首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Columella (i.e., putative graviperceptive) cells of Zea mays seedlings grown in the microgravity of outer space allocate significantly less volume to putative statoliths (amyloplasts) than do columella cells of Earth-grown seedlings. Amyloplasts of flight-grown seedlings are significantly smaller than those of ground controls, as is the average volume of individual starch grains. Similarly, the relative volume of starch in amyloplasts in columella cells of flight-grown seedlings is significantly less than that of Earth-grown seedlings. Microgravity does not significantly alter the volume of columella cells, the average number of amyloplasts per columella cell, or the number of starch grains per amyloplast. These results are discussed relative to the influence of gravity on cellular and organellar structure.  相似文献   

2.
White clover (Trifolium repens) was germinated and grown in microgravity aboard the Space Shuttle (STS-60, 1994; STS-63, 1995), on Earth in stationary racks and in a slow-rotating two-axis clinostat. The objective of this study was to determine if normal root cap development and early plant gravity responses were dependent on gravitational cues. Seedlings were germinated in space and chemically fixed in orbit after 21, 40, and 72 h. Seedlings 96 h old were returned viable to earth. Germination and total seedling length were not dependent on gravity treatment. In space-flown seedlings, the number of cell stories in the root cap and the geometry of central columella cells did not differ from those of the Earth-grown seedlings. The root cap structure of clinorotated plants appeared similar to that of seedlings from microgravity, with the exception of three-day rotated plants, which displayed significant cellular damage in the columella region. Nuclear polarity did not depend on gravity; however, the positions of amyloplasts in the central columella cells were dependent on both the gravity treatment and the age of the seedlings. Seedlings from space, returned viable to earth, responded to horizontal stimulation as did 1 g controls, but seedlings rotated on the clinostat for the same duration had a reduced curvature response. This study demonstrates that initial root cap development is insensitive to either chronic clinorotation or microgravity. Soon after differentiation, however, clinorotation leads to loss of normal root cap structure and plant graviresponse while microgravity does not.  相似文献   

3.
We launched imbibed seeds of Zea mays into outer space aboard the space shuttle Columbia to determine the influence of microgravity on cellular differentiation in root caps. The influence of microgravity varied with different stages of cellular differentiation. Overall, microgravity tended to 1) increase relative volumes of hyaloplasm and lipid bodies, 2) decrease the relative volumes of plastids, mitochondria, dictyosomes, and the vacuome, and 3) exert no influence on the relative volume of nuclei in cells comprising the root cap. The reduced allocation of dictyosomal volume in peripheral cells of flight-grown seedlings correlated positively with their secretion of significantly less mucilage than peripheral cells of Earth-grown seedlings. These results indicate that 1) microgravity alters the patterns of cellular differentiation and structures of all cell types comprising the root cap, and 2) the influence of microgravity on cellular differentiation in root caps of Zea mays is organelle specific.  相似文献   

4.
Primary roots of Zea mays seedlings germinated and grown in 0.1 mM chloramphenicol (CMP) were significantly less graviresponsive than primary roots of seedlings germinated and grown in distilled water. Elongation rates of roots treated with CMP were significantly greater than those grown in distilled water. Caps of control and CMP-treated roots possessed extensive columella tissues comprised of cells containing numerous sedimented amyloplasts. These results indicate that the reduced graviresponsiveness of CMP-treated roots is not due to reduced rates of elongation, the absence of the presumed gravireceptors (i.e., amyloplasts in columella cells), or reduced amounts of columella tissue. These results are consistent with CMP altering the production and/or transport of effectors that mediate gravitropism.  相似文献   

