首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Transglutaminases (TGs) are a large family of related and ubiquitous enzymes that catalyze post-translational modifications of proteins. The main activity of these enzymes is the cross-linking of a glutaminyl residue of a protein/peptide substrate to a lysyl residue of a protein/peptide co-substrate. In addition to lysyl residues, other second nucleophilic co-substrates may include monoamines or polyamines (to form mono- or bi-substituted /crosslinked adducts) or -OH groups (to form ester linkages). In the absence of co-substrates, the nucleophile may be water, resulting in the net deamidation of the glutaminyl residue. The TG enzymes are also capable of catalyzing other reactions important for cell viability. The distribution and the physiological roles of TG enzymes have been widely studied in numerous cell types and tissues and their roles in several diseases have begun to be identified. "Tissue" TG (TG2), a member of the TG family of enzymes, has definitely been shown to be involved in the molecular mechanisms responsible for a very widespread human pathology: i.e. celiac disease (CD). TG activity has also been hypothesized to be directly involved in the pathogenetic mechanisms responsible for several other human diseases, including neurodegenerative diseases, which are often associated with CD. Neurodegenerative diseases, such as Alzheimer's disease, Parkinson's disease, supranuclear palsy, Huntington's disease and other recently identified polyglutamine diseases, are characterized, in part, by aberrant cerebral TG activity and by increased cross-linked proteins in affected brains. In this review, we discuss the physio-pathological role of TG-catalyzed reactions, with particular interest in the molecular mechanisms that could involve these enzymes in the physio-pathological processes responsible for human neurodegenerative diseases.  相似文献   

2.
《FEBS letters》1997,413(2):202-204
The role of oxidatively modified LDL in the pathogenesis of atherosclerosis has been well documented. These studies have focused on modifications of lipid and protein parts of LDL. Recently desialylated LDL has received attention in relation to atherosclerosis and coronary artery disease. We examined the possible involvement of radical reactions in desialylation of LDL. Human LDL was subjected to oxidative damage using Cu2+ ion. As the conjugated dienes monitored by absorption at 234 nm increased, the content of sialic acid decreased steadily. Both the elevation of conjugated diene and the decrease of sialic acid were inhibited by β-mercaptoethanol, a typical radical scavenger. Besides, both butylated hydroxytoluene and a nitrogen atmosphere inhibited the decrease of sialic acid. These inhibition experiments suggested that sialic acid moieties in LDL were reactive toward radicals.  相似文献   

3.
4.
In several neurodegenerative diseases, iron accumulates at sites of brain pathology. Since post-mortem examination cannot distinguish whether iron accumulation caused the damage or resulted from damage, it is necessary to manipulate iron in animal and tissue culture models to assess its causal role(s). However, only in models of Parkinson's disease and of global ischemia, iron deprivation (ID) or iron-chelators have been used to protect from damage. In these studies, documentation of microgliosis was not performed even though several lines of evidence converge to suggest that activation of microglia is an important source of oxidative stress. In the kainate model of epilepsy, we found that ID protected the olfactory cortex, thalamus and hippocampus and attenuated microgliosis, whereas iron supplementation to ID rats increased damage and microgliosis in the above regions. In the hilus of the hippocampal dentate gyrus, even though no cell loss was observed, ID attenuated microgliosis and iron-supplementation increased it. Thus there is a tight relationship between iron and microgliosis. In addition, iron+zinc supplementation dramatically increased damage to hippocampal CA1 whereas zinc supplementation alone had no effect. This study demonstrates an anatomically unique interaction of iron and zinc, which may lead to new insights to neurodegeneration in epilepsy.  相似文献   

5.
The purpose of this review is to outline the main role of nerve growth factor (NGF) in the visual system and particularly in the ocular surface in physiological and pathological conditions. The present review of experimental and clinical studies will highlight old and recent strategies for treating ocular surface and tear disorders with NGF.  相似文献   

6.
Advanced glycation end-products (AGEs) are formed from the so-called Amadori products by rearrangement followed by other reactions giving rise to compounds bound irreversibly. The structure of some of them is shown and the mechanism of formation is described. Several AGE binding molecules (Receptors for AGE, RAGE) are known and it is thought that many of the effects caused by AGEs are mediated by RAGE. Some of these were shown to be toxic, and called TAGE. The mechanism of detoxification of glyoxal and methylglyoxal by the glyoxalase system is described and also the possibility to eliminate glycated proteins by deglycation enzymes. Compounds able to inhibit AGEs formation are also taken into consideration.  相似文献   

7.
Oligodendrocyte is a highly specialized glial cell type in the vertebrate central nervous system, which guarantees the long-distance transmission of action potential by producing myelin sheath wrapping adjacent axons. Disrupted myelin and oligodendrocytes are hallmarks of some devastating neurological diseases, such as multiple sclerosis, although their contribution to neurodegeneration in a given disease is still controversial. However, accumulating evidence from clinical studies and genetic animal models implicates oligodendrocyte dysfunction as one of major events in the processes of initiation and progression of neurodegeneration. In this article, we will review recent progress in understanding non-traditional function of oligodendrocytes in neuronal support and protection independent of myelin sheath and its possible contribution to neurodegeneration. Oligodendrocytes play a pivotal role in neurodegenerative diseases among which special emphasis is given to multiple system atrophy and Alzheimer’s disease in this review.  相似文献   

