首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
1,3-Butadiene (BTD) is an important commodity chemical and air pollutant that has been shown to be a potent carcinogen in mice, and to a lesser extent, a carcinogen in rats. To better assess butadiene's carcinogenic risk to humans, it is important to understand its mode of action and how this relates to differences in responses among species. In a series of in vitro experiments, lymphocytes from rats, mice, and humans were exposed to 3,4-epoxy-1-butene (EB) or 1,2:3,4-diepoxybutane (DEB) for 1h at the G(0) stage of the cell cycle, stimulated to divide, and cultured to assess the ability of these metabolites to induce sister chromatid exchange (SCE) and chromosome aberrations (CAs). EB induced no increases in SCEs or CAs in the cells from the three species. DEB was a potent SCE- and CA-inducer, with the results being similar in each rodent species. The response for SCEs seen in the human cells was more complex, with genetic polymorphism for glutathione-S-transferases (GST) possibly modulating the response. The single cell gel electrophoresis assay was used on genetically engineered V79 cell lines to investigate a possible influence of GST status. Experiments were also conducted to investigate the reason for EB's failure to induce SCEs or CAs in G(0) cells. The results indicate that EB-induced DNA damage was repaired before DNA synthesis in unstimulated lymphocytes, but EB caused a large increase in SCEs if actively cycling cells were treated. Thus, the results indicate that DEB damage is persistent in G(0) cells, and DEB is a much more potent genotoxicant than EB. The carcinogenic effect of butadiene will most likely depend on the degree to which DEB is produced and reaches target tissues, and to a lesser extent on the ability of EB to reach actively dividing or repair deficient cells.  相似文献   

2.
Effects of extracts from Vicia faba were compared with those of Zea mays for the induction of sister-chromatid exchanges (SCEs) and of chromosome aberrations (CAs) in Chinese hamster ovary (CHO) cells. CA induction by the maize extract was also tested in human lymphocytes. The extracts from roots and leaves of Vicia faba induced CAs and SCEs in CHO cells. The extracts from maize leaves also induced SCEs and CAs in CHO cells, and CAs in human lymphocytes. Maize extracts were more potent in inducing SCEs than Vicia extracts and the SCE- and CA-inducing capacity of maize extracts decreased during preincubation before addition to cells.  相似文献   

3.
The clastogenic potential of the intercalating compound ellipticine, an antitumor alkaloid, has been demonstrated in mammalian cells. To characterize the mechanism of action of this drug over the cell cycle, human lymphocyte cultures from 2 healthy donors were treated with 3 micrograms/ml ellipticine in 30-min pulses during different phases of the cell cycle and analyzed for chromosomal aberrations and sister-chromatid exchanges. The G2 phase was most sensitive in terms of induction of aberrations, followed by S and G1. Chromatid-type aberrations were the most common type of chromosomal damage. Induction of SCEs was significantly high only after treatment at G1, when the frequencies of SCEs doubled. The post-treatment effect of lymphocytes with inhibitors of DNA repair, 10(-3) M caffeine and 5 x 10(-6) M 1-beta-D-arabinofuranosylcytosine, was also tested by adding 3 micrograms/ml ellipticine at G2 in 30-min pulses and immediately followed by caffeine and/or ara-C during the last 3 h before harvesting. Three experiments performed on blood from 3 donors showed a moderate potentiation effect on the frequency of chromatid-type aberrations (about 2-3 times) by both inhibitors. Likewise, a 3-fold increase was observed in the frequencies of chromosomal aberrations when caffeine and ara-C were combined. The present data demonstrate that posttreatment with caffeine and ara-C at G2 can modify the response of human lymphocytes treated with ellipticine by increasing the clastogenic action of this compound or by changing the cell-cycle progression.  相似文献   