5.
In higher plants, calcium redistribution is believed to be crucial for the root to respond to a change in the direction of the gravity vector. To test the effects of clinorotation and microgravity on calcium localization in higher plant roots, sweet clover (Melilotus alba L.) seedlings were germinated and grown for two days on a slow rotating clinostat or in microgravity on the US Space Shuttle flight STS-60. Subsequently, the tissue was treated with a fixative containing antimonate (a calcium precipitating agent) during clinorotation or in microgravity and processed for electron microscopy. In root columella cells of clinorotated plants, antimonate precipitates were localized adjacent to the cell wall in a unilateral manner. Columella cells exposed to microgravity were characterized by precipitates mostly located adjacent to the proximal and lateral cell wall. In all treatments some punctate precipitates were associated with vacuoles, amyloplasts, mitochondria, and euchromatin of the nucleus. A quantitative study revealed a decreased number of precipitates associated with the nucleus and the amyloplasts in columella cells exposed to microgravity as compared to ground controls. These data suggest that roots perceive a change in the gravitational field, as produced by clinorotation or space flights, and respond respectively differently by a redistribution of free calcium.  相似文献   

6.
Kraft TF  van Loon JJ  Kiss JZ 《Planta》2000,211(3):415-422
 In order to study gravity effects on plant structure and function, it may become necessary to remove the g-stimulus. On Earth, various instruments such as clinostats have been used by biologists in an attempt to neutralize the effects of gravity. In this study, the position of amyloplasts was assayed in columella cells in the roots of Arabidopsisthaliana (L.) Heynh. seedlings grown in the following conditions: on Earth, on a two-dimensional clinostat at 1 rpm, on a three-dimensional clinostat (also called a random-positioning machine, or an RPM), and in space (true microgravity). In addition, the effects of these gravity treatments on columella cell area and plastid area also were measured. In terms of the parameters measured, only amyloplast position was affected by the gravity treatments. Plastid position was not significantly different between spaceflight and RPM conditions but was significantly different between spaceflight and the classical two-dimensional clinostat treatments. Flanking columella cells showed a greater susceptibility to changes in gravity compared to the central columella cells. In addition, columella cells of seedlings that were grown on the RPM did not exhibit deleterious effects in terms of their ultrastructure as has been reported previously for seedlings grown on a two-dimensional clinostat. This study supports the hypothesis that the RPM provides a useful simulation of weightlessness. Received: 5 January 2000 / Accepted: 22 February 2000  相似文献   

7.
Three groups of experimental treatment of rice seeds were designed: (1) As control,the seeds were germinated(1–3 days after imbibition) and sprouted (4–7 days after imbibition) at static state, (2) Seeds were germinated under microgravity simulated by the horizontal clinostat,and (3) Seeds were germinated at the static state and sprouted under microgravity. The differentiation of the apical meristematic cap of the seedling was observed. 1. Germination and sprouting in the static state (CK), the root apical meristematic cap cells could differentiate into statocysts which could sense the least irritation of the gravity. The amyloplasts of statocysts deposited in the distal region,later changed into secretory cells ,and finally resulted in exocytosis which led the root tip cells to fall off during the cap growth. 2. The rice seedlings germinating and sprouting under microgravity,the apical meristematic cap cells differentiated into statocysts but the amyloplasts in the statocyst were distributed throughout the cell and a central vacuole was formed. The statocysts could form nonsecretory cells similar to the cells in the dividing and elongating area without exocytosis. The number of the root cap cell layers increased and root cap elongated. 3. The rice seedlings germinating in the static state and sprouting under micro-gravity,the amyloplasts of the statocyst were scattered in the cell. The statocysts became vacuolized quickly but remaind on the root cap.  相似文献   

8.
The ability of clinostats to simulate microgravity was evaluated by comparing lentil ( Lens culinnrias L. cv. Verte du Puy) seedlings grown in space (Spacelab D1 Mission) with seedlings grown on a slowly rotating elinostat. Seeds were germinated and incubated for 25.5 h at 22°C (1) in microgravity, (2) on a 1g-centrifuge in space. (3) on a slowly rotating elinostat and (4) on the ground. Morphological (root length and orientation) and ultrastructural (distribution of amyloplasts, location of the nucleus in statocytes) parameters were studied. For clinostat experiments, two different configurations were employed: the longitudinal axis of the root was parallel (horizontal elinorotation) or perpendicular (vertical elinorotation) to the axis of rotation. the same configurations were used for the lg-controls. Root length and orientation were similar for roots grown on the clinostat and in microgravity. The amyloplasts were identically distributed in statocytes of horizontally clinorolated roots and in statocytes differentiated in microgravity. However, the location of the nucleus was similar in vertically rotated roots and microgravity samples. Since the involvement of the nucleus in graviperception is not known, it can be concluded that horizontal clinorotation simulates microgravity better than vertical elinorotation.  相似文献   

