首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Investigating patterns of phylogenetic structure across different life stages of tree species in forests is crucial to understanding forest community assembly, and investigating forest gap influence on the phylogenetic structure of forest regeneration is necessary for understanding forest community assembly. Here, we examine the phylogenetic structure of tree species across life stages from seedlings to canopy trees, as well as forest gap influence on the phylogenetic structure of forest regeneration in a forest of the subtropical region in China. We investigate changes in phylogenetic relatedness (measured as NRI) of tree species from seedlings, saplings, treelets to canopy trees; we compare the phylogenetic turnover (measured as βNRI) between canopy trees and seedlings in forest understory with that between canopy trees and seedlings in forest gaps. We found that phylogenetic relatedness generally increases from seedlings through saplings and treelets up to canopy trees, and that phylogenetic relatedness does not differ between seedlings in forest understory and those in forest gaps, but phylogenetic turnover between canopy trees and seedlings in forest understory is lower than that between canopy trees and seedlings in forest gaps. We conclude that tree species tend to be more closely related from seedling to canopy layers, and that forest gaps alter the seedling phylogenetic turnover of the studied forest. It is likely that the increasing trend of phylogenetic clustering as tree stem size increases observed in this subtropical forest is primarily driven by abiotic filtering processes, which select a set of closely related evergreen broad-leaved tree species whose regeneration has adapted to the closed canopy environments of the subtropical forest developed under the regional monsoon climate.  相似文献   

2.
林窗对长苞冷杉自然更新幼苗存活和生长的影响   总被引:21,自引:0,他引:21       下载免费PDF全文
刘庆 《植物生态学报》2004,28(2):204-209
 长苞冷杉(Abies georgei)林是我国西南亚高山针叶林的重要类型之一,分布于海拔3 200~4 200 m。目前对于该森林林窗对树苗更新的调节还很少了解。通过1997~2000年对20个林窗的连续观测调查,研究了滇西北白马雪山自然保护区西坡亚高山长苞冷杉林林窗大小和林窗位置对自然更新幼苗存活和生长的影响。长苞冷杉针叶林林窗大小分布为,面积大于100 m2的大林窗占20%左右,中等林窗面积为50~100 m2,占35%左右,小林窗面积小于50 m2,占45%左右。4个生长季节的连续观测结果表明:林窗与林下非林窗内的幼苗大小和幼苗存活数量差异明显。林窗由小到大,单位面积内的自然更新苗木数量逐渐增加,大林窗中更新苗为小林窗的1.5倍左右,而林下的更新苗很少,0.5 ind.·10 m-2。中等林窗和小林窗内的幼苗数量在从南到中心到北的位置上几乎没有明显的差异;大林窗中存在由南到北的位置差异,更新幼苗数量逐渐增加。从更新幼苗的生长来看,中等林窗内的幼苗,高度最大、生长最快,定居阶段的平均年高生长为(7.8±0.5) cm·a-1,小林窗次之,大林窗和林下幼苗个体最小,生长最慢。更新幼苗的基径随林窗大小的变化与高度变化相似。进一步从林窗位置来看,中、小林窗幼苗大小和年平均高生长量几乎无位置差异,大林窗则由南到北,幼苗由大变小,年高生长量逐渐减低。从幼苗存活数量、生长大小来看,中等林窗大小是长苞冷杉幼苗更新的适宜面积,这为该类型退化亚高山针叶林恢复提供了一定的参考。  相似文献   