4.
K Kishi 《Mutation research》1987,176(1):105-116
It has been shown that certain types of DNA lesions induced by an S-dependent clastogen are converted to chromosome-type aberrations when their repair is inhibited in the G1 phase of the cell cycle. The purpose of the present study was to investigate which kinds of repair inhibitors have the ability to induce chromosome-type aberrations in cells having DNA lesions and which kinds of DNA lesions will be converted to chromosome-type aberrations when their repair is inhibited. For this purpose, human peripheral blood lymphocytes, which were treated with a clastogen in their G0 phase, were post-treated with one of several kinds of repair inhibitors in the G1 phase, and resulting frequencies of both chromosome-type and chromatid-type aberrations as well as of sister-chromatid exchanges (SCEs) were compared with those of the control cultures: chromatid-type aberrations and SCEs were adopted as cytogenetic indicators of lesions remaining in S and G2 phases. Chemicals used for the induction of DNA lesions were 4-nitroquinoline 1-oxide (4NQO), methyl methanesulfonate (MMS) and mitomycin C (MMC); inhibitors used were excess thymidine (dThd), caffeine, hydroxyurea (HU), 5-fluoro-2'-deoxyuridine (FdUrd), 1-beta-D-arabinofuranosylcytosine (ara C), 9-beta-D-arabinofuranosyladenine (ara A), 1-beta-D-arabinofuranosylthymine (ara T) and aphidicolin (APC). Induction of chromosome-type aberrations was observed in cells pretreated with 4NQO or MMS followed by ara C, ara A, ara T or APC, whereas other combinations of a clastogen and an inhibitor did not induce them. Among the inhibitors, ara C alone induced chromosome-type aberrations in cells without pretreatment. Chromatid-type aberrations were increased only in cells pretreated with MMC and their frequency was enhanced further by post-treatment with ara C. All of the clastogens used in the present experiments induced SCEs. Most inhibitors did not modify the SCE frequencies except for ara C which synergistically increased the frequency in MMC-treated cells. The present study offers further evidence that the lesions responsible for chromosome-type aberrations are those which are repaired quickly, and that they are converted to chromosome-type aberrations when repair by polymerase alpha is inhibited. The effects of ara C on MMC-induced lesions are considered residual effects of ara C treatment in the S or G2 phases rather than repair inhibition in the G1 phase.  相似文献   

5.
N Kanaya 《Mutation research》1990,228(2):187-192
The induction of sister-chromatid exchanges (SCEs) and chromosome aberrations (CAs) by benzo[a]pyrene (BP), 2-aminofluorene (2-AF) and cyclophosphamide (CP) in the root cells of Vicia faba was examined. BP and 2-AF induced CAs, but not SCEs. CP induced both SCEs and CAs.  相似文献   

6.
The effect of recombinant interferon-alpha-2a (rIFN-alpha-2a) on the induction of chromosomal aberrations (CAs) and sister-chromatid exchanges (SCEs) by the radiomimetic antibiotic streptonigrin (SN, 250 ng/ml, 20 min, 37 degrees C) in Chinese hamster ovary (CHO) cells was investigated. Recombinant IFN-alpha-2a (4500-45,000 IU/ml) was added to the cell cultures 30 min before SN and left in the culture medium until the end of SN treatment or until cell harvesting. A statistically significant increase in the frequency of CAs and SCEs was observed following treatment with SN (P < 0.05), whereas treatments with rIFN-alpha-2a alone did not produce any significant increase of CAs and SCEs over control values. Low rIFN-alpha-2a doses produced a reduction in the frequency of CAs and an increase in the yield of SCEs induced by SN, while high doses of the cytokine caused an increase in the yield of CAs and a reduction in the frequency of SCEs induced by the antibiotic. In addition, rIFN-alpha-2a caused a marked inhibition (around 50%) on the yield of SN-induced chromatid-type aberrations in the G(2) phase of the cell cycle. It is suggested that the inhibitory effect of rIFN-alpha-2a on the SN-induced chromosome damage is due to the stimulation of DNA synthesis and repair by the cytokine. On the other hand, our results give further support to our previous hypothesis that the induction of CAs and SCEs by SN is based on different mechanisms.  相似文献   