9.
The redistribution of organelles in columella cells of horizontally-oriented roots of Hordeum vulgare was quantified in order to determine what structural changes in graviperceptive (i.e., columella) cells are associated with the onset of the root gravicurvature. The sedimentation of amyloplasts is the only major change in cellular structure that correlates positively with the onset of root gravicurvature, which begins within 15 min after re-orientation. There is no consistent contact between sedimented amyloplasts and any other organelles. Nuclei are restricted to the proximal ends of columella cells in vertically-oriented roots, and remain there throughout gravicurvature after roots are oriented horizontally. Root gravicurvature does not involve significant changes in (1) the volume of columella cells, (2) the relative or absolute volumes of organelles in columella cells, or (3) the distribution of endoplasmic reticulum (ER). The size, number and sedimentation rates of amyloplasts in columella cells of non-graviresponsive roots of mutant seedlings are not significantly different from those of graviresponsive roots of normal seedlings. Similarly, there is no significant difference in (1) cellular volume, (2) distribution or surface area of ER, (3) patterns or rates of organelle redistribution in horizontally-oriented roots, (4) relative or absolute volumes of organelles in columella cells of graviresponsive and non-graviresponsive roots. These results suggest that the lack of graviresponsiveness by roots of mutant seedlings is probably not due to either (1) structural differences in columella cells, or (2) differences in patterns or rates of organelle redistribution as compared to that characteristic of graviresponsive roots. Thus, the basis of non-graviresponsiveness in this mutant is probably different from other agravitropic mutants so far studied.  相似文献   

10.
The cytoskeleton of columella cells is believed to be involved in maintaining the developmental polarity of cells observed as a reproducible positioning of cellular organelles. It is also implicated in the transduction of gravitropic signals. Roots of sweet clover ( Melilotus alba L.) seedlings were treated with a microfilament disrupter, cytochalasin D, on a slowly rotating horizontal clinostat (2 rpm). Electron micrographs of treated columella cells revealed several ultrastructural effects including repositioning of the nucleus and the amyloplasts and the formation of endoplasmic reticulum (ER) whorls. However, experiments performed during fast clinorotation (55 rpm) showed an accumulation (but no whorling) of a disorganized ER network at the proximal and distal pole and a random distribution of the amyloplasts. Therefore, formation of whorls depends upon the speed of clinorotation, and the overall impact of cytochalasin D suggests the necessity of microfilaments in organelle positioning. Interestingly, a similar drug treatment performed in microgravity aboard the US Space Shuttle Endeavour (STS-54, January 1993) caused a displacement of ER membranes and amyloplasts away from the distal plasma membrane. In the present study, we discuss the role of microfilaments in maintaining columella cell polarity and the utility of clinostats to simulate microgravity.  相似文献   

11.
Moore, R. 1985. A morphometric analysis of the redistributionof organellcs in columella cells in primary roots of normalseedlings and agravitropic mutants of Hordeum vulgare.—J.exp. Bot. 36:1275–1286. The redistribution of organeUes m columella cells of horizontally-orientedroots of Hordeum vulgare was quantified in order to determinewhat structural changes in graviperceptive (i.e, columella)cells are associated with the onset of root gravicurvature.The sedimentation of amyloplasts is the only major change incellular structure that correlates positively with the onsetof root gravicurvature, which begins within 15 min after re-orientation.There is no consistent contact between sedimented amyloplastsand any other organelles. Nuclei are restricted to the proximalends of columella cells in vertically-oriented roots, and remainthere throughout gravicurvature after roots are oriented horizontally.Root gravicurvature does not involve significant changes in(1) the volume of columella cells, (2) the relative or absolutevolumes of organelles in columella cells, or (3) the distributionof endoplasmic reticulum (ER). The size, number and sedimentationrates of amyloplasts in columella cells of non-graviresponsiveroots of mutant seedlings are not significantly different fromthose of graviresponsive roots of normal seedlings. Similarly,there is no significant difference in (1) cellular volume, (2)distribution or surface area of ER, (3) patterns or rates oforganelle redistribution in horizontally-oriented roots, or(4) relative or absolute volumes of organelles in columellacells of graviresponsive and non-graviresponsive roots. Theseresults suggest that the lack of gravi-responsiveness by rootsof mutant seedlings is probably not due to either (1) structuraldifferences in columella cells, or (2) differences in patternsor rates of organelle redistribution as compared to that characteristicof graviresponsive roots. Thus, the basis of non-graviresponsivenessin this mutant is probably different from other agravitropicmutants so far studied. Key words: Agravitropic mutant, barley, columella cell, gravitropism (root), Hordeum vulgare, ultrastructure  相似文献   