3.
Aim To investigate the differential effects of position within gaps, coarse woody debris and understorey cover on tree seedling survival in canopy gaps in two old‐growth Nothofagus pumilio (Poepp. & Endl.) Krasser forests and the response of this species to gaps in two forests located at opposite extremes of a steep rainfall gradient. Location Nahuel Huapi National Park, at 41° S in north‐western Patagonia, Argentina. Methods In both study sites, seedlings were transplanted to experimental plots in gaps in three different positions, with two types of substrate (coarse woody debris or forest floor), and with and without removal of understorey vegetation. Survival of seedlings was monitored during two growing seasons. Soil moisture and direct solar radiation were measured once in mid‐summer. Seedling aerial biomass was estimated at the end of the experiment. Results Mid‐summer soil water potential was lowest in the centre of gaps, in plots where the understorey had been removed, and highest at the northern edges of gaps. Direct incoming radiation was highest in gap centres and southern edges, and lowest at northern edges. Seedling mortality was highest in gap centres, in both sites. Coarse woody debris had a positive effect on seedling survival during summer in the mesic forest and during winter in the xeric forest. The removal of understorey cover had negative effects in gap centres during summer. Seedling final aerial biomass was positively affected by understorey removal and by soil substrate in both sites. In the dry forest gaps, seedling growth was highest in northern edges, whereas it was highest in gap centres in the mesic forest. Overall growth was positively related to survival in the xeric forest, and negatively related in the mesic forest. Main conclusions Survival and growth were facilitated by the shade of gap‐surrounding trees only in the xeric forest. Understorey vegetation of both forests facilitated seedling survival in exposed microsites but competed with seedling growth. Nurse logs were an important substrate for seedling establishment in both forests; however, causes of this pattern differed between forests. Water availability positively controls seedling survival and growth in the xeric forest while in the mesic forest, survival and growth are differentially controlled by water and light availability, respectively. These two contrasting old‐growth forests, separated by a relatively short distance along a steep rainfall gradient, had different yet unexpected microenvironmental controls on N. pumilio seedling survival and growth. These results underscore the importance of defining microscale limiting factors of tree recruitment in the context of large‐scale spatial variation in resources.  相似文献   

4.
The survival and growth of natural beech regeneration after canopy removal is variable and little is known about ecophysiological mechanisms of these responses. Biomass, nonstructural carbohydrate levels and nitrogen concentrations were measured in an Italian population of European beech seedlings. Seedlings were container-grown in two types of soil, organic and mineral, collected at the study site. The seedlings were grown under three light treatments: under full beech canopy (understory), exposed to full sun only during midday (gap) and under full sun (clearing). Leaf gas exchange and chlorophyll a fluorescence parameters were measured and then foliar analyses were conducted for chlorophyll, phenolic and tannin levels. Biomass and allocation were significantly affected by light and soil treatments. The clearing seedlings and those in organic soil were larger than seedlings in the other light treatments or soil type. Total nonstructural carbohydrate concentrations were lower in the understory seedlings and significant differences between soil types were present in the gap and clearing seedlings. Nitrogen concentrations were higher in the understory seedlings and those growing in the organic soil compared to the other treatments. Gas exchange rates were highest in clearing and the organic soil seedlings. Gap seedlings exhibited photosynthetic acclimation that allowed them to utilize high light of midday and any sunflecks during the morning and afternoon. Relative fluorescence was significantly influenced by both light treatment and soil type, with the highest values observed in the gap seedlings. Light response curves showed decreasing apparent maximum quantum efficiency from the understory to clearing, while maximum photosynthetic rate was highest in the gap seedlings. Chlorophyll concentration was highest in understory seedlings and those growing in organic soil and higher in seedlings growing in organic than in mineral soil. Both foliar tannin and phenolic levels were highest in clearing seedlings, and only tannin concentrations were affected by soil type. Understory seedlings had the highest mortality and insect herbivory; the latter was found to be inversely related to tannin concentration. Overall, growth and photosynthesis in beech seedlings responded positively to high light associated with small canopy gaps. Organic soil increased seedling size, particularly in the gap and clearing environments. We conclude that forest gaps are favorable for photosynthesis and growth of European beech seedlings.  相似文献   

5.
Sexually and clonally produced offspring may respond to environmental heterogeneity by growing and surviving at different rates. In forest understories, the availability of light ranges from low in shaded, closed canopy to high in tree-fall gaps. We experimentally investigated the growth and survival of both types of offspring in three treatments (gap centers, gap edges, and shaded understory) over 16 months. We expected the demographic performance of both types of offspring to be highest in the centers of gaps and lowest in the shaded understory. However, we expected seedlings to be more sensitive to the gradient in light (larger difference in growth and survival between light levels) than vegetative offspring because of their small size and lack of connection to maternal resources. Both offspring types grew fastest and obtained their largest sizes in gap centers. Contrary to our expectations, offspring types differed in which light conditions favored highest survival. Seedlings survived best in gap centers, while vegetative offspring had their highest survival in the shaded understory. In agreement with our hypothesis, survival and growth of seedlings were more sensitive to light availability, showing a large difference in growth and survival between light levels, compared to vegetative offspring.  相似文献   

