首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Serum amyloid A (SAA) is a small apolipoprotein that binds to high-density lipoproteins (HDLs) via its N-terminus. The murine isoform SAA2.2 forms a hexamer in solution and the N-terminus is shielded from the solvent. Therefore, it is unclear how the SAA2.2 hexamer might bind HDL. In this study, the binding of SAA2.2 to murine HDL was investigated by glutaraldehyde cross-linking and polyacrylamide gel electrophoresis. The hexamer did not bind HDL significantly at 20 degrees C. However, at temperatures between 25-30 degrees C, SAA2.2 became destabilized and its monomeric form bound to HDL. SAA2.2 binding did not significantly replace Apo A-I in HDL particles. At 37-45 degrees C SAA2.2 binds less to HDL, suggesting that its binding is weak and sensitive to physiological and pathological temperatures, and thereby, potentially modulated, in vivo, by other factors.  相似文献   

2.
Serum Amyloid A (SAA) is an acute phase reactant protein that is predominantly found bound to high-density lipoprotein in plasma. Upon inflammation, the plasma concentration of SAA can increase dramatically, occasionally leading to the development of amyloid A (AA) amyloidosis, which involves the deposition of SAA amyloid fibrils in major organs. We previously found that the murine isoform SAA2.2 exists in aqueous solution as a hexamer containing a central channel. Here we show using various biophysical and biochemical techniques that the SAA2.2 hexamer can be totally dissociated into monomer by approximately 2 M urea, with the concerted loss of its alpha-helical structure. However, limited trypsin proteolysis experiments in urea showed a conserved digestion profile, suggesting the preservation of major backbone topological features in the urea-denatured state of SAA2.2. The marginal stability of hexameric SAA2.2 and the presence of residual structure in the denatured monomeric protein suggest that both forms may interconvert in vivo to exert different functions to meet the various needs during normal physiological conditions and in response to inflammatory stimuli.  相似文献   

3.
Serum amyloid A (SAA) is an inflammatory protein predominantly bound to high-density lipoprotein in plasma and presumed to play various biological and pathological roles. We previously found that the murine isoform SAA2.2 exists in aqueous solution as a marginally stable hexamer at 4–20 °C, but becomes an intrinsically disordered protein at 37 °C. Here we show that when urea-denatured SAA2.2 is dialyzed into buffer (pH 8.0, 4 °C), it refolds mostly into an octameric species. The octamer transitions to the hexameric structure upon incubation from days to weeks at 4 °C, depending on the SAA2.2 concentration. Thermal denaturation of the octamer and hexamer monitored by circular dichroism showed that the octamer is ∼10 °C less stable, with a denaturation mid point of ∼22 °C. Thus, SAA2.2 becomes kinetically trapped by refolding into a less stable, but more kinetically accessible octameric species. The ability of SAA2.2 to form different oligomeric species in vitro along with its marginal stability, suggest that the structure of SAA might be modulated in vivo to form different biologically relevant species.  相似文献   

4.
Circular-dichroism studies on two murine serum amyloid A proteins.   总被引:9,自引:0,他引:9       下载免费PDF全文
C.d. studies have shown that mouse SAA2 (serum amyloid A2) protein has about one-half of the alpha-helix content of the SAA1 (serum amyloid A1) analogue (15 as against 32%), although secondary-structure prediction analyses based on sequence data do not suggest such a large difference between the forms. The decreased helical content may be a reflection or indication of a stronger propensity to aggregation of the SAA2 form compared with SAA1. The main elements of secondary structure in both proteins are beta-sheets/turns. Interactions with Ca2+ are accompanied by small losses in alpha-helix content, whereas binding to chondroitin-6-sulphate in the presence of millimolar Ca2+ also decreases the amount of secondary structure. However, SAA2 binding to heparan sulphate increases its beta-sheet structure, whereas with SAA1 secondary structure is not apparently altered by its interaction with heparan sulphate. Computer-generated surface profiles show slight differences in accessibility, hydrophilicity and flexibility between the proteins. Understanding these differences may help to explain why SAA2 is found in amyloid fibrils whereas SAA1 is not. In particular, a stronger tendency to aggregation might be the reason why SAA2 is deposited exclusively in these fibrils.  相似文献   