12.
MOORE  RANDY 《Annals of botany》1989,64(3):271-277
Primary roots of a starchless mutant of Arabidopsis thalianaL. are strongly graviresponsive despite lacking amyloplastsin their columella cells. The ultrastructures of calyptrogenand peripheral cells in wild-type as compared to mutant seedlingsare not significantly different. The largest difference in cellulardifferentiation in caps of mutant and wild-type roots is therelative volume of plastids in columella cells. Plastids occupy12.3% of the volume of columella cells in wild-type seedlings,but only 3.69% of columella cells in mutant seedlings. Theseresults indicate that: (1) amyloplasts and starch are not necessaryfor root graviresponsiveness; (2) the increase in relative volumeof plastids that usually accompanies differentiation of columellacells is not necessary for root graviresponsiveness; and (3)the absence of starch and amyloplasts does not affect the structureof calyptrogen (i.e. meristematic) and secretory (i.e. peripheral)cells in root caps. These results are discussed relative toproposed models for root gravitropism. Arabidopsis thaliana, gravitropism (root), plastids, root cap, stereology, ultrastructure  相似文献   

13.
In response to a moisture gradient, roots exhibit hydrotropism to control the orientation of their growth. To exhibit hydrotropism, however, they must overcome the gravitropism that is dominant on Earth. We found that moisture gradient or water stress caused immediate degradation of the starch anchors, amyloplasts, in root columella cells of Arabidopsis and radish (Raphanus sativus). Namely, development of hydrotropic response was accompanied by a simultaneous reduction in starch content in columella cells. Rapid degradation of amyloplasts in columella cells also occurred in the water-stressed roots with sorbitol or mannitol. Both hydrotropically stimulated and water-stressed roots showed a reduced responsiveness to gravity. Roots of a starchless mutant, pgm1-1, showed an enhanced hydrotropism compared with that of the wild type. These results suggest that the reduced responsiveness to gravity is, at least in part, attributable to the degradation of amyloplasts in columella cells. Thus, the reduction in gravitropism allows the roots to exhibit hydrotropism.  相似文献   

14.
A morphometric analysis of root statocytes was performed on seedlings of lentil ( Lens culinaris L., cv. Verte du Puy) in order to determine the effects of microgravity on the polarity of these cells. Seedlings were grown: (1) on the ground, (2) in microgravity, (3) on a 1 g centrifuge in space, (4) first in microgravity and then placed on a 1 g centrifuge for 3 h. Dry seeds were hydrated in space (except for the ground control) for 25 h in darkness at 22°C in the Biorack facility developed by the European Space Agency. At the end of the experiment, the seedlings were photographed and fixed in glutaraldehyde in the Biorack glove box. The average shape of the statocytes and the location of endoplasmic reticulum, amyloplasts and nucleus in the cells were analysed in the four samples. By considering the cell shape, it appears that the morphology of the statocytes on the ground was different from that observed in the space samples. Cell polarity was similar in microgravity and in the centrifuged samples except for the distribution of the amyloplasts. These organelles were not distributed at random in near zero gravity, and they were more numerous in the proximal than in the distal half. Moreover, the statoliths were more voluminous in microgravity than in the centrifuged samples. The nucleus was closer to the cell center in the statocytes of roots grown in microgravity than in statocytes of roots grown in microgravity and then placed on the 1 g centrifuge for 3 h. It is hypothesized that the nucleus is attached to the cell periphery and that its location is dependent upon gravity.  相似文献   