6.
Summary Factors affecting seedling Virola surinamensis (Myristicaceae) survival and growth were investigated on Barro Colorado Island, Panama. Seedlings planted 3 months after germination were monitored in treefall gaps and understory using 2.25 ha irrigated and control plots through the first dry season. During the dry season, irrigated plants in gaps increased total leaf area significantly more than did irrigated plants in the shaded understory. Over the same dry season, control plants in gaps and in the shaded understory lost similar amounts of leaf area. Seedlings in understory were suppressed in stem height and biomass in both irrigated and control plots; these measures were greater in gaps and greatest in irrigated gaps (height). Roots were similar in length in all treatments, but greater in biomass in gaps than understory due to greater proliferation of secondary roots in control and irrigated gaps than in control and irrigated understory. This experiment demonstrates both water and light limitation during the first dry season after germination. V. surinamensis seedlings are capable of survival and modest growth of leaf area in the deep shade of the understory in moist locations; they are severely disadvantaged in shaded understory subject to drought, where most seeds fall and most seedlings establish. The broken canopy of a gap allows shoot and consequently root growth that permits seedlings to survive seasonal drought.  相似文献   

7.
Invasion by exotic plant species is known to affect native communities and ecosystems, but the mechanisms of the impacts are much less understood. In a field study, we examined the effects of a tree invader, Acer platanoides (Norway maple, NM), on canopy structure and seedling growth in the understory of a North American deciduous forest. The experimental site contains a monospecific patch of A. platanoides and a mixed patch of A. platanoides with its native congener, A. rubrum (red maple, RM). In the study, we examined canopy characteristics of three types of trees in the forests, i.e., RM trees in the mixed forest, NM trees in the mixed forest, and NM trees in its monospecific patch. Height growth and biomass production of RM and NM seedlings under intact canopies and newly created gaps of the three types of trees were followed for two growing seasons. We found that removal of half of the canopy from focal trees increased canopy openness and light transmission to the forest floor, but to a greater extent under NM trees than under RM trees. Seedlings of these two Acer species varied greatly in biomass production under canopies of the same type of trees and in their responses to canopy opening. For example, seedlings of the exotic NM grown under the native RM trees in the mixed forests increased biomass production by 102.4% compared to NM seedlings grown under conspecific trees. The native RM seedlings grown under NM trees, however, reduced biomass production by 23.5% compared to those grown under conspecific trees. It was also observed that RM was much more responsive in biomass production to canopy opening than NM. For instance, total seedling biomass increased by 632.2% in RM, but by only 134.6% in NM in response to the newly created gaps. In addition, we found that NM seedlings allocated a greater portion of biomass below-ground as canopy openness increased, whereas the same trend was not observed in RM seedlings. Our results thus demonstrated that invasion of NM significantly altered canopy structure and community dynamics in the hardwood forest. Because the exotic NM seedlings are able to grow well under the native RM trees, but not vice versa, NM will likely expand its distribution in the forests and make it an ever increasingly serious tree invader in its non-native habitats, including North America.  相似文献   

8.
植物幼苗建成阶段是决定种群自然更新的关键生活史阶段。研究林冠环境对常绿阔叶林优势种幼苗建成阶段的影响对该类森林的恢复和管理具有重要意义。2014-2016年, 该研究在重庆市缙云山国家级自然保护区的常绿阔叶林的不同林冠环境(大林窗: >150 m 2, 中林窗: 100-150 m 2, 小林窗: 50-100 m 2, 对照: 林下)下进行栲(Castanopsis fargesii)种子野外播种实验, 并对栲幼苗命运和生长情况进行了3年的持续监测。结果表明: (1)栲幼苗出土时间从7月持续到12月, 出苗时间较长, 大林窗对幼苗出土具有延迟作用; (2)栲种子野外平均萌发率为(62.8 ± 2.0)%, 第3个生长季(2016年)末幼苗平均存活率为(65.1 ± 2.2)%, 枯萎是栲幼苗死亡的主要原因; (3)林冠环境对栲种子萌发率及第1个生长季(2014年)末的幼苗存活率无显著影响, 对第2个(2015年)和第3个生长季末的幼苗存活率具有显著影响; (4)林冠环境在第1个生长季对幼苗生长无明显影响, 但在第2个和第3个生长季具有显著影响, 大、中林窗中幼苗总生物量、株高、基径、根长和叶片数显著高于林下, 比叶面积显著低于林下; (5) 3个生长季内, 4类林冠条件下栲幼苗的叶质量比和茎质量比升高, 根质量比和根冠比降低, 并且从第2个生长季开始大林窗中栲幼苗的叶质量比显著高于林下, 根质量比和根冠比显著低于林下。栲幼苗早期的存活和生长依赖种子储存的能量, 受林冠条件影响较弱, 后期则依赖光合作用, 受林冠条件影响较强, 从整个幼苗建成过程看, 大、中林窗更有利于栲幼苗定居。  相似文献   