5.
The fibrillar deposition of serum amyloid A (SAA) has been linked to the disease amyloid A (AA) amyloidosis. We have used the SAA isoform, SAA2.2, from the CE/J mouse strain, as a model system to explore the inherent structural and biophysical properties of SAA. Despite its nonpathogenic nature in vivo, SAA2.2 spontaneously forms fibrils in vitro, suggesting that SAA proteins are inherently amyloidogenic. However, whereas the importance of the amino terminus of SAA for fibril formation has been well documented, the influence of the proline-rich and presumably disordered carboxy terminus remains poorly understood. To clarify the inherent role of the carboxy terminus in the oligomerization and fibrillation of SAA, we truncated the proline-rich final 13 residues of SAA2.2. We found that unlike full-length SAA2.2, the carboxy-terminal truncated SAA2.2 (SAA2.2ΔC) did not oligomerize to a hexamer or octamer, but formed a high molecular weight soluble aggregate. Moreover, SAA2.2ΔC also exhibited a pronounced decrease in the rate of fibril formation. Intriguingly, when equimolar amounts of denatured SAA2.2 and SAA2.2ΔC were mixed and allowed to refold together, the mixture formed an octamer and exhibited rapid fibrillation kinetics, similar to those for full-length SAA2.2. These results suggest that the carboxy terminus of SAA, which is highly conserved among SAA sequences in all vertebrates, might play important structural roles, including modulating the folding, oligomerization, misfolding, and fibrillation of SAA.  相似文献   

6.
For nearly four decades, the formation of amyloid fibrils by the inflammation-related protein serum amyloid A (SAA) has been pathologically linked to the disease amyloid A (AA) amyloidosis. However, here we show that the nonpathogenic murine SAA2.2 spontaneously forms marginally stable amyloid fibrils at 37 °C that exhibit cross-beta structure, binding to thioflavin T, and fibrillation by a nucleation-dependent seeding mechanism. In contrast to the high stability of most known amyloid fibrils to thermal and chemical denaturation, experiments monitored by glutaraldehyde cross-linking/SDS-PAGE, thioflavin T fluorescence, and light scattering (OD(600)) showed that the mature amyloid fibrils of SAA2.2 dissociate upon incubation in >1.0 M urea or >45 °C. When considering the nonpathogenic nature of SAA2.2 and its ~1000-fold increased concentration in plasma during an inflammatory response, its extreme in vitro amyloidogenicity under physiological-like conditions suggest that SAA amyloid might play a functional role during inflammation. Of general significance, the combination of methods used here is convenient for exploring the stability of amyloid fibrils that are sensitive to urea and temperature. Furthermore, our studies imply that analogous to globular proteins, which can possess structures ranging from intrinsically disordered to extremely stable, amyloid fibrils formed in vivo might have a broader range of stabilities than previously appreciated with profound functional and pathological implications.  相似文献   

7.
Rudyak SG  Brenowitz M  Shrader TE 《Biochemistry》2001,40(31):9317-9323
Lon (La) proteases are multimeric enzymes that are activated by ATP and Mg(2+) ions and stimulated by unfolded proteins such as alpha-casein. The peptidase activity of the Lon protease from Mycobacterium smegmatis (Ms-Lon) is dependent upon both its concentration and that of Mg(2+). Addition of alpha-casein partially substitutes for Mg(2+) in activating the enzyme. In chemical dissociation experiments, higher concentrations of urea were required to inhibit Ms-Lon's catalytic activities after an addition of alpha-casein. Analytical ultracentrifugation was used to directly probe the effect of activators of peptidase activity on Ms-Lon self-association. Sedimentation velocity experiments reveal that Ms-Lon monomers are in a reversible equilibrium with oligomeric forms of the protein and that the self-association reaction is facilitated by Mg(2+) ions but not by AMP-PNP or ATP gamma S. NaCl at 100 mM facilitates oligomerization and stimulates peptidase activity at suboptimal concentrations of MgCl(2). Sedimentation equilibrium analysis shows that Ms-Lon associates to a hexamer at 50 mM Tris and 10 mM MgCl(2), at pH 8.0 and 20 degrees C, and that the assembly reaction is Mg(2+) dependent; the mole fraction of hexamer decreases with decreasing MgCl(2) to undetectable levels in 10 mM EDTA. The analysis of experiments conducted at a series of initial protein and MgCl(2) concentrations yields two assembly models: dimer <--> tetramer <--> hexamer and timer <--> hexamer, equally consistent with the data. Limited trypsin digestion, CD, and tryptophan fluorescence suggest only minor changes in secondary and tertiary structure upon Mg(2+)-linked oligomerization. These results show that activation of Ms-Lon peptidase activity requires oligomerization and that Ms-Lon self-association reaction is facilitated by its activator, Mg(2+), and stimulator, unfolded protein.  相似文献   