7.
The induction of chromosomal aberrations (CAs) and sister-chromatid exchanges (SCEs) by the methylating agent streptozotocin (STZ) and the effect of this compound on mitotic index (MI) and cell cycle progression in human lymphocytes were investigated. Unstimulated (G(0)) or cycling lymphocytes derived from whole blood or purified lymphocyte cultures were pulse-treated with increasing doses of STZ for 0.5-24h. Induction of CAs by STZ was only observed in cycling lymphocytes derived from whole blood cultures (WBC) (P<0.05). On the contrary, STZ produced a significant and dose-response increase in the yield of SCEs in unstimulated as well as cycling lymphocytes (P<0.05). In addition, STZ induced a dose-dependent decrease in the MI but had a slight effect on cell cycle progression. These results suggest that SCEs are the most sensitive endpoint for evaluating the chromosomal effects of STZ on these cells.  相似文献   

8.
N Kanaya 《Mutation research》1990,245(4):311-315
The induction of sister-chromatid exchanges (SCEs) and chromosome aberrations (CAs) by aniline hydrochloride (AH) and its C-hydroxylated metabolites, o-, m- and p-aminophenol, in the root cells of Vicia faba was examined. AH induced CAs, but not SCEs. All the C-hydroxylated metabolites of aniline induced both SCEs and CAs. However, the treatment of cells with these metabolites at concentrations that did not cause significant increases in CAs resulted in significant increases in SCEs. These results seem to suggest that the substance that induced CAs in root cells treated with AH was not the C-hydroxylated metabolites of aniline.  相似文献   

9.
The induction of chromosome aberrations (CAs) and sister-chromatid exchanges (SCEs) was examined in cultured lymphocytes from 23 individuals employed in the production of the drug 1-propoxy-2-acetamino-4-nitrobenzol. Lymphocytes of workers were cultured before and 13 weeks after starting professional activity. The latter showed a significant increase in both CAs and SCEs. Smokers (11 individuals) and non-smokers (12 individuals) were indistinguishable with respect to the frequencies of CAs or SCEs before starting professional activity, 13 weeks later smokers exhibited significantly more SCEs than non-smokers. This strongly suggests a comutagenic interaction of cigarette smoke and exposure to chemicals during drug production. On the basis of the technology applied the compound inducing CAs and SCEs in lymphocytes of smoking workers seems to be 2-acetamino-4-nitrophenol.  相似文献   

10.
Pioglitazone is a prototype of thiazolidinediones, used for the treatment of type 2 diabetes mellitus. Previous studies suggest that pioglitazone might cause DNA damage by generation of oxidative species. In this study, we investigated the mutagenic effects of pioglitazone using sister chromatid exchanges (SCEs), and chromosomal aberrations (CAs) assays in cultured human lymphocytes. In addition, oxidative DNA damage was evaluated in cells culture by measuring 8-hydroxy-2'-deoxyguanosine (8-OH-dG) marker. We also investigated the possible protective effects of vitamin B12, which is associated with DNA repair, on DNA damage induced by pioglitazone. Treatment of the human lymphocytes with pioglitazone (100μM) significantly increases the frequency of SCEs and CAs (p<0.01). In addition, significant elevation in 8-OH-dG release from lymphocytes was observed after treatment with pioglitazone (p<0.01). On the other hand, pretreatment of cultures with vitamin B12 (13.5μg/ml) protected lymphocytes from the genotoxic effect of pioglitazone. Therefore, we conclude that pioglitazone is genotoxic, and it induces chromosomal and oxidative DNA damage in cultured lymphocytes and this toxicity is prevented by pretreatment with vitamin B12.  相似文献   

11.
The metabolic inhibitor of DNA synthesis cytosine arabinoside (ara-C) is known to induce chromosome aberrations in human lymphocytes. It has been recently argued, however, that there is no unequivocal evidence that ara-C can damage chromosomes directly. Therefore, the effect of ara-C on unstimulated human lymphocytes was examined directly by means of the premature chromosome condensation technique. In about 50% of the cells, ara-C effectively induced chromosome fragments, which did not show rejoining even after the chemical was washed out. These results suggest that a possible selection against damaged cells in their progress to mitosis could result in the low yields of ara-C-induced chromosome aberrations reported in the literature. The effect of ara-C on the repair of radiation-induced chromosome aberrations was also examined. Ara-C did not affect the rejoining of the chromosome fragments induced in unstimulated human lymphocytes by 6 Gy of X-rays.  相似文献   