9.
R. Leemans 《Plant Ecology》1991,93(2):157-165
The spatial pattern of seedlings, saplings and canopy trees was studied in two spruce (Picea abies (L.) Karst.) forests in central Sweden. Canopy and forest structure were determined in five 0.25 ha plots. Life stage classes were distinguished on the basis of age and size distributions. Ripley's K-function (1977) was used to analyze the spatial patterns within each class. A random distribution of seedlings gave way to a more aggregated pattern on a small scale during the establishment phase. Saplings and sub-canopy trees were strongly aggregated and canopy trees were again randomly distributed within the plots. The proportion of individuals growing in gaps was used as an index of association between the spatial pattern in saplings and sub-canopy trees and the occurrence of small (50–350 m2) canopy gaps. Under the null hypothesis of independence the expected value of this statistic would equal the canopy gap ratio for the stand. Monte Carlo simulation of this statistic, using fixed sapling positions and randomly repositioned canopy gaps, confirmed the importance of canopy gaps for the final success of establishment of spruce. The association of understorey trees with gaps suggest that small gaps are typically closed by recruitment of new saplings from a sapling bank rather than by the release of larger suppressed trees.  相似文献   

10.
Here we describe the seed shadow, seedling recruitment, ontogenetic structure and spatial distribution of Buchenavia capitata (an emergent canopy tree) in a 380-ha fragment of the Atlantic forest in northeast Brazil. In particular, we examine seed distribution around 10 parental trees and both seedling recruitment and mortality, during an 18 month period beneath and around parental trees. Moreover, we describe: (1) B. capitata occurrence within treefall gaps; (2) population structure in terms of ontogenetic stages for the whole site; and (3) spatial distribution of adults within an area of 51 hectares. 99% of seeds were found beneath parent crowns (n = 4,236) and seed density reached 14.6 +/- 29.9 seeds/m2 (0-140 seeds/m2). 49% of all seeds germinated but seedling mortality reached 100% after an 18 month period. In addition, saplings of B. capitata were not found in forest understory and within 30 treefall gaps (94-2,350 m2). The adults showed an average DBH of 69.3 +/- 22.1 cm, were 19.2 +/- 2.9 m tall and presented a clumped spatial distribution. B. capitata matched some of the features presented by shade intolerant trees or large-gap specialists, and we hypothesize that low rates or even lack of long distance seed dispersal events may be reducing the probability of B. capitata seeds reaching suitable habitats for successful seedling recruitment and growth. Because of that (1) seedlings face high levels of early mortality; (2) there is no sapling recruitment at the study site; and (3) local population faces senility and it is threatened by local extinction.  相似文献   

11.
Light availability is an important modulator of seedling growth and plant–herbivore dynamics. Logging increases light levels in forests, potentially altering herbivore–plant interactions that drive seedling establishment. We conducted a transplant experiment to evaluate how logging and herbivory affect seedling growth and survival in three shade‐tolerant tree species, at paired canopy gap and understory sites in logged forest and an adjacent unlogged area in central Amazonia (Brazil). Seedlings were either left exposed to naturally occurring insect herbivores or protected from insects by a fine netting structure. We measured the herbivore damage and growth rate of seedlings after 18 mo. In general, logged areas received more light than unlogged sites. Growth and herbivory rates were positively influenced by light, and herbivory was also influenced positively by logging. In gaps, increased growth mitigated foliar damage. Logging resulted in a loss of foliar tissue due to increased herbivory. Herbivory rates were higher in the understory of logged sites than in that of unlogged understory sites, but growth was similar in these areas. Thus, the understory of logged areas provided the least favorable sites for shade‐tolerant tree regeneration, due to higher herbivory rates. The effect of logging on biotic interactions can extend beyond the gaps it creates into untouched understory sites. To our knowledge, this is the first time such a pattern has been observed, highlighting the importance of evaluating the impact of logging on biotic interactions.  相似文献   