8.
The nucleotide sequences of two mink serum amyloid A (SAA) cDNA clones have been analyzed, one (SAA1) 776 base pairs long and the other (SAA2) 552 base pairs long. Significant differences were discovered when derived amino acid sequences were compared with data for apoSAA isolated from high density lipoprotein. Previous studies of mink protein SAA and amyloid protein A (AA) suggest that only one SAA isotype is amyloidogenic. The cDNA clone for SAA2 defines the "amyloid prone" isotype while SAA1 is found only in serum. Mink SAA1 has alanine in position 10, isoleucine in positions 24, 67, and 71, lysine in position 27, and proline in position 105. Residue 10 in mink SAA2 is valine while arginine and asparagine are at positions 24 and 27, respectively, all characteristics of protein AA isolated from mink amyloid fibrils. Mink SAA2 also has valine in position 67, phenylalanine in position 71, and amino acid 105 is serine. It remains unknown why these six amino acid substitutions render SAA2 more amyloidogenic than SAA1. Eighteen hours after lipopolysaccharide stimulation, mink SAA mRNA is abundant in liver with relatively minor accumulations in brain and lung. Genes encoding both SAA isotypes are expressed in all three organs while no SAA mRNA was detectable in amyloid prone organs, including spleen and intestine, indicating that deposition of AA from locally synthesized SAA is unlikely. A third mRNA species (2.2 kilobases) was identified and hybridizes with cDNA probes for mink SAA1 and SAA2. In addition to a major primary translation product (molecular mass 14,400 Da) an additional product with molecular mass 28,000 Da was immunoprecipitable.  相似文献   

9.
Disney MD  Testa SM  Turner DH 《Biochemistry》2000,39(23):6991-7000
Pneumocystis carinii is a mammalian pathogen that contains a self-splicing group I intron in its large subunit rRNA precursor. We report the binding of methylphosphonate/DNA chimeras and neutral methylphosphonate oligonucleotides to a ribozyme that is a truncated form of the intron. At 15 mM Mg(2+), the nuclease-resistant all-methylphosphonate hexamer, d(AmTmGmAmCm)rU, with a sequence that mimics the 3' end of the precursor's 5' exon, binds with a dissociation constant of 272 nM. The hexamer's dissociation constant for binding by base-pairing alone to the ribozyme's binding site sequence is 8.3 mM. Thus there is a 30 000-fold binding enhancement by tertiary interactions (BETI), which is close to the 60 000-fold enhancement previously observed with the all-ribo hexamer, r(AUGACU). Evidently, backbone charge and 2' hydroxyl groups are not required for BETI. At 3-15 mM Mg(2+), the all-methylphosphonate and DNA oligonucleotides trans-splice to a truncated form of the rRNA precursor, but do not compete with cis-splicing when pG is present. These results suggest that uncharged or partially charged backbones may be used to design therapeutics to target RNAs through binding enhancement by tertiary interactions and suicide inhibition strategies.  相似文献   

10.
Li L  Singh BR 《Biochemistry》2000,39(34):10581-10586
Clostridial neurotoxins are zinc endopeptidases, and each contains one Zn(2+)/molecule. To investigate the structural/functional role of Zn(2+) in botulinum neurotoxin light chain (the enzymatic subunit of the neurotoxin), the effect of the removal of zinc on protein folding and enzyme kinetics was investigated. The active site Zn(2+), which was easily displaced from the active site by ethylenediaminetetraacetate, reversibly binds to the BoNT/A light chain (LC) in a stoichiometric manner. Enzymatic activity was completely abolished in the zinc-depleted light chain (apo-LC). However, Zn(2+) replenishment partially restored the activity in the re-Zn(2+)-LC (k(cat) = 72 min(-)(1)) compared to the holo-LC (k(cat) = 140 min(-)(1)). Comparable K(m) values in the holo- and re-Zn(2+)-LC were observed (41 and 55 microM, respectively), indicating a similar substrate binding ability. We investigated the structural basis of a 3-fold difference in the catalytic efficiency of the native holo-LC and re-Zn(2+)-LC by analyzing secondary and tertiary structural parameters. Removal of the zinc causes irreversible tertiary structural change while the secondary structure remains unchanged. Zinc binding leads to enhanced thermal stability of the LC, which is not identical in the native holo-LC and re-Zn(2+)-LC.  相似文献   

11.
At pH 2, ovalbumin retains native-like secondary structure as seen by far-UV CD and FTIR, but lacks well-defined tertiary structure as seen by the fluorescence and near-UV CD spectra. Addition of 20 mM Trifluoroacetic acid (TFA) or 30 mM Trichloroacetic acid (TCA) on acid-induced state results in protein aggregation. This aggregated state possesses extensive β-sheet structure as revealed by far-UV CD and FTIR spectroscopy. Furthermore, the aggregates exhibit decreased ANS fluorescence and increased thioflavin T fluorescence. The presence of aggregates was confirmed by size exclusion chromatography. Such a formation of β-sheet structure is found in the amyloid of a number of neurological diseases such as Alzheimer’s and scrapie. Ovalbumin at low pH, in the presence of K2SO4, exists in partially folded state characterized by native-like secondary structure and tertiary folds.  相似文献   

