首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
TRAP (trp RNA-binding attenuation protein) is an 11 subunit RNA-binding protein that regulates expression of genes involved in tryptophan metabolism (trp) in Bacillus subtilis in response to changes in intracellular tryptophan concentration. When activated by binding up to 11 tryptophan residues, TRAP binds to the mRNAs of several trp genes and down-regulates their expression. Recently, a TRAP mutant was found that binds RNA in the absence of tryptophan. In this mutant protein, Thr30, which is part of the tryptophan-binding site, is replaced with Val (T30V). We have compared the RNA-binding properties of T30V and wild-type (WT) TRAP, as well as of a series of hetero-11-mers containing mixtures of WT and T30V TRAP subunits. The most significant difference between the interaction of T30V and WT TRAP with RNA is that the affinity of T30V TRAP is more dependent on ionic strength. Analysis of the hetero-11-mers allowed us to examine how subunits interact within an 11-mer with regard to binding to tryptophan or RNA. Our data suggest that individual subunits retain properties similar to those observed when they are in homo-11-mers and that individual G/UAG triplets within the RNA can bind to TRAP differently.  相似文献   

2.
The trp RNA-binding attenuation protein (TRAP) is a paradigmatic allosteric protein that regulates the tryptophan biosynthetic genes associated with the trp operon in bacilli. The ring-shaped 11-mer TRAP is activated for recognition of a specific trp-mRNA target by binding up to 11 tryptophan molecules. To characterize the mechanisms of tryptophan-induced TRAP activation, we have performed methyl relaxation dispersion (MRD) nuclear magnetic resonance (NMR) experiments that probe the time-dependent structure of TRAP in the microsecond-to-millisecond "chemical exchange" time window. We find significant side chain flexibility localized to the RNA and tryptophan binding sites of the apo protein and that these dynamics are dramatically reduced upon ligand binding. Analysis of the MRD NMR data provides insights into the structural nature of transiently populated conformations sampled in solution by apo TRAP. The MRD data are inconsistent with global two-state exchange, indicating that conformational sampling in apo TRAP is asynchronous. These findings imply a temporally heterogeneous population of structures that are incompatible with RNA binding and substantiate the study of TRAP as a paradigm for probing and understanding essential dynamics in allosteric, regulatory proteins.  相似文献   

3.
4.
5.
6.
7.
The protein TRAP (trp RNA binding attenuation protein) forms a highly thermostable ring-shaped 11-mer. By linking in tandem two, three, or four DNA sequences encoding TRAP monomers, we have engineered new rings that consist of 12 TRAP subunits and bind 12 ligand molecules. The hydrogen bonding pattern and buried surface area within and between subunits are essentially identical between the 11-mer and 12-mer crystal structures. Why do the artificial proteins choose to make single 12-mer rings? The 12-mer rings are highly sterically strained by their peptide linkers and far from thermostable. That proteins choose to adopt a strained conformation of few subunits rather than an unstrained one with 11 subunits demonstrates the importance of entropic factors in controlling protein-protein interactions in general.  相似文献   

8.
Expression of the Bacillus subtilis trp genes is negatively regulated by an 11-subunit trp RNA-binding attenuation protein (TRAP), which is activated to bind RNA by binding l-tryptophan. We used Western blotting to estimate that there are 200 to 400 TRAP 11-mer molecules per cell in cells grown in either minimal or rich medium.  相似文献   

9.
10.
The anti-TRAP protein (AT) of Bacillus subtilis regulates expression of the trp operon and other genes concerned with tryptophan metabolism. AT acts by inhibiting the tryptophan-activated trp RNA-binding attenuation protein (TRAP). AT is an oligomer of identical 53-residue polypeptides; it is produced in response to the accumulation of uncharged tRNA(Trp). Each AT polypeptide has two cysteine-rich clusters that correspond to the signature motif of the cysteine-rich zinc-binding domain of the chaperone protein DnaJ. Here we characterize the putative zinc-binding domain of AT and establish the importance of zinc for AT assembly and activity. AT is shown to contain Zn(II) at a ratio of one ion per monomer. Bound zinc is necessary for maintenance of the quaternary structure of AT; the removal of zinc converts the AT complex into inactive monomers. All four cysteine residues in the AT polypeptide are involved in Zn(II) coordination. Chemical cross-linking analyses indicate that the AT functional oligomer is a hexamer composed of two trimers. Substituting alanine for any cysteine residue of AT results in rapid degradation of the mutant protein in vivo. We propose a model for the AT trimer in which three AT chains are held together by three zinc atoms, each coordinated by the N-terminal segment and the C-terminal segment of separate AT polypeptides.  相似文献   

11.
Structural symmetry in homooligomeric proteins has intrigued many researchers over the past several decades. However, the implication of protein symmetry is still not well understood. In this study, we performed molecular dynamics (MD) simulations of two forms of trp RNA binding attenuation protein (TRAP), the wild-type 11-mer and an engineered 12-mer, having two different levels of circular symmetry. The results of the simulations showed that the inter-subunit fluctuations in the 11-mer TRAP were significantly smaller than the fluctuations in the 12-mer TRAP while the internal fluctuations were larger in the 11-mer than in the 12-mer. These differences in thermal fluctuations were interpreted by normal mode analysis and group theory. For the 12-mer TRAP, the wave nodes of the normal modes existed at the flexible interface between the subunits, while the 11-mer TRAP had its nodes within the subunits. The principal components derived from the MD simulations showed similar mode structures. These results demonstrated that the structural symmetry was an important determinant of protein dynamics in circularly symmetric homooligomeric proteins.  相似文献   

12.
13.
14.
TRAP (trp RNA-binding attenuation protein) is an RNA-binding protein that regulates expression of the tryptophan biosynthetic genes in Bacillus subtilis by binding to RNA targets that contain multiple GAG and UAG repeats. TRAP is composed of 11 identical subunits arranged symmetrically in a ring. The secondary structure of the protein consists entirely of antiparallel beta-sheets, beta-turns, and loops. We show here that the TRAP 11-mer can be reversibly denatured into unfolded monomers by guanidine hydrochloride. Removing the denaturant allows the protein to spontaneously renature into fully functional 11-mers. Based on this finding, we developed a subunit mixing method to hybridize wild-type and mutant subunits into heteromeric 11-mers by denaturation followed by subunit mixing renaturation. This method allows the study of subunit cooperativity in protein-ligand interaction such as RNA binding. Our data further support and extend the previously proposed two-step model for RNA binding to TRAP by showing that the initiation of binding requires at least one fully active subunit in the protein combined with one fully functional repeat in the RNA. The initiation complex tethers the RNA on the protein, thus allowing cooperative interaction with the remainder of the repeats.  相似文献   

15.
16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号