12.
I investigated competition for light between canopy plants and juvenile valley oaks (Quercus lobata Nee) in a mixed-broadleaf woodland of California's northern Coast Ranges. Canopy effects on understory light supply were separated among the overlying adult valley oak, the adult's woody understory, and neighboring trees and shrubs through a series of light sampling surveys and measurements of the number, size, and spatial distribution of neighboring plants. Light supply in the understory was primarily influenced by neighboring plants, with no detectable effect of the overlying adult valley oak. Light supply in the understory averaged 25% full sun due to a high frequency of canopy gaps and a typically open understory. Seedling response to understory light supply was investigated in an experimental sunfleck gradient (10%, 19%, and 100% full sun). Between 10% and 100% full sun, seedling growth increased by 90% and the shoot:∗∗∗root ratio changed from 1.561 to 0.607. Shade seedlings were also taller and produced fewer, larger, and thinner leaves than seedlings grown in full sun. A field survey of the spatial distribution and crown morphology of saplings and young adults found 1) the distance between young valley oaks and neighboring overstory trees to increase with neighbor size, and 2) crowns of the young oaks to be skewed away from neighbors. Although shading by the canopy was only moderate, canopy effects on understory light supply may restrict juvenile recruitment of valley oak in this woodland.  相似文献   

13.
The effect of canopy trees on understory seedling and sapling distribution is examined in near-climax hemlock-northern hardwood forests in order to predict tree replacement patterns and assess compositional stability. Canopy trees and saplings were mapped in 65 0.1-ha plots in 16 tracts of old-growth forests dominated by Tsuga canadensis, Acer saccharum, Fagus grandifolia, Tilia americana, and Betula lutea in the northeastern United States. Seedlings were tallied in sub-plots. Canopy influence on individual saplings and sub-plots was calculated, using several indices for canopy species individually and in total. For each species sapling and seedling distributions were compared to those distributions expected if saplings were located independently of canopy influence. Non-random distributions indicated that sapling and seedling establishment or mortality were related to the species of nearby canopy trees. Hemlock canopy trees discriminate against beech and maple saplings while sugar maple canopy favors beech saplings relative to other species. Basswood canopy discourages growth of saplings of other species, but produces basal sprouts. Yellow birch saplings were rarely seen beneath intact canopy. Since trees in these forests are usually replaced by suppressed seedlings or saplings, canopy-understory interactions should influence replacement probabilities and, ultimately, stand composition. I suggest that hemlock and basswood tend to be self-replacing, maple and beech tend to replace each other, and birch survives as a fugitive by occupying occasional suitable gaps. This suggests that these species may co-exist within stands for long periods with little likelihood of successional elimination of any species. There is some suggestion of geographical variation in these patterns.  相似文献   

14.
Non-random seed shadows are commonly seen in plant species whose seeds are dispersed by animals, in particular by birds. The behaviour of birds can influence the spatial pattern of seed dispersal and, consequently, the entire regeneration process of fleshy-fruited trees. This study examined regeneration patterns in a fleshy-fruited tree species, rowan (Sorbus aucuparia L.), growing in West Carpathian subalpine spruce forests, focussing on two problems: the temporal relationship between rowan regeneration and gap formation, and the spatial relationship between rowan regeneration and stand structure. It was found that rowan seedlings and saplings were recruited in advance of gap formation. Establishment of new rowan individuals in gaps was infrequent, but gaps enhanced their regeneration nearby under spruce canopy, where they occurred densely in a narrow belt about 15 m wide. Inside spruce stands, the highest density of young rowans was directly under crowns, especially near trunk bases. Few rowan saplings were found growing under mature rowan trees. The presence of a rowan seedling and sapling bank determines whether rowans fill spruce stand gaps. Dense rowan groves can develop mainly in extensive but slowly expanding gaps.  相似文献   