12.
Protein aggregation is a widespread process leading to deleterious consequences in the organism, with amyloid aggregates being important not only in biology but also for drug design and biomaterial production. Insulin is a protein largely used in diabetes treatment, and its amyloid aggregation is at the basis of the so-called insulin-derived amyloidosis. Here, we uncover the major role of zinc in both insulin dynamics and aggregation kinetics at low pH, in which the formation of different amyloid superstructures (fibrils and spherulites) can be thermally induced. Amyloid aggregation is accompanied by zinc release and the suppression of water-sustained insulin dynamics, as shown by particle-induced x-ray emission and x-ray absorption spectroscopy and by neutron spectroscopy, respectively. Our study shows that zinc binding stabilizes the native form of insulin by facilitating hydration of this hydrophobic protein and suggests that introducing new binding sites for zinc can improve insulin stability and tune its aggregation propensity.  相似文献   

13.
AA amyloidosis is the result of overproduction and aberrant processing of acute-phase serum amyloid A1 (SAA1) by hepatocytes. Proteolytic cleavage of SAA1 is believed to play a central role in AA amyloid formation. The SAA1 protein undergoes a cleavage of 18 residues consisting of the signal peptide at the N-terminal region. To better understand the mechanism behind systemic amyloidosis in the SAA1 protein, we studied the misfolding propensity of the signal peptide region. We first examined the signal peptide amino acid SAA derived from different animal species. A library of 16 peptides was designed to evaluate the propensity of aggregation. The amyloidogenic potential of each SAA1 signal peptide homolog was assessed using in silico Tango program, thioflavin T (ThT) fluorescence, transmission electron microscopy (TEM), and seeding with misfolded human SAA1 signal peptide. After 7 days of incubation, most of the SAA1 signal peptide fragments had the propensity to form fibrils at a concentration of 100 μM in 50 mM Tris buffer at 37 °C by TEM. All peptides were able to generate fibrils at a higher concentration, i.e 500 μM in 25 mM Tris buffer with 50% HFIP, by ThT. All SAA1 signal synthetic peptides designed from the different animal species had the propensity to misfold and form fibrils, particularly in species with low occurrence of systemic amyloidosis. The human SAA1 signal peptide region was capable to seed the SAA1 1–25 and 32–47 peptide regions. Characterizing fibrillar conformations are relevant for seeding intact and/or fragmented SAA, which may contribute, to the mechanism of protein misfolding. This research signifies the importance of the signal peptide region and its possible contribution to the misfolding of aggregation-prone proteins.  相似文献   

14.
Biological Trace Element Research - The aim of the study was to determine how inorganic and organic forms of zinc affect the concentrations of C-reactive protein (CRP), serum amyloid A (SAA),...  相似文献   

15.
Serum amyloid A1 (SAA1) is an apolipoprotein that binds to the high‐density lipoprotein (HDL) fraction of the serum and constitutes the fibril precursor protein in systemic AA amyloidosis. We here show that HDL binding blocks fibril formation from soluble SAA1 protein, whereas internalization into mononuclear phagocytes leads to the formation of amyloid. SAA1 aggregation in the cell model disturbs the integrity of vesicular membranes and leads to lysosomal leakage and apoptotic death. The formed amyloid becomes deposited outside the cell where it can seed the fibrillation of extracellular SAA1. Our data imply that cells are transiently required in the amyloidogenic cascade and promote the initial nucleation of the deposits. This mechanism reconciles previous evidence for the extracellular location of deposits and amyloid precursor protein with observations the cells are crucial for the formation of amyloid.  相似文献   