12.
L Fabry  C Coton 《Mutation research》1985,149(3):475-483
Cytosine arabinoside (ara-C), an inhibitor of DNA synthesis and repair, has been used to study the mechanisms of formation of chromosomal aberrations after exposure to low- and high-LET radiation. When G0 human lymphocytes were exposed either to gamma-rays or to d(50 MeV)-Be neutrons and immediately treated with ara-C for increasing periods of time, the frequency of aberrations (dicentrics) increased sharply. For gamma-rays, the enhancement increased with the duration of the treatment up to 5 h, whereas for neutrons, an ara-C treatment lasting for 5 h was no more effective than treatment for 3 h. These results were confirmed by the second experiment in which ara-C was administered for 3 h with an increasing time delay following irradiation. Since no increase in the dicentric frequency was observed when ara-C was administered 5 h after gamma-irradiation, it is suggested that the induced breaks rejoined within that time. For neutrons, the data were conflicting since the repair was completed within 3 h after a dose of 0.5 Gy, and in approximately 5 h after a dose of 2.0 Gy. From both experiments, it appears that gamma-rays and fast neutrons produce similar types of lesions, as ara-C increased the frequencies of aberrations induced by both types of radiation. However, the ara-C treatment resulted in a smaller increase in aberrations following neutron irradiation. According to the enzymatic nature of break formation and the mode of action of ara-C on the polymerase activity, it is suggested that, in addition to double-strand breaks, single-strand breaks could be the lesions involved in the repair processes inhibited by ara-C. Single-strand breaks formed directly or by secondary reactions would, therefore, be one of the major lesions responsible for the aberrations produced by gamma and neutron radiations.  相似文献   

13.
Peroxyacetyl nitrate (PAN) is one of a class of common air pollutant formed by the action of sunlight on volatile organic compounds and nitrogen oxides. PAN has been shown to be a bacterial mutagen. To determine if PAN can cause DNA damage in mammalian cells, we exposed murine peripheral blood lymphocytes (PBLs) to various volumes of PAN in vitro and analyzed the cells for chromosome aberrations (CAs), sister chromatid exchanges (SCEs), and DNA damage using the single cell gel (SCG) assay. At in vitro concentrations of PAN that were cytotoxic (inhibited cell division), an increase in DNA damage was noted in the SCG assay. At lower exposure levels that permitted cell division, no increases in SCEs, CAs, or DNA damage were evident. For in vivo studies, male mice were exposed nose-only by inhalation for 1 h to 0, 15, 39 or 78 ppm PAN, and their lung cells removed and cultured for the scoring of SCEs and CAs. In addition, PBLs and lung cells were analyzed by the SCG assay. No dose-related effects were found in any of the assays. These data indicate that PAN does not appear to be a potent clastogen or DNA damaging agent in mammalian cells in vivo or in vitro.  相似文献   