15.
Disturbance regimes in many temperate, old growth forests are characterized by gap-scale events. However, prior to a complex stage of development, canopy gaps may still serve as mechanisms for canopy tree replacement and stand structural changes associated with older forests. We investigated 40 canopy gaps in secondary hardwood stands on the Cumberland Plateau in Tennessee to analyze gap-scale disturbance processes in developing forests. Gap origin, age, land fraction, size, shape, orientation, and gap maker characteristics were documented to investigate gap formation mechanisms and physical gap attributes. We also quantified density and diversity within gaps, gap closure, and gap-phase replacement to examine the influence of localized disturbances on forest development. The majority of canopy gaps were single-treefall events caused by uprooted or snapped stems. The fraction of the forest in canopy gaps was within the range reported from old growth remnants throughout the region. However, gap size was smaller in the developing stands, indicating that secondary forests contain a higher density of smaller gaps. The majority of canopy gaps were projected to close by lateral crown expansion rather than height growth of subcanopy individuals. However, canopy gaps still provided a means for understory trees to recruit to larger size classes. This process may allow overtopped trees to reach intermediate positions, and eventually the canopy, after future disturbance events. Over half of the trees located in true gaps with intermediate crown classifications were Acer saccharum, A. rubrum, or Liriodendron tulipifera. Because the gaps were relatively small and close by lateral branch growth of perimeter trees, the most shade-tolerant A. saccharum has the greatest probability of becoming dominant in the canopy under the current disturbance regime. Half of the gap maker trees removed from the canopy were Quercus; however, Acer species are the most probable replacement trees. These data indicate that canopy gaps are important drivers of forest change prior to a complex stage of development. Even in relatively young forests, gaps provide the mechanisms for stands to develop a complex structure, and may be used to explain patterns of shifting species composition in secondary forests of eastern North America.  相似文献   

16.
We compared the functional type composition of trees ≥10 cm dbh in eight secondary forest monitoring plots with logged and unlogged mature forest plots in lowland wet forests of Northeastern Costa Rica. Five plant functional types were delimited based on diameter growth rates and canopy height of 293 tree species. Mature forests had significantly higher relative abundance of understory trees and slow-growing canopy/emergent trees, but lower relative abundance of fast-growing canopy/emergent trees than secondary forests. Fast-growing subcanopy and canopy trees reached peak densities early in succession. Density of fast-growing canopy/emergent trees increased during the first 20 yr of succession, whereas basal area continued to increase beyond 40 yr. We also assigned canopy tree species to one of three colonization groups, based on the presence of seedlings, saplings, and trees in four secondary forest plots. Among 93 species evaluated, 68 percent were classified as regenerating pioneers (both trees and regeneration present), whereas only 6 percent were classified as nonregenerating pioneers (trees only) and 26 percent as forest colonizers (regeneration only). Slow-growing trees composed 72 percent of the seedling and sapling regeneration for forest colonizers, whereas fast-growing trees composed 63 percent of the seedlings and saplings of regenerating pioneers. Tree stature and growth rates capture much of the functional variation that appears to drive successional dynamics. Results further suggest strong linkages between functional types defined based on adult height and growth rates of large trees and abundance of seedling and sapling regeneration during secondary succession.
Abstract in Spanish is available at http://www.blackwell-synergy.com/loi/btp  相似文献   

17.
林窗对热带雨林冠层树种绒毛番龙眼幼苗生长的影响   总被引:2,自引:0,他引:2  
在林窗中央、林窗边缘和林冠下3种不同光照梯度的森林生境中,研究了西双版纳季节雨林冠层树种绒毛番龙眼幼苗的早期 (种子萌发后10周内) 生长和定居后 (实生苗生长3个月以上) 的生长特点.结果表明: 绒毛番龙眼幼苗在早期生长阶段,林窗中央的株高、基径、总干质量、单株叶面积和相对生长率最大,分别为24.45 cm、3.17 mm、0.79 g、122.45 cm2和14.78×10-3 g·d-1.林冠下根冠比 (0.87) 高于林窗中央 (0.20) ,可能是光照和水分共同作用的结果.林窗中央较强的光照有利于定居后幼苗的生长,株高、基径、总干质量、单株叶面积、相对生长率和净同化率均在林窗中央最大,实验结束时分别达到31.48 cm、3.80 mm、2.22 g、174.52 cm2、2.29×10-3 g·d-1和2.54×10-5 g·cm-2·d-1.幼苗死亡可能与水分胁迫密切相关,由水分胁迫引起的幼苗死亡率在林冠下最高 (26.88%),但林冠下由脊椎动物捕食引起的幼苗死亡率较低(2.93%),从而使林冠下幼苗的最终存活率最高 (70.19%).光照是影响绒毛番龙眼幼苗形态学调节的重要因素, 林窗中央不同生长阶段幼苗的比叶面积最低,但相对生长率和净同化率最大.水分胁迫和光照在幼苗定居后仍是影响幼苗生物量分配的重要因素, 林窗边缘幼苗的根冠比最高 (0.33).  相似文献   