8.
We report the occurrence in pigeon erythrocytes of a soluble Ca2+-dependent transglutaminase (TGase) activity. The effect of the erythrocyte ghost protein modifications, determined by TGase-catalyzed reactions, on adenylate cyclase, phospholipid methyltransferase I and II activities and on the lipidic matrix fluidity of the membrane was investigated by using a purified guinea pig liver TGase preparation. The results showed a significant inhibitory effect of such modifications both on the basal and on the variously stimulated (by NaF, Gpp(NH)p alone or in the presence of 1-isoproterenol) adenylate cyclase activity. By contrast, both the phospholipid methylation and the fluidity of the lipidic matrix of the membrane were unaffected by TGase-mediated reactions. These data suggest a new possible inhibitory mechanism of the cyclic AMP synthesis which might be triggered by the enhancement of the cytosolic Ca2+ concentration.  相似文献   

9.
The effects of amyloid-beta (Aβ) protein on the expression of m1, m2 subunits of mAChR and on α7nAChR were analyzed in the cerebral cortex and in the hippocampus of rats following injections of Aβ (1–40) (BACHEM, 2 μg in 1 μL of PBS) into the left retroesplenial cortex (RSg) and injections of 1 μL of PBS into the right RSg. Sections were immunoreacted for the localization of α7, m1, m2, GABA, somatostatin and parvalbumin. Injections of Aβ resulted in loss of neurones expressing α7- and m1-like immunoreactivity (IR) in frontal, RSg cortices, hippocampus and subicular complex. A decrease of α7, m1- and m2-like-IR fibers and structures-like terminals was also seen in hippocampus, subicular and cerebral cortex. α7nAChR and m1, m2 subuntis of mAChRs were most commonly identified on GABAergic interneurones. These results point to an effect of Aβ on the synthesis of α7nAChR and mAChRs and suggest an important role of cholinoceptive interneurones in the dysfunction of hippocampus and cerebral cortex seen in AD.  相似文献   

10.
《Cell》2023,186(4):693-714
  相似文献   

11.
Metal ions are known to play an important role in many neurodegenerative diseases including Alzheimer's disease (AD), Parkinson's disease (PD), amyotrophic lateral sclerosis (ALS), and prion diseases. In these diseases, aberrant metal binding or improper regulation of redox active metal ions can induce oxidative stress by producing cytotoxic reactive oxygen species (ROS). Altered metal homeostasis is also frequently seen in the diseased state. As a result, the imaging of metals in intact biological cells and tissues has been very important for understanding the role of metals in neurodegenerative diseases. A wide range of imaging techniques have been utilized, including X-ray fluorescence microscopy (XFM), particle induced X-ray emission (PIXE), energy dispersive X-ray spectroscopy (EDS), laser ablation inductively coupled mass spectrometry (LA-ICP-MS), and secondary ion mass spectrometry (SIMS), all of which allow for the imaging of metals in biological specimens with high spatial resolution and detection sensitivity. These techniques represent unique tools for advancing the understanding of the disease mechanisms and for identifying possible targets for developing treatments. In this review, we will highlight the advances in neurodegenerative disease research facilitated by metal imaging techniques.  相似文献   

12.
Tau mutations in neurodegenerative diseases   总被引:1,自引:0,他引:1  
Tau deposition is found in a variety of neurodegenerative brain diseases. The identification of tau mutations that cause familial dementia demonstrated that aberrant Tau alone could cause neurodegenerative disease and suggested that Tau likely plays a role in other cases in which Tau deposits are found, most notably Alzheimer disease. The mechanisms by which tau mutations cause neurodegeneration vary and are unclear to some degree, but evidence supports changes in alternative splicing, phosphorylation state, interaction with tubulin, and self-association into filaments as important contributing factors.  相似文献   

13.
A novel form of transglutaminase enzyme [EC 2.3.2. 13] was identified in adult worms of Brugia malayi. The molecular size of this enzyme was 22-kilodaltons as determined by Western blot and immunoprecipitation, using a monoclonal (CUB 7401) or polyclonal antibodies against guinea-pig liver tissue transglutaminase. The enzyme was present in female worms only; adult males contained no detectable levels of the enzyme peptide. Possible involvement of transglutaminase-catalyzed reactions in growth and survival of filarial parasites was studied by using various enzyme-specific pseudosubstrates. Presence of these inhibitors resulted into a significant inhibition of microfilariae production and release by gravid female worms in a dose-dependent manner. These results suggest that transglutaminase-catalyzed reactions are essential for development of in utero growing embryos to mature microfilariae.  相似文献   