14.
Various types of DNA damage, induced by endo- and exogenous genotoxic impacts, may become processed into structural chromosome changes such as sister chromatid exchanges (SCEs) and chromosomal aberrations. Chromosomal aberrations occur preferentially within heterochromatic regions composed mainly of repetitive sequences. Most of the preclastogenic damage is correctly repaired by different repair mechanisms. For instance, after N-methyl-N-nitrosourea treatment one SCE is formed per >40,000 and one chromatid-type aberration per approximately 25 million primarily induced O6-methylguanine residues in Vicia faba. Double-strand breaks (DSBs) apparently represent the critical lesions for the generation of chromosome structural changes by erroneous reciprocal recombination repair. Usually two DSBs have to interact in cis or trans to form a chromosomal aberration. Indirect evidence is at hand for plants indicating that chromatid-type aberrations mediated by S phase-dependent mutagens are generated by post-replication (mis)repair of DSBs resulting from (rare) interference of repair and replication processes at the sites of lesions, mainly within repetitive sequences of heterochromatic regions. The proportion of DSBs yielding structural changes via misrepair has still to be established when DSBs, induced at predetermined positions, can be quantified and related to the number of SCEs and chromosomal aberrations that appear at these loci after DSB induction. Recording the degree of association of homologous chromosome territories (by chromosome painting) and of punctual homologous pairing frequency along these territories during and after mutagen treatment of wild-type versus hyperrecombination mutants of Arabidopsis thaliana, it will be elucidated as to what extent the interphase arrangement of chromosome territories becomes modified by critical lesions and contributes to homologous reciprocal recombination. This paper reviews the state of the art with respect to DNA damage processing in the course of aberration formation and the interphase arrangement of homologous chromosome territories as a structural prerequisite for homologous rearrangements in plants.  相似文献   

15.
C Nowak  G Obe 《Mutation research》1985,149(3):469-474
Human peripheral lymphocytes and Chinese hamster ovary cells were treated in the G1 phase of the cell cycle with the trifunctional alkylating agent trenimon (TRN) and post-treated with a single-strand specific endonuclease from Neurospora crassa (NE). TRN induces chromosomal aberrations of the chromatid type (CA) and sister-chromatid exchanges (SCE). NE post-treatment leads to an elevation of the frequencies of CA but not of SCEs. This indicates that TRN induced CA are the result of DNA double-strand breaks and that the SCEs originate from other types of lesions, most probably base damage.  相似文献   

16.
Sister-chromatid exchanges (SCEs) induced by mitomycin C (MMC), 4-nitroquinoline-1-oxide (4NQO) or UV-light in cultured Chinese hamster ovary cells (CHO K-1 cells) were enhanced by cinoxate (2-ethoxyethyl p-methoxycinnamate) or methyl sinapate (methyl 3,5-dimethoxy 4-hydroxycinnamate). Both substances are cinnamate derivatives and cinoxate is commonly used as a cosmetic UV absorber. Methyl sinapate also increased the frequency of cells with chromosome aberrations in the CHO K-1 cells treated with MMC, 4NQO or UV. These increasing effects of methyl sinapate were critical in the G1 phase of the cell cycle and the decline of the frequencies of UV-induced SCEs and chromosome aberrations during liquid holding was not seen in the presence of methyl sinapate. Both compounds were, however, ineffective in cells treated with X-rays. In cells from a normal human embryo and from a xeroderma pigmentosum (XP) patient, MMC-induced SCEs were also increased by the post-treatment with methyl sinapate. The SCE frequencies in UV-irradiated normal human cells were elevated by methyl sinapate, but no SCE-enhancing effects were observed in UV-irradiated XP cells. Our results suggest that the test substances inhibit DNA excision repair and that the increase in the amount of unrepaired DNA damage might cause the enhancement of induced SCEs and chromosome aberrations.  相似文献   

17.
Human and pig lymphocytes were used to compare the chromosomal sensitivity to MMC and the efficiency of repair of MMC-induced DNA adducts. No significant interspecies differences were found. The results obtained show that SCE frequencies are linearly correlated with MMC doses. During the G0 period there are indications that lymphocytes may half-repair the DNA-interstrand crosslinks transforming bi- into mono-adducts. SCEs induced by MMC decrease to near control levels in the second cell cycle. Therefore, most MMC lesions responsible for SCEs should be repaired between the moment in the first S phase in which they induce the exchanges and the onset of the second S period.  相似文献   