15.
Seedling roots display not only gravitropism but also hydrotropism, and the two tropisms interfere with one another. In Arabidopsis (Arabidopsis thaliana) roots, amyloplasts in columella cells are rapidly degraded during the hydrotropic response. Degradation of amyloplasts involved in gravisensing enhances the hydrotropic response by reducing the gravitropic response. However, the mechanism by which amyloplasts are degraded in hydrotropically responding roots remains unknown. In this study, the mechanistic aspects of the degradation of amyloplasts in columella cells during hydrotropic response were investigated by analyzing organellar morphology, cell polarity and changes in gene expression. The results showed that hydrotropic stimulation or systemic water stress caused dramatic changes in organellar form and positioning in columella cells. Specifically, the columella cells of hydrotropically responding or water-stressed roots lost polarity in the distribution of the endoplasmic reticulum (ER), and showed accelerated vacuolization and nuclear movement. Analysis of ER-localized GFP showed that ER redistributed around the developed vacuoles. Cells often showed decomposing amyloplasts in autophagosome-like structures. Both hydrotropic stimulation and water stress upregulated the expression of AtATG18a, which is required for autophagosome formation. Furthermore, analysis with GFP-AtATG8a revealed that both hydrotropic stimulation and water stress induced the formation of autophagosomes in the columella cells. In addition, expression of plastid marker, pt-GFP, in the columella cells dramatically decreased in response to both hydrotropic stimulation and water stress, but its decrease was much less in the autophagy mutant atg5. These results suggest that hydrotropic stimulation confers water stress in the roots, which triggers an autophagic response responsible for the degradation of amyloplasts in columella cells of Arabidopsis roots.  相似文献   

16.
Current models of gravity perception in higher plants focus on the buoyant weight of starch-filled amyloplasts as the initial gravity signal susceptor (statolith). However, no tests have yet determined if statolith mass is regulated to increase or decrease gravity stimulus to the plant. To this end, the root caps of white clover (Trifolium repens) grown in three gravity environments with three different levels of gravity stimulation have been examined: (i) 1-g control with normal static gravistimulation, (ii) on a slow clinostat with constant gravistimulation, and (iii) in the stimulus-free microgravity aboard the Space Shuttle. Seedlings were germinated and grown in the BioServe Fluid Processing Apparatus and root cap structure was examined at both light and electron microscopic levels, including three-dimensional cell reconstruction from serial sections. Quantitative analysis of the electron micrographs demonstrated that the starch content of amyloplasts varied with seedling age but not gravity condition. It was also discovered that, unlike in starch storage amyloplasts, all of the starch granules of statolith amyloplasts were encompassed by a fine filamentous, ribosome-excluding matrix. From light micrographic 3-D cell reconstructions, the absolute volume, number, and positional relationships between amyloplasts showed (i) that individual amyloplast volume increased in microgravity but remained constant in seedlings grown for up to three days on the clinostat, (ii) the number of amyloplasts per cell remained unchanged in microgravity but decreased on the clinostat, and (iii) the three-dimensional positions of amyloplasts were not random. Instead amyloplasts in microgravity were grouped near the cell centers while those from the clinostat appeared more dispersed. Taken together, these observations suggest that changing gravity stimulation can elicit feedback control over statolith mass by changing the size, number, and grouping of amyloplasts. These results support the starch-statolith theory of graviperception in higher plants and add to current models with a new feedback control loop as a mechanism for modulation of statolith responsiveness to inertial acceleration.  相似文献   