14.
Manganese (Mn) is an essential ubiquitous trace element that is required for normal growth, development and cellular homeostasis. Exposure to high Mn levels causes a clinical disease characterized by extrapyramidal symptom resembling idiopathic Parkinson's disease (IPD). The present review focuses on the role of various transporters in maintaining brain Mn homeostasis along with recent methodological advances in real-time measurements of intracellular Mn levels. We also provide an overview on the role for Mn in IPD, discussing the similarities (and differences) between manganism and IPD, and the relationship between α-synuclein and Mn-related protein aggregation, as well as mitochondrial dysfunction, Mn and PD. Additional sections of the review discuss the link between Mn and Huntington's disease (HD), with emphasis on huntingtin function and the potential role for altered Mn homeostasis and toxicity in HD. We conclude with a brief survey on the potential role of Mn in the etiologies of Alzheimer's disease (AD), amyotrophic lateral sclerosis (ALS) and prion disease. Where possible, we discuss the mechanistic commonalities inherent to Mn-induced neurotoxicity and neurodegenerative disorders.  相似文献   

15.
In the last 50 years, an enormous amount of progress has been made in dissecting the etiology of hereditary neurodegenerative diseases, including the dementias, the parkinsonisms, the ataxias and the motor-neuron diseases. In addition, these genetic findings are beginning to provide insights into the pathogeneses of the sporadic forms of the diseases. Through animal and cellular modeling studies we are beginning to gain insights into the pathogenic pathways to disease. This mechanistic understanding is now leading to therapeutic strategies based on this new understanding. As yet, however, no mechanistic therapies are in use in the clinic.  相似文献   

16.
17.
18.
Gene therapy strategies in neurodegenerative diseases   总被引:2,自引:0,他引:2  
Treatment of neurodegenerative diseases by classical pharmacotherapy is restricted by blood-brain barrier which prevents access to the brain of potentially therapeutic molecules. Recent progress in the knowledge of pathophysiological molecular processes, and in the development of molecular biotechnology have opened the way to new therapeutic interventions for these disorders. This chapter reviews the most recent gene therapy strategies using experimental models for neurodegenerative diseases.  相似文献   

19.
A link between neurodegeneration and well-characterized enzymatic and non-enzymatic reactions that produce reactive oxygen species (ROS) from O2 is well established. Several enzymes that contain pyridoxal 5′-phosphate (PLP) or thiamine diphosphate (ThDP) catalyze side reactions (paracatalytic reactions) in the presence of ambient O2. These side reactions produce oxidants such as hydrogen peroxide [H2O2] or extremely reactive peracids [RC(O)OOH]. We hypothesize that although these enzymes normally produce oxidants at low or undetectable levels, changes in substrate levels or disease-induced structural alterations may enhance interactions with O2, thereby generating higher levels of reactive oxidants. These oxidants may damage the enzymes producing them, alter nearby macromolecules and/or destroy important metabolites/coenzymes. We propose that paracatalytic reactions with O2 catalyzed by PLP-dependent decarboxylases and by ThDP-dependent enzymes within the α-keto acid dehydrogenase complexes may contribute to normal cellular signaling and to cellular damage in neurodegenerative diseases. Special issue dedicated to John P. Blass.  相似文献   

20.
Numerous evidences indicate that the phenotype of a neurodegenerative disease and its pathogenetic mechanism are only loosely linked. The phenotype is directly related to the topography of the lesions and is reproduced whatever the mechanism as soon as the same neurons are destroyed or deficient: the symptoms of Parkinson disease are mimicked by any destruction of the neurons of the substantia nigra, caused for instance by the toxin MPTP. This does not mean that idiopathic Parkinson disease is due to MPTP. In the same way, mouse lines such as Reeler, Weaver and Staggerer in which ataxia occurs spontaneously does not help to understand human ataxias: now that mutations responsible for these phenotypes have been identified, it appears that one is responsible for lissencephaly (mutation of the reelin gene) and the other two have no equivalent in man. Therapeutic attempts, however, rely on the understanding of the pathogenetic mechanisms. Introducing a mutated human transgene in the genome of an animal has, in many instances, significantly improved this understanding. Transgenic mice have proven useful in reproducing lesions seen in neurodegenerative disease such as the plaques of Alzheimer disease (in the APP mouse which has integrated the mutated gene of the amyloid protein precursor), the tau glial and neuronal accumulation (seen in cases of frontotemporal dementias due to tau mutation), the nuclear inclusions caused by CAG triplet expansion (seen in the mutation of Huntington disease and autosomal dominant spinocerebellar ataxias). These recent advances have fostered numerous therapeutic attempts. Transgenesis in drosophila and in the worm Caenorhabditis elegans have opened new possibilities in the screening of protein partners, modifier genes, and potential therapeutic molecules. However, it is also becoming clear that introducing a human mutated gene in an animal does not necessarily trigger pathogenetic cascades identical to those seen in the human disease. Human diseases have to be studied in parallel with their animal models to ensure that the model mimic at least a few original mechanisms, on which new therapeutics may be tested.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号