lectin-binding properties. The secretions in these two glands are, however, not identical; the infundibular organ cells are strongly reactive with antibodies against vertebrate Reissner's fibers, but they do not react with antibodies raised against the source of the vertebrate fibers, viz., the subcommissural organ. The results support the possibility that, in adult vertebrates, the Reissner's fibers are composed of material not only from the subcommissural organ, but also from another, not yet identified, source that is identical or equivalent to the infundibular organ of the lancelet. There are indications that the infundibular organ is immunocytochemically closely akin to some secretory cells in the vertebrate embryonic brain and also to those that produce the juvenile vertebrate Reissner's fibers, viz., secretory cells in the flexural organ.  相似文献   

19.
Mouse antibody production (MAP) tests have become the standard assay for the detection of murine viral contamination in biologic materials, such as cell lines and transplantable tumors. However, newly developed PCR assays offer the advantage of lower cost, faster turn around times, and eliminate the use of live animals. In this study, the MAP test and a panel of PCR assays were compared for the detection of 11 different viral contaminants of cell lines and transplantable tumors. The PCR assays had either better or comparable results to the MAP test for all agents tested. The results of this study confirm that PCR assays are an effective method for detection of viral contamination and can be used as an alternative to the MAP test.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号