18.
贺丹妮  杨华  温静  谢榕 《应用生态学报》2020,31(6):1916-1922
2019年8月在云冷杉针阔混交林样地(0.36 hm2),对48个林隙及幼苗(0.2<更新高度RH<1 m)、幼树(RH≥1 m,胸径DBH<5 cm)进行调查,分析林隙大小(<20 m2,小;20~50 m2,中;50~120 m2,大;>120 m2,特大)对林隙内红松、鱼鳞云杉及冷杉幼苗幼树密度和生长指标(高、基径)的短期影响,并采用核密度估计法分析其空间分布规律。结果表明: 云冷杉更新的密度通常随林隙增大而降低,仅对幼树影响显著,小林隙下云冷杉幼树密度分别为0.34和1.74株·m-2,红松密度不受林隙大小的影响。林隙大小对冷杉幼苗幼树生长指标的影响最大,对红松影响最小,平均最大值多出现在大林隙。红松和云杉幼树的基径和树高最大值均分布在小、中、大林隙东北部,在特大林隙中转移至冠空隙西北部。小林隙有助于幼苗的建立和萌发,可通过择伐冷杉创造小林隙,随后扩大林隙面积(>50 m2)促进幼树生长,需要持续监测来确定林隙大小对森林更新的长期影响。  相似文献   

19.
林窗作为森林群落中一种重要的干扰方式, 对林下物种构成有着重要的影响。开展林窗空间格局及其特征指数与林下植物多样性关系研究对于探讨林窗对林下生物多样性的影响有重要意义, 有助于进一步了解群落动态, 在物种多样性保护方面也具有指导作用。本研究在西双版纳热带雨林地区随机选取3块大小为1 ha的热带雨林为研究样地, 采用轻小型六旋翼无人机搭载Sony ILCE-A7r可见光传感器, 分别获取各个样地的高清数字影像, 结合数字表面高程模型以及各个样地的地形数据用以确定各样区的林窗分布格局, 并进一步提取出各林窗的景观格局指数。结合地面样方基础调查数据, 对各样地各林窗下植物多样性情况进行统计, 旨在分析热带雨林林窗空间分布格局以及林窗下植物多样性对各林窗空间格局特征的响应情况。研究表明, 西双版纳州热带雨林林窗呈大而分散的空间分布, 林窗空间格局特征指数如林窗形状复杂性指数、林窗面积都与林下植物多样性呈显著正相关关系。在面积小的林窗下, 较之林窗形状复杂性因子, 林窗面积大小对林下植物多样性影响更显著; 在面积达到一定程度后, 相对于面积因子, 林窗形状复杂性指数对林下植物多样性影响更显著, 各样地林窗皆趋于向各自所处样地顶极群落发展。  相似文献   

20.
The stand structure and disturbance history in a sub-boreal coniferous forest dominated byPicea jezoensis, Picea glehnii andAbies sachalinensis were investigated in four study plots set up in Taisetsuzan National Park, Japan. The effect of stand characteristics on the growth and mortality rates of understory trees was examined. Although all the stands showed inverse J-shape d.b.h. (diameter at breast height) distributions, the age structure and disturbance history differed amongst the stands. The stands with wide d.b.h. distribution (i.e. large CV and skewness) were more uneven-aged than those with narrow d.b.h. distribution (i.e. small CV and skewness). The disturbance-return interval based on the model of Hett and Loucks was 31 to 65 years. The gap ratio in the canopy was also different among the stands. These suggest that the variations in stand structure represent different occurrences of natural disturbances. Furthermore, the structural features such as size structure, canopy gap ratio and density of canopy trees also affected the growth dynamics of understory trees (≥2 m in height and <10 cm in diameter at breast height). The growth and mortality rates of understory trees changed with the canopy gap ratio and canopy tree density. The understory trees of stands with wide canopy d.b.h. distribution had higher growth and canopy recruitment rates than those of stands with narrow canopy d.b.h. distribution, contributing to the maintenance of continuous stand stratification. The understory trees of stands with narrow canopy d.b.h. distribution showed lower growth and higher mortality rates than those of stands with narrow canopy d.b.h. distribution, leading to the formation of a single-canopy structure. It is suggested that natural disturbance governs the regeneration process in the future by affecting the growth and mortality patterns of understory trees through the stand structure (size and age structure, canopy tree density, canopy gap ratio).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号