18.
Vorinostat is a member of histone deacetylase inhibitors, which represents a new class of anticancer agents for the treatment of solid and hematological malignancies. Studies have shown that these drugs induce DNA damage in blood lymphocytes, which is proposed to be due to the generation of oxidative lesions. The increase in DNA damage is sometimes associated with risk of developing secondary cancer. Thus, finding a treatment that limits DNA damage caused by anticancer drugs would be beneficial. Tempol is a potent antioxidant that was shown to prevent DNA damage induced by radiation. In this study, we aimed to investigate the harmful effects of vorinostat on DNA damage, and the possible protective effects of tempol against this damage. For that, the spontaneous frequency of sister chromatid exchanges (SCEs), chromosomal aberrations (CAs), and 8-hydroxy-2-deoxy guanosine (8-OHdG) levels were measured in cultured human lymphocytes treated with vorinostat and/or tempol. The results showed that vorinostat significantly increases the frequency of SCEs, CAs and 8-OHdG levels in human lymphocytes as compared to control. These increases were normalized by the treatment of cells with tempol. In conclusion, vorinostat is genotoxic to lymphocytes, and this toxicity is reduced by tempol. Such results could set the stage for future studies investigating the possible usefulness of antioxidants co-treatment in preventing the genotoxicity of vorinostat when used as anticancer in human.  相似文献   

19.
Elevated levels of chromosomal aberrations (CAs) in peripheral blood lymphocytes, widely used as a cytogenetic biomarker of genotoxic effects, have been linked to cancer predisposition. However, tobacco smoking, occupational carcinogen exposure, or time since CA analysis do not appear to explain the cancer predictivity of CAs. Alternatively, the observed CA-cancer association could reflect unidentified exposures or individual susceptibility. We assessed the effects of genetic polymorphisms of DNA repair proteins and xenobiotic-metabolizing enzymes (XMEs) on the levels of CAs and sister chromatid exchanges (SCEs) in peripheral lymphocytes of 145 (CAs) and 60 (SCEs) healthy Caucasians. Genotypes of DNA repair genes X-ray repair cross-complementation group 1 (XRCC1 codons 194, 280, 399) and 3 (XRCC3 codon 241 [corrected]), and XME genes glutathione-S-transferase (GST) M1 and T1 and N-acetyl transferase 2 (NAT2) were determined using polymerase chain reaction (PCR) and restriction fragment length polymorphism (RFLP)-based methods. After Poisson regression adjustment for age, sex, smoking, country, and genotypes, a higher frequency of chromosome-type breaks was observed for NAT2 slow acetylators (in nonsmokers) and GSTT1 null subjects (in smokers). Individuals carrying variant alleles for XRCC1 codons 280 and 194 showed a decreased level of chromosome-type breaks. The effect of GSTM1 null and XRCC1 codon 399 genotypes on the frequency of CAs was modified by smoking. In linear regression models adjusting for age, sex, smoking, and genotypes, none of the polymorphisms significantly affected SCE frequency, although GSTT1 null subjects had a slightly elevated SCE level. Our results are in line with earlier findings on the influence of NAT2, GSTT1, and GSTM1 polymorphisms on the level of lymphocyte chromosome damage and suggest that also XRCC1 polymorphism affects CA frequencies, thus apparently influencing DNA repair phenotype. It remains to be examined whether these or other genetic polymorphisms could explain the observed cancer risk predictivity of high CA frequency.  相似文献   

20.
We have studied the induction of chromosomal aberrations in human lymphocytes exposed in G0 to X rays or carbon ions. Aberrations were analyzed in G0, G1, G2 or M phase. Analysis during the interphase was performed by chemically induced premature chromosome condensation, which allows scoring of aberrations in G1, G2 and M phase; fusion-induced premature chromosome condensation was used to analyze the damage in G0 cells after incubation for repair; M-phase cells were obtained by conventional Colcemid block. Aberrations were scored by Giemsa staining or fluorescence in situ hybridization (chromosomes 2 and 4). Similar yields of fragments were observed in G1 and G2 phase, but lower yields were scored in metaphase. The frequency of chromosomal exchanges was similar in G0 (after repair), G2 and M phase for cells exposed to X rays, while a lower frequency of exchanges was observed in M phase when lymphocytes were irradiated with high-LET carbon ions. The results suggest that radiation-induced G2-phase block is associated with unrejoined chromosome fragments induced by radiation exposure during G0.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号