16.
Serum amyloid A (SAA) is a multifunctional acute‐phase protein whose concentration in serum increases markedly following a number of chronic inflammatory and neoplastic diseases. Prolonged high SAA level may give rise to reactive systemic amyloid A (AA) amyloidosis, where the N‐terminal segment of SAA is deposited as amyloid fibrils. Besides, recently, well‐documented association of SAA with high‐density lipoprotein or glycosaminoglycans, in particular heparin/heparin sulfate (HS), and specific interaction between SAA and human cystatin C (hCC), the ubiquitous inhibitor of cysteine proteases, was proved. Using a combination of selective proteolytic excision and high‐resolution mass spectrometry, a hCC binding site in the SAA sequence was determined as SAA(86–104). The role of this SAA C‐terminal fragment as a ligand‐binding locus is still not clear. It was postulated important in native SAA folding and in pathogenesis of AA amyloidosis. In the search of conformational details of this SAA fragment, we did its structure and affinity studies, including its selected double/triple Pro→Ala variants. Our results clearly show that the SAA(86–104) 19‐peptide has rather unordered structure with bends in its C‐terminal part, which is consistent with the previous results relating to the whole protein. The results of affinity chromatography, fluorescent ELISA‐like test, CD and NMR studies point to an importance of proline residues on structure of SAA(86–104). Conformational details of SAA fragment, responsible for hCC binding, may help to understand the objective of hCC–SAA complex formation and its importance for pathogenesis of reactive amyloid A amyloidosis. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

17.
18.
We have investigated the aggregation of protein L in 25% (vol/vol) TFE and 10 mM HCl. Under both conditions, aggregates adopt a fibrillar structure and bind dyes Congo Red and Thioflavin T consistent with the presence of amyloid fibrils. The kinetics of aggregation in 25% TFE suggest a linear-elongation mechanism with critical nucleus size of either two or three monomers. Aggregation kinetics in 10 mM HCl show a prolonged lag phase prior to a rapid increase in aggregation. The lag phase is time-dependent, but the time dependence can be eliminated by the addition of pre-formed seeds. Disaggregation studies show that for aggregates formed in TFE, aggregate stability is a strong function of aggregate age. For example, after 200 min of aggregation, 40% of the aggregation reaction is irreversible, while after 3 days over 60% is irreversible. When the final concentration of the denaturant, TFE, is reduced from 5% to 0, the amount of reversible aggregation doubles. Disaggregation studies of aggregates formed in TFE and 10 mM HCl reveal a complicated effect of pH on aggregate stability.  相似文献   

19.
Protein aggregation, being an outcome of improper protein folding, is largely dependent on the folding kinetics of a protein. Previous studies have reported a positive correlation between the stability of the secondary structural elements of a protein and their rate of folding/unfolding. In this in silico study, the secondary and tertiary structures of proteins a) that form inclusion bodies on overexpression in Escherichia coli, b) that form amyloid fibrils and c) that are soluble on overexpression in E. coli are analyzed for certain features that are known to be associated with structural stability. The study revealed that the soluble proteins seem to have a higher rate of folding (based on contact order) and a lower percentage of exposed hydrophobic residues as compared to the inclusion body forming or amyloidogenic proteins. The soluble proteins also seem to have a more favored helix and strand composition (based on the known secondary structural propensities of amino acids). The secondary structure analyses also reveal that the evolutionary pressure is directed against protein aggregation. This understanding of the positive correlation between structural stability and solubility, along with the other parameters known to influence aggregation, could be exploited in the design of mutations aimed at reducing the aggregation propensity of the proteins.  相似文献   

20.
Shelton VM  Sosnick TR  Pan T 《Biochemistry》2001,40(12):3629-3638
The isothermal equilibrium folding of the unmodified yeast tRNA(Phe) is studied as a function of Na(+), Mg(2+), and urea concentration with hydroxyl radical protection, circular dichroism, and diethyl pyrocarbonate (DEPC) modification. These assays indicate that this tRNA folds in Na(+) alone. Similar to folding in Mg(2+), folding in Na(+) can be described by two transitions, unfolded-to-intermediate-to-native. The I-to-N transition has a Na(+) midpoint of approximately 0.5 M and a Hill constant of approximately 4. Unexpectedly, the urea m-value, the dependence of free energy on urea concentration, for the I-to-N transition is significantly smaller in Na(+) than in Mg(2+), 0.4 versus 1.7 kcal mol(-1) M(-1), indicating that more structure is formed in the Mg(2+)-induced transition. DEPC modification indicates that the I state in Na(+)-induced folding contains all four helices of tRNA and the I-to-N transition primarily corresponds to the formation of the tertiary structure. In contrast, the intermediate in Mg(2+)-induced folding contains only three helices, and the I-to-N transition corresponds to the formation of the acceptor stem plus tertiary structure. The cation dependence of the intermediates arises from the differences in the stability of the acceptor stem and the tertiary structure. The acceptor stem is stable at a lower Na(+) concentration than required for the tertiary structure formation. The relative stability is reversed in Mg(2+) so that the acceptor stem and the tertiary structure form simultaneously in the I-to-N transition. These results demonstrate that formation of the RNA secondary structure can be independent or coupled to the formation of the tertiary structure depending on their relative stability in monovalent and divalent ions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号