17.
The endoplasmic reticulum (ER) of columella root cap cells has been postulated to play a role in gravity sensing. We have re-examined the ultrastructure of columella cells in tobacco (Nicotiana tabacum) root tips preserved by high-pressure freezing/freeze-substitution techniques to gain more precise information about the organization of the ER in such cells. The most notable findings are: the identification of a specialized form of ER, termed "nodal ER," which is found exclusively in columella cells; the demonstration that the bulk of the ER is organized in the form of a tubular network that is confined to a peripheral layer under the plasma membrane; and the discovery that this ER-rich peripheral region excludes Golgi stacks, vacuoles, and amyloplasts but not mitochondria. Nodal ER domains consist of an approximately 100-nm-diameter central rod composed of oblong subunits to which usually seven sheets of rough ER are attached along their margins. These domains form patches at the interface between the peripheral ER network and the ER-free central region of the cells, and they occupy defined positions within central and flanking columella cells. Over one-half of the nodal ER domains are located along the outer tangential walls of the flanking cells. Cytochalasin D and latrunculin A cause an increase in size and a decrease in numbers of nodal ER domains. We postulate that the nodal ER membranes locally modulate the gravisensing signals produced by the sedimenting amyloplasts, and that the confinement of all ER membranes to the cell periphery serves to enhance the sedimentability of the amyloplasts in the central region of columella cells.  相似文献   

18.
The microgravity environment encountered during space-flight has long been considered to affect plant growth and developmental processes, including cell wall biopolymer composition and content. As a prelude to studying how microgravity is perceived - and acted upon - by plants, it was first instructive to investigate what gross effects on plant growth and development occurred in microgravity. Thus, wheat seedlings were exposed to microgravity on board the space shuttle Discovery (STS-51) for a 10 day duration, and these specimens were compared with their counterparts grown on Earth under the same conditions (e.g. controls). First, the primary roots of the wheat that developed under both microgravity and 1 g on Earth were examined to assess the role of gravity on cellulose microfibril (CMF) organization and secondary wall thickening patterns. Using a quick freeze/deep etch technique, this revealed that the cell wall CMFs of the space-grown wheat maintained the same organization as their 1 g-grown counterparts. That is, in all instances, CMFs were randomly interwoven with each other in the outermost layers (farthest removed from the plasma membrane), and parallel to each other within the individual strata immediately adjacent to the plasma membranes. The CMF angle in the innermost stratum relative to the immediately adjacent stratum was ca 80 degrees in both the space and Earth-grown plants. Second, all plants grown in microgravity had roots that grew downwards into the agar; they did not display "wandering" and upward growth as previously reported by others. Third, the space-grown wheat also developed normal protoxylem and metaxylem vessel elements with secondary thickening patterns ranging from spiral to regular pit to reticulate thickenings. Fourthly, both the space- and Earth-grown plants were essentially of the same size and height, and their lignin analyses revealed no substantial differences in their amounts and composition regardless of the gravitational field experienced, i.e. for the purposes of this study, all plants were essentially identical. These results suggest that the microgravity environment itself at best only slightly affected either cell wall biopolymer synthesis or the deposition of CMFs, in contrast to previous assertions.  相似文献   

19.
Demonstration of prominent actin filaments in the root columella   总被引:8,自引:0,他引:8  
  相似文献   

20.
Primary roots of Phaseolus vulgaris (Fabaceae) are positively geotropic, while lateral roots are not responsive to gravity In order to elucidate the structural basis for this differential georesponse, we have performed a qualitative and quantitative analysis of the ultrastructure of columella cells of primary and lateral roots of P. vulgaris. Root systems were fixed in situ so as not to disturb the ultrastructure of the columella cells. The columellas of primary roots are more extensive than those of lateral roots. The volumes of columella cells of primary roots are approximately twice those of columella cells of lateral roots. However, columella cells of primary roots contain greater absolute volumes and numbers of all cellular components examined than do columella cells of lateral roots. Also, the relative volumes of cellular components in columella cells of primary and lateral roots are statistically indistinguishable. The endoplasmic reticulum is sparse and distributed randomly in both types of columella cells. Both types of columella cells contain numerous sedimented amyloplasts, none of which contact the cell wall or form complexes with other cellular organelles. Therefore, positive geotropism by roots must be due to a factor(s) other than the presence of sedimented amyloplasts alone. Furthermore, it is unlikely that amyloplasts and plasmodesmata form a multi-valve system that controls the movement of growth regulating substances through the root cap.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号